
Chapter 1

What is a Ring?

1.1 Some Examples

Consider the following sets :

1. Z = {. . . , −1, 0, 1, 2, . . . } – the set of integers.

2. Q = {a
b

| a, b ∈ Z, b 6= 0} – the set of rational numbers.

3. M2(R) – the set of 2× 2 matrices with real numbers as entries.

4. 2Z = {. . . , −2, 0, 2, 4, . . . } – the set of even integers.

5. C(R) – the set of continuous functions from R to R.

6. Q[x] = {anxn + an−1x
n−1 + · · · + a1x + a0 | an, . . . , a0 ∈ Q} – the set of

polynomials with rational coefficients.

7. Z/6Z = {0̄, 1̄, 2̄, 3̄, 4̄, 5̄} – the set of congruence classes in Z modulo 6.

Remember the very general definition of an algebraic structure as a set equipped
with a binary operation, that is a scheme for combining any pair of elements of the
set to produce a new element of the same set. All of the sets in our list above have
binary operations defined on them in natural and probably mostly familiar ways.
Of course it is possible for a set to have more than one “natural” binary operation
defined on it. Algebra, in its broadest sense, is the study of algebraic structures.

What do all the six sets described above have in common as algebraic structures?

Each of them is equipped with two binary operations called addition and mul-
tiplication. In Z, Q and 2Z we have the usual addition and multiplication of
integers and rational numbers. In M2(R) we have matrix addition and matrix
multiplication. In C(R) we have addition and multiplication defined by

( f + g︸ ︷︷ ︸
+ in C(R)

)(x) = f(x) + g(x)︸ ︷︷ ︸
+inR

, for all x ∈ R and all f, g ∈ C(R)
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( f× g︸ ︷︷ ︸
× in C(R)

)(x) = f(x)× g(x)︸ ︷︷ ︸
×inR

, for all x ∈ R and all f, g ∈ C(R).

In Q[x] we have the usual addition and multiplication of polynomials, e.g.

(x2 + 2x + 4) + (x3 − 3x + 2) = x3 + x2 − x + 6,

(x2 − 2x + 1)(x + 5) = x3 + 5x2 − 2x2 − 10x + x + 5 = x3 + 3x2 − 9x + 5.

In Z/6Z the addition and multiplication are defined modulo 6, e.g. 4̄ + 5̄ = 3̄;
4̄× 5̄ = 2̄, etc.

Note: In each case the set under consideration is closed under the relevant opera-
tions of addition and multiplication; this means that in each case the product and
sum of a pair of elements in a particular set also belong to that set. For example
the set of odd integers is not closed under addition, since the sum of two odd
integers is not odd.

ADDITION IN OUR EXAMPLES

• All the above examples contain an identity element for addition, which we
refer to as the zero element and write as 0. This element has the property
that adding it to another element has no effect. The zero elements in our
examples are

1. The integer 0

2. The rational number 0

3. The zero matrix
(

0 0
0 0

)
4. The integer 0

5. The function f0 : R −→ R defined by f(x) = 0, ∀ x ∈ R
6. The zero polynomial 0

7. The congruence class 0̄ modulo 6

• In each of our sets, every element has an additive inverse or “negative”.
Two elements are additive inverses each other if their sum is the zero ele-
ment. The fact that every element of a set has an additive inverse means
that subtraction can be defined in the set.

• In all of our sets, addition is commutative, i.e. a + b = b + a for all pairs a

and b of elements.

MULTIPLICATION IN OUR EXAMPLES

• The multiplication is commutative in all these examples except for M2(R).
For 2× 2 matrices A and B, the products AB and BA need not be equal.
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• Except for 2Z each of these examples contains an identity element for mul-
tiplication, i.e. an element e for which e × a = a × e = a for all elements a

of the set; multiplying by e has no effect. The multiplicative identities are

1. The integer 1

2. The rational number 1

3. The matrix
(

1 0
0 1

)
4. No identity element for multiplication

5. The function f1 : R −→ R defined by f(x) = 1 for all x ∈ R
6. The polynomial 1

7. The congruence class 1̄ modulo 6

• Two elements are multiplicative inverses of each other if their product is
the multiplicative identity element. In Q, every element except 0 has a mul-
tiplicative inverse, namely its reciprocal. All the other examples contain
non-zero elements without multiplicative inverses.

The seven algebraic structures mentioned in this section are all examples of rings.
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1.2 The Axioms of a Ring

NOTE: In this section and throughout these lecture notes, please do not confuse
the symbol R, which is used for a general ring, with the symbol R which is used
for the set of real numbers.

Definition 1.2.1 A ring is a non-empty set R equipped with two binary operations called
addition (+) and multiplication (×), satisfying the following properties :

The first four are concerned with the operation that is called addition.

A1 Addition is associative.
(r + s) + t = r + (s + t) for all r, s, t ∈ R.

A2 Addition is commutative. r + s = s + r for all r, s ∈ R.

A3 R contains an identity element for addition, denoted by 0R and called the
zero element of R.
r + 0R = 0R + r = r for all r ∈ R.

A4 Every element of R has an inverse with respect to addition. (The additive
inverse of r is often denoted by −r).
For every r ∈ R, there exists an element −r ∈ R for which r + (−r) = 0R.

NOTE : Axioms A1 to A4 could be summarized by saying that R is an abelian
group under addition. (If this remark is not helpful for you, disregard it for now).

The multiplication operation is required only to satisfy one special condition :

M1 Multiplication is associative.
(r× s)× t = r× (s× t) for all r, s, t ∈ R.

The last two axioms are concerned with the manner in which the two operations
must interact.

D1 r× (s + t) = (r× s) + (r× t) for all r, s, t ∈ R.

D2 (r + s)× t = (r× t) + (s× t) for all r, s, t ∈ R.
-Distributive laws for multiplication over addition.

REMARKS

1. A ring is called commutative if its multiplication is commutative.
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2. A ring R is called unital or referred to as a ring with identity if it contains an
identity element for multiplication. In this case we will denote the multi-
plicative identity by 1R or just 1. We have already met one example of a
ring without identity, namely the ring 2Z of even integers.

3. The term “ring” was introduced by David Hilbert in the late 19th century,
when he referred to a “Zahlring” or “number ring”.

Our first theorem about rings is the following consequence of the ring axioms.

Theorem 1.2.2 Let R be a ring. Then for all elements r of R we have

0R × r = 0R and r× 0R = 0R.

i.e. multiplying any element of R by the zero element results in the zero element as the
product.

Proof : Let r ∈ R. We have

(0R × r) + (0R × r) = (0R + 0R)× r

= 0R × r.

Adding the additive inverse of the element 0R × r to both sides of this equation
gives

0R × r = 0R.

A similar argument shows that r× 0R = 0R. �

THREE REMARKS

1. The problem of deducing the truth of a statement like Theorem 1.2.2 from
the axioms of a ring might be somewhat daunting. The proof may not be
too hard to follow, but could you have come up with it yourself? If you were
trying to, and you didn’t know where to start, there are certain observations
you could make that might help. There are seven axioms for rings - which
might be likely to be helpful in proving the two (left and right) statements
of Theorem 1.2.2? Well, the statement is about multiplication and about the
zero element. According to the ring axioms, what is special about the zero
element has to do with addition not multiplication. So it might seem likely
that the statement in the theorem is essentially connected to the interaction
of the addition and multiplication - the two axioms that deal with that are
the distributive laws, so maybe we should not be so surprised that these have
a crucial role in the proof.
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2. The next two remarks are about the philosophy of abstract algebra and the
mechanisms by which the subject progresses. The definition of a ring con-
sists of a list of technical properties, but the motivation for this definition is
the ubiquity of objects having these properties, like the ones in Section 1.1.
When making a definition like that of a ring (or group or vector space), the
goal is to arrive at a set of axioms that exactly captures the crucial unifying
properties of those objects that you wish to study. In familiar number sys-
tems like the integers, the rational numbers and the real numbers, we are all
used to the fact with which Theorem 1.2.2 is concerned, namely that “mul-
tiplying by zero gives zero”. The same fact is easily observed to hold in
the polynomial ring Q[x] and in the ring of matrices M2(R). We might well
speculate that in any ring, it is probably the case that multiplying by the zero
element always results in the zero element. But before we can assume that
this property holds in every ring and incorporate it into our mental scheme
for thinking about rings we must deduce this property as a consequence of the
ring axioms.

If we were unable to do this, but we only wanted to study rings with the
property described in Theorem 1.2.2, we could an extra axiom to our defini-
tion of a ring insisting on this “multiplication by zero” property. However
the fact that this property does turn out to follow from the standard ring
axioms means that it does not need to be included in the definition.

3. On looking at Definition 1.2.1, you may wonder why these seven axioms
in particular are chosen to comprise the definition of a ring. Does it look
like an arbitrary selection of rules? Why do we insist that the addition have
an identity element and that every element have an inverse for addition,
but where the multiplication is concerned only ask that it be associative?
What happens if we add more axioms about how the multiplication should
behave, or drop some of the axioms about addition? The answer is that peo-
ple do these things and they lead to different areas of study within abstract
algebra. Relaxing the addition axioms in various ways leads to different
types of algebraic structures such as near–rings and semirings. If you drop
the requirement that multiplication must be associative then you are study-
ing non-associative rings – people do study all of these variants and some
of them have important connections to other areas of mathematics. You
can even relax the distributive laws and people do this too. However rings
themselves as defined in Definition 1.2.1 are of paramount importance in
mathematics.

On the other hand, if you want more instead of fewer axioms, you can in-
sist that multiplication be commutative as well as associative, then you are
studying commutative rings. In fact much of this course will be concerned
with commutative rings. If you further insist that you want an identity
element for multiplication and that every (non-zero) element have an in-
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verse for multiplication, then you are studying fields. Fields are examples of
rings, and field theory itself is a vast area of mathematical activity. A crucial
practice in studying abstract algebra is to be absolutely clear on the precise
axioms that determine the class of objects that you are studying.
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1.3 Units in Rings

As we have already mentioned, the axioms of a ring are not very restrictive con-
cerning how the operation of multiplication should behave - all we ask is that it
should be associative. We do not even insist that every ring should contain an
identity element for multiplication (although incidentally some authors in ring
theory do). If a ring does contain an identity element for multiplication, then we
can enter a discussion about whether or not something like division is possible in
the ring; we can try to identify pairs of elements that are related to each other
in the way that a rational number is related to its reciprocal or in the way that a
non-singular matrix is related to its inverse.

Definition 1.3.1 Let R be a ring with identity element 1R for multiplication. An element
r ∈ R is called a unit in R if there exists s ∈ R for which

r× s = 1R and s× r = 1R.

In this case r and s are (multiplicative) inverses of each other.

Example 1.3.2

1. In Q every element except 0 is a unit; the inverse of a non-zero rational
number is its reciprocal.

2. In Z the only units are 1 and −1 : no other integer can be multiplied by an
integer to give 1.

3. In M2(R), the units are the 2 × 2 matrices with non-zero determinant, and

the identity element is
(

1 0
0 1

)
.

4. In Z/6Z the only units are 1̄ and 5̄; each of these is its own inverse.

5. Question for discussion in the seminar : what are the units in M2(Z), the ring
of 2× 2 matrices with integer entries?

NOTATION: We will denote the set of units in a ring R with identity by U(R).

REMARKS

1. If R is a unital ring having two or more elements then it follows from The-
orem 1.2.2 that the zero element of R and the multiplicative identity in R

cannot be the same element.

2. If R has two or more elements then 0R cannot be a unit in R, again by Theo-
rem 1.2.2.
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3. It is possible for a ring to have only one element; for example the subset of
Z containing only 0 is a ring. (This is called the zero ring and as an example
of a ring it is not very instructive)

4. 1R is always a unit in R since it is its own inverse.

The next theorem is concerned with a special property of the subset of a ring
consisting of the units. Suppose that R is a unital ring. Then from the above
comments it follows that U(R) is a subset of R that includes the (multiplicative)
identity element but not the zero element. Is U(R) just a set, or does it have alge-
braic structure of its own? The full ring R has addition and multiplication defined
on it. If we take two units of R we can add them in R; will the result be a unit?
If we take two units of R and multiply them (in R), will the result be a unit? If
the answer to this second question is yes, then the set of units of R is itself an
algebraic structure with respect to the multiplication of R, and we can study its
properties.
Algebraists are always on the lookout for substructures of the objects that they
are studying, which are themselves algebraic structures with respect to the op-
eration(s) of the larger object. The general thinking behind this practice is that
small things are usually easier to understand than big things, and that we have
some chance of understanding (at least partically) a large complicated algebraic
structure if we can identify smaller parts of it that are themselves algebraic struc-
tures.

Theorem 1.3.3 Let R be a ring with identity element 1R. Then U(R) is a group under
the multiplication of R. (U(R) is called the unit group of R).

Note : The statement that U(R) is a group under multiplication means that :

• U(R) is closed under multiplication - whenever elements a and b belong to
U(R), so does their product ab.

• U(R) contains an identity element for multiplication.

• U(R) contains a multiplicative inverse for each of its elements.

Proof of Theorem 1.3.3: We need to show

1. U(R) is closed under the multiplication of R; i.e. that rs is a unit in R when-
ever r and s are units in R. So assume that r and s belong to U(R) and let r−1

and s−1 denote their respective inverses in R. Then

(rs)(s−1r−1) = r(ss−1)r−1

= r1Rr−1

= rr−1

= 1R.
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Similarly (s−1r−1)(rs) = 1R and so s−1r−1 is an inverse in R for rs, and rs ∈
U(R).

2. U(R) contains an identity element for multiplication. This is true since 1R ∈
U(R).

3. U(R) contains an inverse for each of its elements.
To see this, suppose r ∈ U(R), and let r−1 be the inverse of r in R. Then
r−1r = 1R and rr−1 = 1R, so r is the inverse of r−1, and r−1 is in U(R).

This proves the theorem. �

EXAMPLES

1. U(Z) = {−1, 1} is a cyclic group of order 2.

2. The unit group of the matrix ring Mn(R) is the general linear group GL(n, R)

of n× n invertible matrices over R.

3. The unit group of Q is denoted Q× and consists of all non-zero rational
numbers.

QUESTION FOR DISCUSSION IN THE SEMINAR: In general, is there anything to be said
about the behaviour of U(R) with respect to addition in R?

Suppose that R is a ring with identity. Then we know that the unit group of
R cannot include the zero element of R, but any non-zero element of R could
potentially be a unit. A particularly nice thing to happen is for every non-zero
element of R to be a unit. Rings in which this occurs are worthy of special study.

Definition 1.3.4 A ring with identity is called a field if it is commutative and every
non-zero element is a unit (so we can divide by every non-zero element).

Examples of fields include Q, R, C and Z/5Z (check).

A ring with identity in which every non-zero element is a unit is called a divi-
sion ring. Commutative division rings are fields. Examples of non-commutative
division rings are not easy to find, but we will see at least one in this course.
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1.4 Integral Domains and Zero–Divisors

We saw in Theorem 1.2.2 that whenever an element of a ring is multiplied by
zero, the result is zero. When working in the set of real numbers we often use the
converse of this - a product ab can be zero in R only if at least one of a and b is
equal to zero.
QUESTION FOR THE SEMINAR: When/how do we use this?

QUESTION: Is it true in every ring that the product of two elements can be zero
only if at least one of the elements is zero? To think about this question, look at
some examples.

Example 1.4.1 1. In M2(Q)(
1 −1

−2 2

) (
1 1
1 1

)
=

(
0 0
0 0

)
.

i.e. the product of two non-zero matrices in M2(Q) can be the zero matrix.

2. In Z/6Z, 2̄× 3̄ = 0̄

So the answer to the question is no in general. However, it is of interest to study
the class of rings in which the property described in the question holds.

Definition 1.4.2 Let R be a ring with zero element 0R. An element a of R is called a
(left) zero–divisor in R if a 6= 0R and there exists an element b 6= 0R of R for which
ab = 0R. (In this case b is a right zero–divisor).

NOTE: If R is commutative then ab = ba and we just talk about zero–divisors
(not left and right zero–divisors).

Definition 1.4.3 A commutative ring with identity that contains no zero-divisors is
called an integral domain (or just a domain).

In an integral domain, the product of two elements can be zero only if one of the
elements is zero.

EXAMPLES

1. Z is an integral domain. Somehow it is the “primary” example - it is from
the ring of integers that the term “integral domain” is derived. The adjective
“integral” in this context is related to “integer” (nothing to do with integrals
in the calculus sense!).
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2. Every field is an integral domain. For let F be a field and suppose that a, b are
elements of F for which ab = 0F. Assume a 6= 0. Then a has a multiplicative
inverse in F and

ab = 0F

=⇒ a−1(ab) = a−10F

=⇒ (a−1a)b = 0F by Theorem 1.2.2
=⇒ 1Fb = 0F

=⇒ b = 0F.

REMARK: It follows from the above argument that no unit can be a (left or
right) zero-divisor in any ring.

EXERCISE: Write down a proof of the statement of the above remark.

3. An example of a commutative ring with identity that is not an integral do-
main is Z/6Z (or Z/nZ for any composite natural number n).

QUESTIONS FOR THE SEMINAR:

1. For which natural numbers n is Z/nZ a field?

2. For which natural numbers n is Z/nZ an integral domain?

3. For a natural number n, which elements of Z/nZ are units?

4. Is it true for every natural number n that every non-zero element of Z/nZ is either
a unit or a zero-divisor? Can we prove this?

5. Suppose that R is a commutative ring with identity that is not an integral domain.
Must it be true that every non-zero element of R is either a zero-divisor or a unit?
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Chapter 2

Factorization in Polynomial Rings

2.1 Polynomial Rings

If R is any ring, we can define the ring R[x] of polynomials with coefficients in R. If
F is a field, then the polynomial ring F[x] is a particular interest. Polynomial rings
over fields have some resemblance to the ring Z of integers in terms of their di-
visibility properties. Integers can sometimes be factorized in nontrivial ways and
sometimes not, and every integer > 2 can be written in a (more or less) unique
manner as a product of primes, which are “elementary components” of integers
with respect to multiplication. The theme of this chapter is to explore analagous
properties of polynomial rings over fields. Note that notions like factorization
and prime are lost when we move from the integers to the rational numbers.
QUESTION FOR THE SEMINAR : Why is this?

Definition 2.1.1 Let R be a ring. A polynomial in x with coefficients in R is an expres-
sion of the form

anxn + an−1x
n−1 + · · ·+ a1x + a0,

where n > 0 is an integer and ai ∈ R for i = 0, . . . , n.
The set of all such expressions is denoted by R[x].

NOTE: The symbol x is an indeterminate. The expressions

amxm + am−1x
m−1 + · · ·+ a1x + a0 and bnxn + bn−1x

n−1 + · · ·+ b1x + b0

are (by definition) equal in R[x] if and only if ai = bi for all i > 0. (Here we assign
aj = 0 for j > m and bj = 0 for j > n, in order for the statement “ ai = bi for all
i > 0” to make sense.)

The set R[x] is a ring under polynomial addition and multiplication, which are
defined as follows. Let

f(x) = amxm + am−1x
m−1 + · · ·+ a1x + a0

g(x) = bnxn + bn−1x
n−1 + · · ·+ b1x + b0
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be elements of R[x].

• The sum f(x) + g(x) is the polynomial in which the constant term is a0 + b0

and the coefficient of xi is ai + bi for i > 1.

• The product f(x)g(x) has constant term a0b0. For i > m + n the coefficient
of xi is 0 and for i 6 m + n the coefficient of xi is

i∑
j=0

ajbi−j.

(For example the coefficient of x2 is a0b2 + a1b1 + a2b0).

NOTES:

1. R[x] is commutative if and only if R is commutative.

2. If R contains an identity element 1R for multiplication, then 1R is also an
identity element for multiplication in R[x].

3. Those polynomials in R[x] in which the coefficient of xi is zero whenever
i > 1 (i.e. those in which the indeterminate x does not actually appear) are
called the constant polynomials. They are just the elements of R.

Of course the set of constant polynomials is itself a ring under the opera-
tions of R[x] (which for the constant polynomials are just the addition and
multiplication of R). We say that R is a subring of R[x]).

The remarks above show that the properties of R[x] are influenced by the proper-
ties of R. We will shortly assume that R is an integral domain, and later that R is a
field.

Definition 2.1.2 Let R be a ring. The degree of a polynomial f(x) in R[X] is defined
to be the maximum i for which xi appears with non-zero coefficient in f(x), if any such
i exists. The degree of a non-zero constant polynomial is zero. The degree of the zero
polynomial is not defined.

So associated to every non-zero polynomial we have its degree, which is a non-
negative integer. The next result describes how the degree behaves with regard
to multiplication in polynomial rings over integral domains.

Lemma 2.1.3 Let R be an integral domain and let f(x) and g(x) be non-zero elements of
R[x] of degrees m and n respectively. Then the polynomial f(x)g(x) has degree m + n.
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Proof: Write

f(x) = amxm + am−1x
m−1 + · · ·+ a1x + a0, am 6= 0

g(x) = bnxn + bn−1x
n−1 + · · ·+ b1x + b0, bn 6= 0

Then the highest power of x to possibly appear in the product f(x)g(x) is xm+n

which has coefficient ambn. Note that this element is not zero in R since it is the
product of two non-zero elements in a ring without zero-divisors. �

Corollary 2.1.4 If R is an integral domain then R[x] is also an integral domain.

Proof: Exercise for the seminar.

Corollary 2.1.5 Let R be an integral domain. Then the unit group of R[x] is just the unit
group of R.

NOTE: This is saying that the only elements of R[x] that are units in R[x] are those
constant polynomials which are units in R.

Proof: The identity element of R[x] is the constant polynomial 1R, which is also
the identity element of R. Since R ⊂ R[x] and 1R ∈ R, it is clear that U(R) ⊆ U(R[x]).
On the other hand suppose that f(x) is a non–constant polynomial in R[x], so
deg(f(x)) > 1. If g(x) is a non-zero element of F[x], then

deg(f(x)g(x)) = deg(f(x)) + deg(g(x)) > 1,

so f(x)g(x) 6= 1R. Thus f(x) has no inverse in R[x] and f(x) does not belong to
U(R[x]).

Example: If F is a field then U(F[x]) = F×, the multiplicative group of non-zero
elements of F.

QUESTION FOR THE SEMINAR: Suppose that R is not an integral domain. Then
could it happen that a non-constant polynomial could be a unit in R[x]?
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2.2 Divisibility and Irreducibility

RECALL: The division algorithm in Z : if m is a positive integer and n is any
integer, then there exist unique integers q and r (respectively called the quotient
and remainder on dividing n by m) with 0 6 r < m and

n = mq + r.

We will discuss in the seminar how the division algorithm for Z can be proved
(although it is not very difficult to persuade yourself that it is true). In this section
we will see that for a field F, the polynomial ring F[x] has many properties in
common with the ring Z of integers. The first of these is a version of the division
algorithm.

Definition 2.2.1 Let f(x), g(x) be polynomials in F[x]. We say that g(x) divides f(x)

in F[x] if f(x) = g(x)q(x) for some q(x) ∈ F[x] (i.e. if f(x) is a multiple of g(x) in F[x]).

Theorem 2.2.2 (Division Algorithm in F[x]). Let F be a field and let f(x) and g(x)

be non-zero polynomials in F[x] with g(x) 6= 0. respectively. Then there exist unique
polynomials q(x) and r(x) in F[x] with r(x) = 0 or deg(r(x)) < deg(g(x)) and

f(x) = g(x)q(x) + r(x).

NOTES

1. In this situation q(x) and r(x) are called the quotient and remainder upon
dividing f(x) by g(x).

2. There are two separate assertions to be proved - the existence of such a q(x)

and r(x), and their uniqueness.

Proof: (Existence) Define S to be the set of all polynomials in F[x] of the form
f(x) − g(x)h(x) where s(x) ∈ F[x]. So S is the set of all those polynomials in F[x]

that differ from f(x) by a multiple of g(x). Our goal for the existence part of the proof
is show that either the zero polynomial belongs to S, or S contains some element
whose degree is less than that of g(x).

1. If 0 ∈ S then f(x) − g(x)h(x) = 0 for some h(x) ∈ F[x], so f(x) = g(x)h(x)

and we can take q(x) = h(x) and r(x) = 0.

2. If 0 6∈ S, let r(x) be an element of minimal degree in S.

Let m denote the degree of g(x) and write

g(x) = amxm + am−1x
m−1 + · · ·+ a1x + a0, am 6= 0.
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Let t = deg(r(x)) and write

r(x) = btx
t + bt−1x

t−1 + · · ·+ b1x + b0, bt 6= 0.

We claim that t < m. We know since r(x) ∈ S that there exists a polynomial
h(x) ∈ F[x] for which

r(x) = f(x) − g(x)h(x).

Thus
btx

t + bt−1x
t−1 + · · ·+ b1x + b0 = f(x) − g(x)h(x).

If t > m then t − m > 0. Also am 6= 0 in F, so am has an inverse 1/am in F and
the element bt/am belongs to F. Now subtract the polynomial g(x)(bt/am)xt−m

(which has leading term btx
t) from both sides of the above equation to get

btx
t + · · ·+ b1x + b0 − g(x)(bt/am)xt−m = f(x) − g(x)h(x) − g(x)(bt/am)xt−m.

The left side of the above equation is r1(x), a polynomial of degree less than t in
F[x]. The right hand side is f(x) − g(x)h1(x) where h1(x) = h(x) + (bt/am)xt−m.
Thus r1(x) belongs to S, contrary to the choice of r(x) as an element of minimal
degree in S. We conclude that t < m and

f(x) = g(x)h(x) + r(x)

is a description of f(x) of the required type. This proves the existence.

QUESTIONS FOR THE SEMINAR:

1. How do we know that r1(x) above has degree less than t?

2. Why can we conclude that t < m at the third last line above?

3. Where does the proof use the fact that F is a field?

Uniqueness: Suppose that

f(x) = g(x)q1(x) + r1(x), deg(r1(x)) < m

and f(x) = g(x)q2(x) + r2(x), deg(r2(x)) < m.

Then

0 = g(x)(q1(x) − q2(x)) + (r1(x) − r2(x)) =⇒ g(x)(q1(x) − q2(x)) = r2(x) − r1(x).

Now g(x)(q1(x) − q2(x)) is either zero or a polynomial of degree at least m, and
r2(x) − r1(x) is either zero or a polynomial of degree less than m. Hence these
two can be equal only if they are both zero, which means q1(x) = q2(x) and
r1(x) = r2(x). This completes the proof. �
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QUESTION FOR THE SEMINAR: Why can we say that if g(x)(q1(x) − q2(x)) = 0
then it must follow that q1(x) = q2(x)?

Let f(x) ∈ R[x] for some ring R; suppose

f(x) = anxn + an−1x
n−1 + · · ·+ a1x + a0.

If α ∈ R then we let f(α) denote the element

anαn + an−1α
n−1 + · · ·+ a1α + a0

of R. Thus associated to the polynomial f(x) we have a function from R to R

sending α to f(α). Forming the element f(α) is called evaluating the polynomial
f(x) at α.

Definition 2.2.3 In the above context, α ∈ R is a root of f(x) if f(α) = 0.

Theorem 2.2.4 (The Factor Theorem) Let f(x) be a polynomial of degree n > 1 in F[x]

and let α ∈ F. Then α is a root of f(x) if and only if x − α divides f(x) in F[x].

Proof: By the division algorithm (Theorem 2.2.2), we can write

f(x) = q(x)(x − α) + r(x),

where q(x) ∈ F[x] and either r(x) = 0 or r(x) has degree zero and is thus a non-
zero element of F. So r(x) ∈ F; we can write r(x) = β. Now

f(α) = q(α)(α − α) + β

= 0 + β

= β.

Thus f(α) = 0 if and only if β = 0, i.e. if and only if r(x) = 0 and f(x) = q(x)(x−α)

which means x − α divides f(x). �

QUESTION FOR THE SEMINAR:
This actually proves more than the statement of the theorem - explain.

Now that we have some language for discussing divisibility in polynomial rings,
we can also think about factorization. In Z, we are used to calling an integer prime
if it does not have any interesting factorizations. In polynomial rings, we call a
polynomial irreducible if it does not have any interesting factorizations.

QUESTION FOR THE SEMINAR:
What does “interesting” mean in this context?
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Definition 2.2.5 Let F be a field and let f(x) be a non-constant polynomial in F[x]. Then
f(x) is irreducible in F[x] (or irreducible over F) if f(x) cannot be expressed as the product
of two factors both of degree at least 1 in F[x]. Otherwise f(x) is reducible over F.

NOTES:

1. Any polynomial f(x) ∈ F[x] can be factorized (in an uninteresting way) by
choosing a ∈ F× and writing

f(x) = a(a−1f(x).

This is not considered to be a proper factorization of f(x).

2. Every polynomial of degree 1 is irreducible.

3. It is possible for a polynomial that is irreducible over a particular field to be
reducible over a larger field. For example x2 − 2 is irreducible in Q[x]. How-
ever it is not irreducible in R[x], since here x2 −2 = (x−

√
2)(x+

√
2). There-

fore when discussing irreducibility, it is important to specify what field we
are talking about (sometimes this is clear from the context).

4. The only irreducible polynomials in C[x] are the linear (i.e. degree 1) poly-
nomials. This is basically the Fundamental Theorem of Algebra, which
states that every non-constant polynomial with coefficients in C has a root
in C.

Let f(x) be a polynomial of degree > 2 in F[x]. If f(x) has a root α in F then f(x)

is not irreducible in F[x] since it has x − α as a proper factor. This statement has a
partial converse.

Theorem 2.2.6 Let f(x) be a quadratic or cubic polynomial in f(x). Then f(x) is irre-
ducible in F[x] if and only if f(x) has no root in F.

Proof: Since f(x) is quadratic or cubic any proper factorization of f(x) in F[x]

involves at least one linear (i.e. degree 1) factor. Suppose that r(x) = ax + b is a
linear factor of f(x) in F[x]. Then we have f(x) = r(x)g(x) for some g(x) in F[x].
Since F is a field we can rewrite this as

f(x) = (x + b/a)(ag(x)).

Thus x − (−b/a) divides f(x) in F[x] and by Theorem 2.2.4 −b/a is a root of f(x)

in F. �

QUESTION FOR THE SEMINAR: Theorem 2.2.6 certainly does not hold for polyno-
mials of degree 4 or higher. That is, for a polynomial of degree 4 or more, having
no roots in a particular field does not mean being irreducible over that field. Give
an example to demonstrate this.
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In general, deciding whether a given polynomial is reducible over a field or not
is a difficult problem. We will look at this problem in the case where the field of
coefficients is Q. The problem of deciding reducibility in Q[x] is basically the same
as that of deciding reducibility in Z[x], as the following discussion will show.

Lemma 2.2.7 For a field F, let a ∈ F× and let f(x) ∈ F[x]. Then f(x) is reducible in F[x]

if and only if af(x) is reducible in F[x].

Proof: Exercise for the seminar.

Note that any polynomial in Q[x] can be multiplied by a non-zero integer to pro-
duce a polynomial in Z[x]. Then by Lemma 2.2.7 the problem of deciding re-
ducibility in Q[x] is the same as that of deciding reducibility over Q for polyno-
mials in Z[x].
Suppose that f(x) is a polynomial with coefficients in Z. Surprisingly, f(x) has a
proper factorization with factors in Q[x] if and only if f(x) has a proper factor-
ization with factors (of the same degree) that belong to Z[x]. This fact is a conse-
quence of Gauss’s lemma which is discussed below. It means that a polynomial
with integer coefficients is irreducible over Q provided that it is irreducible over
Z. This is good news because irreducibility over Z is in principle easier to decide.

QUESTION FOR THE SEMINAR: Why is irreducibility over Z is in principle easier
to decide than irreducibility over Q, for a polynomial with integer coefficients?

Definition 2.2.8 A polynomial in Z[x] is called primitive if the greatest common divisor
of all its coefficients is 1.

EXAMPLE
3x4 + 6x2 − 2x − 2 is primitive.
3x4 + 6x2 = 18x is not primitive, since 3 divides each of the coefficients.

Theorem 2.2.9 (Gauss’s Lemma) : Let f(x) and g(x) be primitive polynomials in Z[x].
Then their product is again primitive.

Proof: We need to show that no prime divides all the coefficients of f(x)g(x). We
can write

f(x) = asx
s + as−1x

s−1 + · · ·+ a1x + a0, as 6= 0,
f(x) = btx

t + bt−1x
t−1 + · · ·+ b1x + b0, bt 6= 0.

Let p be a prime. Since f(x) and g(x) are primitive we can choose k and m to be
the least integers for which p does not divide ak and p does not divide bm. Now
look at the coefficient of xk+m in f(x)g(x). This is

ak+mb0 + · · ·+ ak+1bm−1 + akbm + ak−1bm+1 + · · ·+ a0bk+m.
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Since p|bi for i < m and p|ai for i < k, every term in the above expression is a
multiple of p except for akbm which is definitely not. Thus p does not divide the
coefficient of xk+m in f(x)g(x), p does not divide all the coefficients in f(x)g(x)

and f(x)g(x) is primitive. �

Corollary 2.2.10 Suppose f(x) is a polynomial of degree > 2 in Z[x]. Then f(x) has a
proper factorization in Q[x] if and only if it has a proper factorization in Z[x], with factors
of the same degrees.

This means : if f(x) can be properly factorized in Q[x] it can also be properly
factorized in Z[x]; if it can be written as the product of two polynomials of de-
gree > 1 with rational coefficients, it can be written as the product of two such
polynomials with integer coefficients.
Proof: ⇐= : This direction is obvious, since any factorization in Z[x] is a factor-
ization in Q[x].
=⇒ : First assume that f(x) is primitive in Z[x].
Suppose that f(x) = g1(x)h1(x) where g1(x) and h1(x) are polynomials of degree
k > 1 and m > 1 in Q[x]. Then we can find integers a1 and b1 for which a1g1(x)

and b1h1(x) are elements of Z[x], both of degree at least 1. Let d1 and d2 denote the
greatest common divisors of the coefficients in a1g1(x) and b1h1(x) respectively.
Then (a1/d1)g1(x) and (b1/d2)h1(x) are primitive polynomials in Z[x]. Call these
polynomials g(x) and h(x) respectively, and let a and b denote the rational num-
bers a1/d1 and b1/d2. Now

f(x) = g1(x)h1(x) =⇒ abf(x) = ag1(x)bh1(x) = g(x)h(x).

Since g(x)h(x) ∈ Z[x] and f(x) is primitive it follows that ab is an integer. Fur-
thermore since g(x)h(x) is primitive by Theorem 2.2.9, abf(x) is primitive. This
means ab = 1 or − 1. Now either ab = 1 and f(x) = g(x)h(x) or ab = −1 and
f(x) = (−g(x))h(x). Thus f(x) factorizes in Z[x].
Finally, if f(x) is not primitive we can write f(x) = df1(x) where d is the gcd of
the coefficients in f(x) and f1(x) is primitive. By Lemma 2.2.7 f(x) is irreducible
in Q[x] if and only if f1(x) is. By the above, f1(x) factorizes in Q[x] if and only if it
factorizes in Z[x]. Finally, f(x) clearly factorizes in Z[x] if f1[x] does. �

Theorem 2.2.9 and Corollary 2.2.10 make the reducibility question in Q[x] much
easier.

Theorem 2.2.11 Let f(x) = anxn + · · ·+ a1x + a0 be a polynomial of degree n > 2 in
Z[x], with a0 6= 0. If f(x) has a root in Q this root has the form b/a where a and b are
integers (positive or negative) for which b|a0 and a|an.

Proof: By Theorem 2.2.4, f(x) has a root in Q only if f(x) has a linear factor in
Q[x]. By Corollary 2.2.10 this happens only if

f(x) = (ax + b)(g(x))
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where a, b ∈ Z, a 6= 0 and g(x) ∈ Z[x]. Then if

g(x) = cn−1x
n−1 + · · ·+ c1x + c0,

we have acn−1 = an and b0c0 = a0. Thus a|an, b|a0 and −b/a is a root of f(x) in
Q. �

Example: Let f(x) = 3
5x

3 + 2x − 1 in Q[x]. Determine if f(x) is irreducible in Q[x].

Solution: By Lemma 2.2.7 f(x) is irreducible in Q[x] if and only if 5f(x) = 3x3 +

10x − 5 is irreducible. By Theorem 2.2.6 this would mean having no root in Q. By
Theorem 2.2.11 possible roots of 5f(x) in Q are

1, −1, 5, −5,
1
3

, −
1
3

,
5
3

, −
5
3

.

It is easily checked that none of these is a root. Since f(x) is cubic it follows that
f(x) is irreducible in Q[x].

NOTE: A polynomial is called monic if its leading coefficient is 1. If f(x) is a
monic polynomial in Z[x] then any rational roots of f(x) are integer divisors of
the constant term (provided that this is not zero).

EXAMPLE: Decide if the polynomial f(x) = x5+3x4−3x3−8x2+3x−2 is irreducible
in Q[x].

Solution : Possible rational roots of f(x) are integer divisors of the constant term
−2 - i.e. 1, −1, 2, −2. Inspection of these possibilities reveals that −2 is a root.
Thus f(x) is reducible in Q[x].

NOTE: Since f(x) has degree 5, a discovery that f(x) had no rational roots would
not have told us anything about the irreducibility or not of f(x) over Q.
There is one known criterion for irreducibility over Q that applies to polynomials
of high degree, but it only applies to polynomials with a special property.

Theorem 2.2.12 (The Eisenstein irreducibility Criterion) Let f(x) = anxn+· · ·+a1x+

a0 be a polynomial in Z[x] where an 6= 0, and n > 2. Suppose that there exists a prime
number p for which

• p divides all of a0, a1, . . . , an−1

• p does not divide an

• p2 does not divide a0.

Then f(x) is irreducible in Q[x].
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For example the Eisenstein test says that 2x4 − 3x3 + 6x2 − 12x + 3 is irreducible
in Q[x] since the prime 3 divides all the coefficients except the leading one, and 9
does not divide the constant term.

Proof of Theorem 2.2.12: Assume (in the hope of contradiction) that f(x) is re-
ducible and write

f(x) = (bsx
s + · · ·+ b1x + b0︸ ︷︷ ︸

g(x)

)(ctx
t + · · ·+ c1x + c0︸ ︷︷ ︸

h(x)

)

where g(x), h(x) ∈ Z[x], bs 6= 0, ct 6= 0, s > 1, t > 1 and s + t = n.
Now b0c0 = a0 which means p divides exactly one of b0 and c0, as p2 does not
divide a0. Suppose p|b0 and p 6 |c0. Now a1 = b1c0 + b0c1, which means p|b1

since p divides a1 and b0 but not c0. Similarly looking at a2 shows that p must
divide b2. However p does not divide all the bi - it does not divide bs, otherwise
it would divide an = bsct.
Now let k be the least for which p 6 |bk. Then k 6 s =⇒ k < n and

ak = bkc0 + bk−1c1 + · · ·+ b0ck︸ ︷︷ ︸
all multiplesof p

Now p 6 |bkc0 since p 6 |bk and p 6 |c0. Since the remaining terms in the above de-
scription of ak are all multiples of p, it follows that p 6 |ak, contrary to hypothesis.
We conclude that any polynomial in Z[x] satisfying the hypotheses of the theorem
is irreducible in Q[x]. �

NOTE: Theorem 2.2.12 says nothing at all about polynomials in Z[x] for which no
prime satisfies the requirements in the statement.
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Chapter 3

Ideals, Homomorphisms and Factor
Rings

3.1 Ring Homomorphisms and Ideals

In this section we develop some more of the abstract theory of rings. In particular
we will describe those functions between rings that preserve the ring structure,
and we will look at another way of forming new rings from existing ones.

Definition 3.1.1 Let R be a ring. A non-empty subset S of R is a subring of R if it is
itself a ring under the addition and multiplication of R.

This means that S is closed under the addition and multiplication of R, that it
contains the zero element of R, and that it contains the negative of each of its
elements.

EXAMPLES

1. Z is a subring of Q.
Q is a subring of R.
R is a subring of C.

2. The ring Mn(F) of n×n matrices over a field F has the following subrings :

• Dn(F) - the ring of diagonal n× n matrices over F.

• Un(F) - the ring of upper triangular n× n matrices over F.

3. For any field F, F is a subring of the polynomial ring Mn(F). So also is F[x2],
the subset of F[x] consisting of those polynomials in which the coefficient of
xi is zero whenever i is odd.

4. Every (non-zero) ring R has at least two subrings - the full ring R and the
zero subring {0R}
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QUESTIONS FOR THE SEMINAR:

1. Give two more examples of subrings of Mn(Q).

2. Suppose that S is a subring of a ring R. Is it possible that S could have an
identity element for multiplication that is different from the identity ele-
ment of R?
Could this happen if R is an integral domain?

Definition 3.1.2 Let R and S be rings. A function φ : R −→ S is a ring homomor-
phism if for all x, y ∈ R we have

φ(x + y) = φ(x) + φ(y)

and
φ(xy) = φ(x)φ(y).

EXAMPLES

1. Choose a positive integer n and define φn : Z −→ Z/nZ to be the function
that sends k ∈ Z to the congruence class modulo n to which k belongs. Then
φn is a ring homomorphism.

2. Let F be a field. If a ∈ F we can define a homomorphism

φa : F[x] −→ F

given by φa(f(x)) = f(a) for f(x) ∈ F[x].

QUESTION FOR THE SEMINAR: Determine whether each of the following is a ring
homomorphism :

1. The function det : M2(Q) −→ Q that associates to every matrix its determi-
nant.

2. The function g : Z −→ Z defined by g(n) = 2n, for n ∈ Z.

3. The function φ : Q[x] −→ Q defined for f(x) ∈ Q[x] by

φ(f(x)) = the sum of the coefficients of f(x).

25



Definition 3.1.3 Suppose that φ : R −→ S is a homomorphism of rings. The kernel of
φ is the subset of R defined by

ker φ = {r ∈ R : φ(r) = 0S}.

The image of φ is the subset of S defined by

Imφ = {s ∈ S : s = φ(r) for some r ∈ R}.

Lemma 3.1.4 Imφ is a subring of S.

Proof: First we need to show that Imφ is closed under the addition and multipli-
cation of S. So suppose that s1, s2 are elements of Imφ and let r1, r2 be elements
of R for which s1 = φ(r1) and s2 = φ(r2). Then

φ(r1 + r2) = φ(r1) + φ(r2) = s1 + s2

and so s1 + s2 ∈ Imφ. Also

φ(r1r2) = φ(r1)φ(r2) = s1s2

and so s1s2 ∈ Imφ.
Next we show that 0S ∈ Imφ. To see this observe that

φ(0R) + φ(0r) = φ(0R + 0R) = φ(0R).

Subtracting the element φ(0R) of S from both sides gives

φ(0R) = 0S.

Thus 0S ∈ Imφ - in fact we have proved something more than this, namely that
0S is the image of 0R.
Finally we show that Imφ contains the additive inverse in S of each of its ele-
ments. Let s ∈ Imφ and let r be an element of R for which φ(r) = s. Then

φ(−r) + φ(r) = φ(0R) = 0S.

Thus φ(−r) is the additive inverse of s in S, i.e. −s = φ(−r) and Imφ contains
the negative of each of its elements. �

26



Lemma 3.1.5 ker φ is a subring of R.

Proof: Let r1, r2 ∈ ker φ. Then φ(r1) = φ(r2) = 0S. We have

φ(r1 + r2) = φ(r1) + φ(r2) = 0S + 0S = 0S,
and φ(r1r2) = φ(r1)φ(r2) = 0S0S = 0S.

Thus ker φ is closed under addition and multiplication in R.
To see that 0R ∈ ker φ we note that φ(0R) = 0S by the proof of Lemma 3.1.4 above.
Finally if r ∈ ker φ then

0S = φ(−r + r) = φ(−r) + φ(r) = φ(−r) + 0S

and so φ(−r) = 0 and −r ∈ ker φ. Thus ker φ is a subring of R. �

In fact ker φ is not just a subring of R - it has an extra property. Suppose r ∈ ker φ

and let x be any element of R. Then xr and rx belong to ker φ, since

φ(xr) = φ(x)φ(r) = φ(x)0S = 0S,
φ(rx) = φ(r)φ(x) = 0Sφ(x) = 0S.

So not only is ker φ closed under its own multiplication, it is also closed under
the operation of multiplying an element of ker φ by any element of R.

Definition 3.1.6 Let R be a ring.
A left ideal of R is a subring IL of R with the additional property that xa ∈ IL whenever
a ∈ IL and x ∈ R.
A right ideal of R is a subring IR of R with the additional property that ax ∈ IR when-
ever a ∈ IR and x ∈ R.
A two-sided ideal of R is a subring I of R with the additional property that both xa and
ax are in I whenever a ∈ I and x ∈ R.

QUESTION FOR THE SEMINAR: Find some examples of left, right, or two-sided
ideals in each of the following rings :

Z, Q, Q[x], Z[x], M2(Q).

NOTES

1. If R is commutative then every left or right ideal of R is a two-sided ideal.
We do not talk about two-sided ideals in this case, just ideals.

2. (Two-sided) ideals play a role in ring theory similar to that played by nor-
mal subgroups in group theory.
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EXAMPLES

1. Let R be a ring. We have already seen that the kernel of any ring homomor-
phism with domain R is a (two-sided) ideal of R.

2. The subrings

2Z = {. . . , −2, 0, 2, 4, . . . }
3Z = {. . . , −3, 0, 3, 6, . . . }

are ideals of Z. In general if n ∈ Z we will denote by nZ or 〈n〉 the subring
of Z consisting of all the integer multiples of n. In each case 〈n〉 is an ideal
of Z, since a multiple of n can be multiplied by any integer and the result is
always a multiple of n.

Note that 〈n〉 is the kernel of the homomorphism φn : Z −→ Z/nZ that
sends k ∈ Z to the class of k modulo n.

3. Fix a polynomial f(x) ∈ Q[x]. We denote by 〈f(x)〉 the subring of Q[x] con-
sisting of all those polynomials of the form g(x)f(x) for an element g(x) of
Q[x]. Then 〈f(x)〉 is an ideal of Q[x], called the principal ideal generated by
f(x).

4. Let R be any ring and let a ∈ R. We define

Ra = {ra : r ∈ R}.

Then Ra is a left ideal of R called the principal left ideal generated by a.
Similarly aR = {ar : r ∈ R} is the principal right ideal generated by a.
If R is commutative then aR = Ra for all a ∈ R, and this ideal is called the
principal ideal generated by a. It is denoted by 〈a〉. In Z, nZ is the principal
ideal generated by n.
In general an ideal in a commutative ring is called principal if it is the prin-
cipal ideal generated by some element.

5. Every non-zero ring R has at least two ideals, namely the full ring R and the
zero ideal {0R}.

Lemma 3.1.7 Let R be a ring, and let I be an ideal of R. If I contains a unit u of R, then
I = R.

Proof: Let u−1 denote the inverse of u in R. Then u ∈ I implies u−1u = 1R belongs
to I. Now let r ∈ R. Then r1R = r belongs to I, so R ⊆ I and R = I. �

Corollary 3.1.8 If F is a field, then the only ideals in F are the zero ideal (consisting only
of the zero element) and F itself.
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3.2 Principal Ideal Domains

Definition 3.2.1 A principal ideal domain (PID) is an integral domain in which every
ideal is principal.

Lemma 3.2.2 Z is a PID.

NOTE: Showing that Z is a PID means showing that if I is an ideal of Z, then there
is some integer n for which I consists of all the integer multiples of n.

Proof: Suppose that I ⊆ Z is an ideal. If I = {0} then I is the principal ideal
generated by 0 and I is principal. If I 6= {0} then I contains both positive and
negative elements. Let m be the least positive element of I. We will show that
I = 〈m〉.
Certainly 〈m〉 ⊆ I as I must contain all integer mulitples of m. On the other hand
suppose a ∈ I. Then we can write

a = mq + r

where q ∈ Z and 0 6 r < m. Then r = a − qm. Since a ∈ I and −qm ∈ I, this
means r ∈ I. It follows that r = 0, otherwise we have a contradiction to the choice
of m. Thus a = qm and a ∈ 〈m〉. We conclude I = 〈m〉. �

Note: In fact every subring of Z is an ideal - think about this.

Lemma 3.2.3 Let F be a field. Then the polynomial ring F[x] is a PID.

NOTE: Recall that F[x] has one important property in common with Z, namely a
division algorithm. This is the key to showing that F[x] is a PID.
Proof: Let I ⊆ F[x] be an ideal. If I = {0} then I = 〈0〉 and I is principal. If I 6= {0},
let f(x) be a polynomial of minimal degree m in I. Then 〈f(x)〉 ⊆ I since every
polynomial multiple of f(x) is in I.
We will show that I = 〈f(x)〉. To see this suppose g(x) ∈ I. Then

g(x) = f(x)q(x) + r(x)

where q(x), r(x) ∈ F[x] and r(x) = 0 or deg(r(x)) < m. Now

r(x) = g(x) − f(x)q(x)

and so r(x) ∈ I. It follows that r(x) = 0 otherwise r(x) is a polynomial in I of
degree strictly less than m, contrary to the choice of f(x).
Thus g(x) = f(x)q(x), g(x) ∈ 〈f(x)〉 and I = 〈f(x)〉. �

QUESTION FOR THE SEMINAR: If R is a ring (not a field) it is not always true that
R[x] is a PID.
Find an example of a non-principal ideal in Z[x].
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3.3 Factor Rings

Suppose that R is a ring and that I is a (two-sided) ideal of R. Then we can use
R and I to create a new ring, called “the factor ring of R modulo I”. This ring is
denoted R/I (read “R mod I”), and its elements are certain subsets of R associated
to I. The most well known examples are the rings Z/nZ, created from the ring Z
of integers and its ideals.

Definition 3.3.1 Let R be a ring and let I be a (two-sided) ideal of R. If a ∈ R, the coset
of I in R determined by a is defined by

a + I = {a + r : r ∈ I}.

Thus a + I is a subset of R; it consists of all those elements of R that differ from a

by an element of I. Note that a + I does not generally have algebraic structure in
its own right, it is typically not closed under the addition or multiplication of R.
We will show that the set of cosets of I in R is itself a ring, with addition and
multiplication defined in terms of the operations of R.

NOTES

1. a + I is a coset of the subgroup (I, +) of the additive group of R.

2. Suppose R = Z and I = 〈5〉 = 5Z. Then

2 + I = {2 + 5n, n ∈ Z} = {. . . , −3, 2, 7, 12, . . . }.

This is the congruence class of 2 modulo 5. So in Z, the cosets of nZ in Z

are the congruence classes modulo n - there is a finite number n of them
and each has exactly one representative in the range 0, . . . , n − 1 (this is
guaranteed by the division algorithm in Z).

3. Let F be a field and let I be an ideal in F[x]. Then I = 〈f(x)〉 for some poly-
nomial f(x), by Lemma 3.2.3. If g(x) ∈ F[x] then the coset g(x) + I contains
all those polynomials that differ from g(x) by a multiple of f(x).

If F is infinite then the number of cosets of I in F[x] is infinite but each has
exactly one representative of degree less than that of f(x).

QUESTION FOR THE SEMINAR: Why is this?

If F is finite (e.g. F = Z/pZ for some prime p), then the number of cosets of
I in F[x]is finite.

Lemma 3.3.2 Let a and b be elements of a ring R in which I is a two-sided ideal. Then

(i) If a − b ∈ I, a + I = b + I.
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(ii) If a − b 6∈ I, the cosets a + I and b + I are disjoint subsets of R.

Proof: (i): Suppose a − b ∈ I and let x ∈ a + I. Then x = a + m for some m ∈ I

and we can write

x = a − b + b + m = b + (a − b) + m.

Since a − b ∈ I and m ∈ I this means (a − b) + m ∈ I and so x ∈ b + I. Thus
a + I ⊆ b + I.
Now a − b belongs to I and so b − a = −(a − b) does also. It then follows from
the above argument that b + I ⊆ a + I. Thus a + I = b + I.

(ii) Suppose a − b 6∈ I and let c ∈ (a + I) ∩ (b + I). Then

c = a + m1 = b + m2

where m1, m2 ∈ I. It follows that a − b = m2 − m1 which is a contradiction since
a − b 6∈ I. �

Lemma 3.3.2 shows that the different cosets of I in R are disjoint subsets of R. We
note that their union is all of R since every element a of R belongs to some coset of
I in R : a ∈ a+ I. The set of cosets of I in R is denoted R/I. We can define addition
and multiplication in R/I as follows.
Let a + I, b + I be cosets of I in R. We define their sum by

(a + I) + (b + I) = (a + b) + I.

Claim: This addition is well-defined.

QUESTION FOR THE SEMINAR: What is this claim saying? Why is there doubt
about the definition of addition given above?

What the claim is concerned with is the following : if a + I = a1 + I and b + I =

b1 + I, how do we know that (a + b) + I = (a1 + b1) + I? How do we know that
the coset sum (a + I) + (b + I) as defined above does not depend on the choice a

and b of representatives of these cosets to be added in R?

PROOF OF CLAIM: Suppose

a + I = a1 + I and b + I = b1 + I

for elements a1, b1 of R. Then a − a1 ∈ I and b − b1 ∈ I, by Lemma 3.3.2. Hence
(a − a1) + (b − b1) = (a + b) − (a1 + b1) belongs to I. Thus

(a + b) + I = (a1 + b1) + I,

by Lemma 3.3.2 again.
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Multiplication in R/I is defined by

(a + I)(b + I) = ab + I

for cosets a + I and b + I of I in R.

Claim: Multiplication is well-defined in R/I

(i.e. the coset ab+ I does not depend on the choice of representatives of a+ I and
b + I).

PROOF OF CLAIM: Suppose that

a + I = a1 + I and b + I = b1 + I

for elements a1, b1 of R. Then a − a1 ∈ I and b − b1 ∈ I, by Lemma 3.3.2. We need
to show that

ab + I = a1b1 + I.

By Lemma 3.3.2, this means showing that ab − a1b1 ∈ I. To see this observe that

ab − a1b1 = ab − a1b + a1b − a1b1

= (a − a1)b + a1(b − b1).

Now since I is a two-sided ideal we know that (a − a1)b ∈ I and a(b − b1) ∈ I.
Thus

(a − a1)b + a1(b − b1) = ab − a1b1 ∈ I,

and this proves the claim. �

That addition and multiplication in R/I satisfy the ring axioms follows easily from
the fact that these axioms are satisfied in R. The ring R/I, with addition and
multiplication defined as above, is called the factor ring “R modulo “I”.

NOTES:

1. The zero element of R/I is the coset 0R + I = I.

2. It is clear that R/I has some properties in common with R. For example

• R/I is commutative if R is commutative.

• If R contains an identity element 1R for multiplication, then 1R + I is an
identity element for multiplication in R/I

• If u is a unit in R with inverse u−1, then u + I is a unit in R/I, with
inverse u−1 + I.

3. However, R/I can be structurally quite different from R. For example, R/I

can contain zero-divisors, even if R does not. It is also possible for R/I to be
a field if R is not.
QUESTION FOR THE SEMINAR: Find examples of both of these phenomena.
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In the next section we will look at conditions on I under which R/I is an integral
domain or a field, for a commutative ring R.
Our final goal in this section is to prove the Fundamental Homomorphism Theorem
for rings, which states that if φ : R −→ S is a ring homomorphism, then the image
of φ is basically a copy of the factor ring R/ ker φ.

Definition 3.3.3 Let φ : R −→ S be a ring homomorphism. Then φ is called an isomor-
phism if

1. φ is surjective (onto); i.e. Imφ = S, and

2. φ is injective (one-to-one) i.e. φ(r1) 6= φ(r2) whenever r1 6= r2 in R.

NOTE: φ is injective if and only if ker φ is the zero ideal of R.
To see this first suppose φ is injective. Then ker φ = {0R}, otherwise if r ∈ ker φ

for some r 6= 0 we would have φ(r) = φ(0R), contrary to the injectivity of φ.
On the other hand suppose ker φ = {0R}. Then if there exist elements r1 and r2 of
R with φ(r1) = φ(r2) we must have φ(r1 − r2) = φ(r1) − φ(r2) = 0S. This means
r1 − r2 ∈ ker φ, so r1 − r2 = 0R and φ is injective.

The characterisation of injectivity in the above note can be very useful.

If φ : R −→ S is an isomorphism, then S is an “exact copy” of R. This means that
S and R are structurally identical, and only differ in the way their elements are
labelled. We say that R and S are isomorphic and write R ∼= S.

Theorem 3.3.4 (The Fundamental Homomorphism Theorem) Let φ : R −→ S be a
homomorphism of rings. Then the image of φ is isomorphic to the factor ring R/ ker φ.

Proof: Let I denote the kernel of φ, so I is a two-sided ideal of R. Define a function
φ̄ : R/I −→ Imφ by

φ̄(a + I) = φ(a) for a ∈ R.

1. φ̄ is well-defined (i.e. the image of a + I does not depend on a choice of
coset representative). Suppose that a + I = a1 + I for some a, a1 ∈ R. Then
a − a1 ∈ I by Lemma 3.3.2. Hence φ(a − a1) = 0S = φ(a) − φ(a1). Thus
φ(a) = φ(a1) as required.

2. φ̄ is a ring homomorphism.
Suppose a + I, b + I are elements of R/I. Then

φ̄ ((a + I) + (b + I)) = φ̄ ((a + b) + I)

= φ(a + b)

= φ(a) + φ(b)

= φ̄(a + I) + φ̄(b + I).
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So φ is additive.

Also

φ̄ ((a + I)(b + I)) = φ̄(ab + I)

= φ(ab)

= φ(a)φ(b)

= φ̄(a + I)φ̄(b + I).

So φ̄ is multiplicative - φ̄ is a ring homomorphism.

3. φ̄ is injective.
Suppose a + I ∈ ker φ̄. Then φ̄(a + I) = 0S so φ(a) = 0S. This means
a ∈ ker φ, so a ∈ I. Then a + I = I = 0R + I, a + I is the zero element of R/I.
Thus ker φ̄ contains only the zero element of R/I.

4. φ̄ is surjective.
Let s ∈ Imφ. Then s = φ(r) for some r ∈ R. Thus s = φ̄(r + I) and every
element of Imφ is the image under φ̄ of some coset of I in R.

Thus φ̄ : R/ ker φ −→ Imφ is a ring isomorphism, and Imφ is isomorphic to the
factor ring R/ ker φ. �
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3.4 Maximal and Prime Ideals

The goal of this section is to characterize those ideals of commutative rings with
identity which correspond to factor rings that are either integral domains or fields.

Definition 3.4.1 Let R be a ring. A two-sided ideal I of R is called maximal if I 6= R

and no proper ideal of R properly contains I.

EXAMPLES

1. In Z, the ideal 〈6〉 = 6Z is not maximal since 〈3〉 is a proper ideal of Z
properly containing 〈6〉 (by a proper ideal we mean one which is not equal
to the whole ring).

2. In Z, the ideal 〈5〉 is maximal. For suppose that I is an ideal of Z properly
containing 〈5〉. Then there exists some m ∈ I with m 6∈ 〈5〉, i.e. 5 does not
divide m. Then gcd(5, m) = 1 since 5 is prime, and we can write

1 = 5s + mt

for integers s and t. Since 5s ∈ I and mt ∈ I, this means 1 ∈ I. Then I = Z,
and 〈5〉 is a maximal ideal in Z.

3. The maximal ideals in Z are precisely the ideals of the form 〈p〉, where p is
prime.

The following is a generalization of the statement that Z/nZ is a field precisely
when n is prime.

Theorem 3.4.2 Let R be a commutative ring with identity, and let M be an ideal of R.
Then the factor ring R/M is a field if and only if M is a maximal ideal of R.

COMMENT ON PROOF: There are two things to be shown here. We must show
that if R/M is a field (i.e. if every non-zero element of R/M is a unit), then M is a
maximal ideal of R. A useful strategy for doing this is to suppose that I is an ideal
of R properly containing M, and try to show that I must be equal to R.
We must also show that if M is a maximal ideal of R, then every non-zero element
of R/M is a unit. A strategy for doing this is as follows : if a ∈ R does not belong
to M (so a+M is not the zero element in R/M), then the fact that M is maximal as
an ideal of R means that the only ideal of R that contains both M and the element
a is R itself. In particular the only ideal of R that contains both M and the element
a contains the identity element of R.

Proof of Theorem 4.2.6: (⇐=) Suppose that R/M is a field and let I be an ideal of
R properly containing M. Let a ∈ I, a 6∈ M. Then a + M is not the zero element
of R/M, and so (a + M)(b + M) = 1 + M, for some b ∈ R. Then ab − 1 ∈ M; let
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m = ab − 1. Now 1 = ab − m and so 1 ∈ I since a ∈ I and m ∈ I. It follows that
I = R and so M is a maximal ideal of R.

(=⇒): Suppose that M is a maximal ideal of R and let a+M be a non-zero element
of R/M. We need to show the existence of b + m ∈ R/M with (a + M)(b + M) =

1 + M. This means ab + M = 1 + M, or ab − 1 ∈ M.
So we need to show that there exists b ∈ R for which ab − 1 ∈ M. Let M ′ denote
the set of elements of R of the form

ar + s, for some r ∈ R and s ∈ M.

Then M ′ is an ideal of R (check), and M ′ properly contains M since a ∈ M ′ and
a 6∈ M. Then M ′ = R since M is a maximal ideal of R. In particular then 1 ∈ M ′

and 1 = ab + m for some b ∈ R and m ∈ M. Then ab − 1 ∈ M and

(a + M)(b + M) = 1 + M in R/M.

So a + M has an inverse in R/M as required. �

We will now characterize those ideals I of R for which R/I is an integral domain.

Definition 3.4.3 Let R be a commutative ring. An ideal I of R is called prime if I 6= R

and whenever ab ∈ I for elements a and b of R, either a ∈ I or b ∈ I.

EXAMPLE: The ideal 〈6〉 is not a prime ideal in Z, since 2×3 ∈ 〈6〉 although neither
2 nor 3 belongs to 〈6〉. However the ideal 〈5〉 is prime in Z, since the product of
two integers is a multiple of 5 only if at least one of the two is a multiple of 5.
The prime ideals of Z are precisely the maximal ideals; they have the form 〈p〉 for
a prime p.

Theorem 3.4.4 Let R be a commutative ring with identity, and let I be an ideal of R.
Then the factor ring R/I is an integral domain if and only if I is a prime ideal of R.

Proof: R/I is certainly a commutative ring with identity, so we need to show that
R/I contains zero-divisors if and only if I is not a prime ideal of R. So let a+I, b+I

be non-zero elements of R/I. This means neither a nor b belongs to I. We have
(a + I)(b + I) = 0 + I in R/I if and only if ab ∈ I. This happens for some pair a

and b if and only if I is not prime. �

Corollary 3.4.5 Let R be a commutative ring with identity. Then every maximal ideal
of R is prime.

Proof: Let M be a maximal ideal of R. Then R/M is a field so in particular it is an
integral domain. Thus M is a prime ideal of R. �

QUESTION FOR THE SEMINAR: Try to prove Corollary 3.4.5 using only the defini-
tions of prime and maximal ideals.

It is not true that every prime ideal of a commutative ring with identity is maxi-
mal. For example
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1. We have already seen that the zero ideal of Z is prime but not maximal.

2. In Z[x], let I denote the ideal consisting of all elements whose constant term
is 0 (I is the principal ideal generated by x). The I is a prime ideal of Z[x]

but it is not maximal, since it is contained for example in the ideal of Z[x]

consisting of all those polynomials whose constant term is even.

Theorem 3.4.6 Let F be a field and let I be an ideal of the polynomial ring F[x]. Then

1. I is maximal if and only if I = 〈p(x)〉 for some irreducible polynomial p(x) in F[x].

2. I is prime if and only if I = {0} or I = 〈p(x)〉 for an irreducible p(x) ∈ F[x].

Proof: By Lemma 3.2.3 I is principal, I = 〈p(x)〉 for some p(x) ∈ F[x].

1. (⇐=) Assume p(x) is irreducible and let I1 be an ideal of F[x] containing
I. Then I1 = 〈f(x)〉 for some f(x) ∈ F[x]. Since p(x) ∈ I1 we have p(x) =

f(x)q(x) for some q(x) ∈ F[x]. Since p(x) is irreducible this means that either
f(x) has degree zero (i.e. is a non-zero element of F) or q(x) has degree zero.
If f(x) has degree zero then f(x) is a unit in F[x] and I1 = F[x]. If q(x) has
degree zero then p(x) = af(x) for some nonzero a ∈ F, and f(x) = a−1p(x);
then f(x) ∈ I and I1 = I. Thus either I1 = I or I1 = F[x], so I is a maximal
ideal of F[x].
(=⇒): Suppose I = 〈p(x)〉 is a maximal ideal of F[x]. Then p(x) 6= 0. If
p(x) = g(x)h(x) is a proper factorization of p(x) then g(x) and h(x) both
have degree at least 1 and 〈g(x)〉 and 〈h(x)〉 are proper ideals of F[x] properly
containing I. This contradicts the maximality of I, so we conclude that p(x)

is irreducible. This proves 1.

2. Certainly the zero ideal of F[x] and the principal ideals generated by irre-
ducible polynomials are prime. Every other ideal has the form 〈f(x)〉 for a
reducible f(x). If I = 〈f(x)〉 and f(x) = g(x)h(x) where g(x) and h(x) both
have degree less than that of f(x) then neither g(x) nor h(x) belongs to I but
their product does. Thus I is not prime.
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Chapter 4

Unique Factorization Domains
(UFDs)

4.1 Unique Factorization Domains (UFDs)

Throughout this section R will denote an integral domain (i.e. a commutative ring
with identity containing no zero-divisors). Recall that a unit of R is an element
that has an inverse with respect to multiplication. If a is any element of R and u

is a unit, we can write
a = u(u−1a).

This is not considered to be a proper factorization of a. For example we do not
consider 5 = 1(5) or 5 = (−1)(−5) to be proper factorizations of 5 in Z. We do not
consider

x2 + 2 = 2
(

1
2
x2 + 1

)
to be a proper factorization of x2 + 2 in Q[x].

Definition 4.1.1 An element a in an integral domain R is called irreducible if it is not
zero or a unit, and if whenever a is written as the product of two elements of R, one of
these is a unit.

An element p of an integral domain R is called prime if p is not zero or a unit, and
whenever p divides ab for elements a, b of R, either p divides a or p divides b.

Note

1. Elements r and s are called associates of each other if s = ur for a unit u of
R. So a ∈ R is irreducible if it can only be factorized as the product of a unit
and one of its own associates.
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2. If R is an integral domain, every prime element of R is irreducible. To see
this let p ∈ R be prime and suppose that p = rs is a factorisation of p in
R. Then since p divides rs, either p divides r or p|s. There is no loss of
generality in assuming p divides r. Then r = pa for some element a of R,
and p = rs so p = pas. Then p − pas = 0 so p(1 − as) = 0 in R. Thus as = 1
since R is an integral domain and p 6= 0. Then s is a unit and p = rs is not a
proper factorisation of p. Hence p is irreducible in R.

It is not true that every irreducible element of an integral domain must be
prime, as we will shortly see.

Examples:

1. In Z the units are 1 and −1 and each non-zero non-unit element has two
associates, namely itself and its negative. SO 5 and −5 are associates, 6 and
−6 are associates, and so on. The irreducible elements of Z are p and −p,
for p prime.

2. In Q[x], the units are the non-zero constant polynomials. The associates of
a non-zero non-constant polynomial f(x) are the polynomials of the form
af(x) where a ∈ Q×. So x2 + 2 is associate to 3x2 + 6, 1

2x
2 + 1, etc.

3. In Z the irreducible elements are the integers p and −p where p is a prime
numbers. The prime elements of Z are exactly the irreducible elements - the
prime numbers and their negatives.

Definition 4.1.2 An integral domain R is a unique factorization domain if the fol-
lowing conditions hold for each element a of R that is neither zero nor a unit.

1. a can be written as the product of a finite number of irreducible elements of R.

2. This can be done in an essentially unique way. If a = p1p2 . . . pr and a =

q1q2 . . . qs are two expressions for a as a product of irreducible elements, then
s = r and q1, . . . , qs can be reordered so that for each i, qi is an associate of pi.

Example 4.1.3 Z is a UFD.

(This is the Fundamental Theorem of Arithmetic).

Example 4.1.4 Let Z[
√

−5 denote the set of complex numbers of the form a + b
√

−5
where a and b are integers (and

√
−5 denotes the complex number

√
5i. We will show

that Z[
√

−5] is not a UFD (it is easily shown to be a ring under the usual addition and
multiplication of complex numbers).
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Claim: Z[
√

−5] is not a UFD.
The proof if this claim will involve a number of steps.

1. We define a function φ : Z[
√

−5] −→ Z>0 by φ(α) = αᾱ where ᾱ denotes
the complex conjugate of α. Thus

φ(a + b
√

−5) = (a + b
√

−5)(a − b
√

−5) = a2 + 5b2.

Let α, β ∈ Z
√

−5. Then

φ(αβ) = αβαβ = αβᾱβ̄ = αᾱββ̄ = φ(α)φ(β).

So φ is multiplicative.

2. Suppose α is a unit of Z[
√

−5] and let β be its inverse. Then φ(αβ) = φ(1) =

1 = φ(α)φ(β). Since φ(α) and φ(β) are positive integers this means φ(α) =

1 and φ(β) = 1. So φ(α) = 1 whenever α is a unit.

On the other hand φ(a + b
√

−5) = 1 implies a2 + 5b2 = 1 for integers a and
b which means b = 0 and a = ±1. So the only units of Z[

√
−5] are 1 and −1.

3. Suppose φ(α) = 9 for some α ∈ Z[
√

−5]. If α is not irreducible in Z[
√

−5]

then it factorizes as α1α2 where α1 and α2 are non-units. Then we must have

φ(α1) = φ(α2) = 3.

Now this would means 3 = c2+5d2 for integers c and d which is impossible.
So if φ(α) = 9 then α is irreducible in Z[

√
−5].

4. Now 9 = 3 × 3 and 9 = (2 +
√

−5)(2 −
√

−5) in Z[
√

−5]. The elements
3, 2 +

√
−5 and 2 −

√
−5 are all irreducible in Z[

√
−5] by item 3. above.

Furthermore 3 is not an associate of either 2 +
√

−5 or 2 −
√

−5 as the only
units in Z[

√
−5] are 1 and −1. We conclude that the factorizations of 9 above

are genuinely different, and Z[
√

−5] is not a UFD.

Note that 3 is an example of an element of Z[
√

−5] that is irreducible but not
prime.
Remark: The ring Z[i] = {a + bi : a, b ∈ Z} is a UFD.

Theorem 4.1.5 Let F be a field. Then the polynomial ring F[x] is a UFD.

Proof: We need to show that every non-zero non-unit in F[x] can be written as a
product of irreducible polynomials in a manner that is unique up to order and
associates.
So let f(x) be a polynomial of degree n > 1 in F[x]. If f(x) is irreducible there is
nothing to do. If not then f(x) = g(x)h(x) where g(x) and h(x) both have degree
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less than n. If g(x) or h(x) is reducible further factorization is possible; the process
ends after at most n steps with an expression for f(x) as a product of irreducibles.
To see the uniqueness, suppose that

f(x) = p1(x)p2(x) . . . pr(x) and
f(x) = q1(x)q2(x) . . . qs(x)

are two such expressions, with s > r. Then q1(x)q2(x) . . . qs(x) belongs to the
ideal 〈p1(x)〉 of F[x]. Since this ideal is prime (as p1(x) is irreducible) this means
that either q1(x) ∈ 〈p1(x)〉 or q2(x) . . . qs(x) ∈ 〈p1(x)〉. Repeating this step leads to
the conclusion that at least one of the qi(x) belongs to 〈p1(x)〉. After reordering
the qi(x) if necessary we have q1(x) ∈ 〈p1(x)〉. Since q1(x) is irreducible this
means q1(x) = u1p1(x) for some unit u1. Then

p1(x)p2(x) . . . pr(x) = u1p1(x)q2(x) . . . qs(x).

Since F[x] is an integral domain we can cancel p1(x) from both sides to obtain

p2(x) . . . pr(x) = u1q2(x) . . . qs(x).

After repeating this step a further r − 1 times we have

1 = u1u2 . . . urqr+1(x) . . . qs(x),

where u1, . . . , ur are units in F[x] (i.e. non-zero elements of F). This means s = r,
since the polynomial on the right in the above expression must have degree zero.
We conclude that q1(x), . . . , qs(x) are associates (in some order) of p1(x), . . . , pr(x).
This completes the proof. �
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4.2 Every PID is a UFD

Recall that an ideal I of a commutative ring with identity R is principal if I = 〈a〉
for some a ∈ R, i.e.

I = {ra : r ∈ R}.

An integral domain R is a principal ideal domain if all the ideals of R are principal.
Examples of PIDs include Z and F[x] for a field F.

Definition 4.2.1 A commutative ring R satisfies the ascending chain condition (ACC)
on ideals if there is no infinite sequence of ideals in R in which each term properly contains
the previous one. Thus if

I1 ⊆ I2 ⊆ I3 ⊆ . . .

is a chain of ideals in R, then there is some m for which Ik = Im for all k > m.

Note: Commutative rings satisfying the ACC are called Noetherian.

To understand what the ACC means it may be helpful to look at an example of a
ring in which it does not hold.

Example 4.2.2 Let C(R) denote the ring of continuous functions from R to R with ad-
dition and multiplication defined by

(f + g)(x) = f(x) + g(x); (fg)(x) = f(x)g(x), for f, g ∈ C(R), x ∈ R.

For n = 1, 2, 3, . . . , define In to be the subset of C(R) consisting of those functions
that map every element of the interval

[
− 1

n
, 1

n

]
to 0.

Then In is an ideal of C(R) for each n and

I1 ⊂ I2 ⊂ I3 ⊂ . . .

is an infinite strictly ascending chain of ideals in C(R) (i.e. every term is this chain
is strictly contained in the next one). So the ACC is not satisfied in C(R).

Example 4.2.3 The ACC is satisfied in Z.

Proof: Let I1 ⊆ I2 ⊆ . . . be an ascending chain of ideals in Z. Choose k with
Ik 6= {0}. Then Ik = 〈n〉 for some positive integer n. Now for an ideal 〈m〉 of Z we
have n ∈ 〈m〉 if and only if m|n. Since n has only a finite number of divisors in
Z, this means only finitely many different ideals can appear after Ik in the chain.

Theorem 4.2.4 Let R be a PID. Then the ACC is satisfied in R.

Proof: Let I1 ⊆ I2 ⊆ . . . be an ascending chain of ideals in R. Let I = ∪∞
i=0Ii. Then
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1. I is closed under addition and multiplication, for suppose a and b are el-
ements of I. Then there are ideals Ij and Ik in the chain with a ∈ Ij and
b ∈ Ik. If m > max(j, k) then both a and b belong to Im and so do a+b and
ab. So a + b ∈ I and ab ∈ I.

2. 0 ∈ I since 0 ∈ Ii for each i.

3. Suppose a ∈ I. Then a ∈ Ij for some j, and −a ∈ Ij. So −a ∈ I. Thus I is a
subring of R.

4. Furthermore I is an ideal of R. To see this let a ∈ I. Then a ∈ Ij for some j.
If r is any element of R then ra ∈ Ij and ra ∈ I. So whenever a ∈ I we have
ra ∈ I for all r ∈ R. Thus I is an ideal of R.

Now since R is a PID we have I = 〈c〉 for some c ∈ R. Since c ∈ I there exists
n with c ∈ In. Then In = 〈c〉 and Ir = 〈c〉 for all r > n. So the chain of ideals
stabilizes after a finite number of steps, and the ACC holds in R.

Theorem 4.2.5 Let R be a PID. Then every element of R that is neither zero nor a unit
is the product of a finite number of irreducibles.

Proof: Let a ∈ R, a 6= 0, a 6∈ U(R) (i.e. a not a unit).

1. First we show that a has an irreducible factor. If a is irreducible, this is
certainly true. If not then we can write a = a1b1 where neither a1 nor b1 is
a unit. Then a ∈ 〈a1〉, and 〈a〉 ⊂ 〈a1〉. This inclusion is strict for 〈a〉 = 〈a1〉
would imply a1 = ac and a = acb1 for some c ∈ R. Since R is an integral
domain this would imply that b1 is a unit, contrary to the fact that the above
factorization of a is proper.

If a1 is not irreducible then we can write a1 = a2b2 for non-units a2 and b2

and we obtain
〈a〉 ⊂ 〈a1〉 ⊂ 〈a2〉,

where each of the inclusions is strict. If a2 is not irreducible we can extend
the above chain, but since the ACC is satisfied in R the chain must end after
a finite number of steps at an ideal 〈ar〉 generated by an irreducible element
ar. So a has ar as an irreducible factor.

2. Now we show that a is the product of a finite number of irreducible ele-
ments of R. If a is not irreducible then by the above we can write a = p1c1

where p1 is irreducible and c1 is not a unit. Thus 〈a〉 is strictly contained in
the ideal 〈c1〉. If c1 is not irreducible then c1 = p2c2 where p2 is irreducible
and c2 is not a unit. We can build a strictly ascending chain of ideals :

〈a〉 ⊂ 〈c1〉 ⊂ 〈c2〉 . . .

43



This chain must end after a finite number of steps at an ideal 〈cr〉 with cr

irreducible. Then
a = p1p2 . . . prcr

is an expression for a as the product of a finite number of irreducibles in R.

�
So in order to show that every PID is a UFD, it remains to show uniqueness of
factorizations of the above type.

Lemma 4.2.6 Let I be an ideal of a PID R. Then I is maximal if and only if I = 〈p〉 for
an irreducible element p of R.

Proof: Suppose I is maximal and write I = 〈p〉 for some p ∈ R. If p is reducible
then p = ab for non-units a and b of R, and 〈p〉 ⊆ 〈a〉. Furthermore 〈p〉 6= 〈a〉
since a ∈ 〈p〉 would imply a = pc and p = pcb which would mean that b is a
unit in R. Also 〈a〉 6= R since a is not a unit of R. Thus reducibility of p would
contradict the maximality of I.
On the other hand suppose p is irreducible and let I1 be an ideal of R containing
I = 〈p〉. Then I1 = 〈q〉 for some q ∈ R and p ∈ I1 means p = rq for some r ∈ R.
Then either q is a unit or r is a unit. In the first case I1 = R and in the second case
q = r−1p and q ∈ 〈p〉 implies 〈q〉 = 〈p〉 and I1 = I. Thus I is a maximal ideal of R.
�

Note: The notation a|b (a divides b) in an integral domain R means b = ac for
some c ∈ R.

Lemma 4.2.7 Let R be a PID and let p be an irreducible in R. Then p is a prime in R.

Proof: Let a and b be elements of R for which p|ab. By Lemma 4.2.6 I = 〈p〉 is a
maximal ideal of R. Thus I is a prime ideal of R by Corollary 3.4.5. Now ab ∈ I

implies either a ∈ I or b ∈ I. Thus either p|a or p|b in R. �.
So in a PID the notions of prime and irreducible coincide.

Theorem 4.2.8 Every PID is a UFD.

Proof: Let R be a PID and suppose that a non-zero non-unit element a of R can be
written in two different ways as a product of irreducibles. Suppose

a = p1p2 . . . pr and a = q1q2 . . . qs

where each pi and qj is irreducible in R, and s > r. Then p1 divides the product
q1 . . . qs, and so p1 divides qj for some j, as p1 is prime. After reordering the qj if
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necessary we can suppose p1|q1. Then q1 = u1p1 for some unit u1 of R, since q1

and p1 are both irreducible. Thus

p1p2 . . . pr = u1p1q2 . . . qs

and
p2 . . . pr = u1q2 . . . qs.

Continuing this process we reach

1 = u1u2 . . . urqr+1 . . . qs.

Since none of the qj is a unit, this means r = s and p1, p2, . . . , pr are associates of
q1, q2, . . . , qr in some order. Thus R is a unique factorization domain. �

Note: It is not true that every UFD is a PID.
For example Z[x] is not a PID (e.g. the set of polynomials in Z[x] whose constant
term is even is a non-principal ideal) but Z[x] is a UFD.
To see this note that irreducible elements in Z[x] are either integers of the form
±p for a prime p, or primitive irreducible polynomials of degree > 1. (Recall that
a polynomial in Z[x] is primitive if the gcd of its coefficients is 1.) Let f(x) be a
non-zero non-unit in Z[x].
If f(x) ∈ Z, then f(x) has a unique factorization as a product of primes. If not
then f(x) = dh(x), where d is the gcd of the coefficients in f(x) and h(x) ∈ Z[x] is
primitive. So h(x) is the product of a finite number of primitive irreducible poly-
nomials in Z[x], and f(x) is the product of a finite number of irreducible elements
of Z[x]. Now suppose that

f(x) = p1 . . . pkf1(x) . . . fr(x) = q1 . . . qlg1(x) . . . gs(x),

where p1, . . . , pk, q1, . . . , ql are irreducibles in Z and f1(x), . . . , fr(x), g−1(x), . . . , gs(x)

are primitive irreducible polynomials in Z[x]. Then p1 . . . pk = ±(the gcd of the
coefficients in f(x)), and p1 . . . pk = ±q1 . . . ql. Thus l = k and p1, . . . , pk are asso-
ciates in some order of q1, . . . , qk. Now

f1(x) . . . fr(x) = ±g1(x) . . . gs(x).

Then each fi(x) and gj(x) is irreducible not only in Z[x] but in Q[x] and since Q[x]

is a UFD this means that s = r and f1(x), . . . , fr(x) are associates (in some order)
of g1(x), . . . , gr(x). After reordering the gj(x) we can suppose that for i = 1, . . . , r
fi(x) = ui(gi(x) where ui is a non-zero rational number. However since fi(x) and
gi(x) are both primitive polynomials in Z[x], we must have ui = ±1 for each i, so
fi(x) and gi(x) are associates not only in Q[x] but in Z[x].
Thus Z[x] is a UFD.
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