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Chapter 1

Systems of Linear Equations

1.1 Introduction

Consider the equation
2x+ y = 3.

This is an example of a linear equation in the variables x and y. As it stands, the statement “2x +
y = 3” is neither true nor untrue : it is just a statement involving the abstract symbols x and
y. However if we replace x and y with some particular pair of real numbers, the statement will
become either true or false. For example

Putting x = 1, y = 1 gives 2x+ y = 2(1) + (1) = 3 : True
x = 1, y = 2 gives 2x+ y = 2(1) + (2) 6= 3 : False
x = 0, y = 3 gives 2x+ y = 2(0) + (3) = 3 : True

Definition 1.1.1 A pair (x0,y0) of real numbers is a solution to the equation 2x+y = 3 if setting x = x0
and y = y0 makes the equation true; i,.e. if 2x0 + y0 = 3.

For example (1, 1) and (0, 3) are solutions - so are (2,−1), (3,−3), (−1, 5) and (−1/2, 4) (check
these).

However (1, 4) is not a solution since setting x = 1, y = 4 gives 2x+ y = 2(1) + 4 6= 3.
The set of all solutions to the equation is called its solution set.

GEOMETRIC INTERPRETATION

RECALL: The Cartesian Coordinate System. The 2-dimensional plane is described by a pair of
perpendicular axes, labelled X and Y. A point is described by a pair of real numbers, its X and
Y-coordinates.
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(3, 2)

(1,−3)(−4,−2)

(−2, 4)

We plot in the plane those points which correspond to the pairs of numbers which we found
to be solutions to the equation 2x+ y = 3. These points form a line in the plane.
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(−1, 5)

(0, 3)

(1, 1)

(2,−1)

(3,−3)

Now consider the equation 4x+ 3y = 4. Solutions to this equation include

(1, 0), (4,−4), (−2, 4), (−1/2, 2).

Again the full solution set forms a line.
Question: Consider the equations

2x+ y = 3, 4x+ 3y = 4

together. Can we find simultaneous solutions of these equations? This means - can we find pairs
of numbers (x0,y0) such that setting x = x0 and y = y0 makes both equations true?

Equivalently - can we find a point of intersection of the two lines? From the picture it looks as
if there is exactly one such point, at (5/2,−2).
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We can solve the problem algebraically as follows :

2x + y = 3 (A)
4x + 3y = 4 (B)

}
A system of linear equations.

Step 1: Multiply Equation (A) by 2 : 4x+ 2y = 6 (A2).
Any solution of (A2) is a solution of (A).

Step 2: Multiply Equation (B) by −1 : −4x− 3y = −4 (B2)
Any solution of (B2) is a solution of (B).

Step 3: Now add equations (A2) and (B2).

4x + 2y = 6
−4x − 3y = −4

−y = 2
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Step 4: So y = −2 and the value of y in any simultaneous solution of (A) and (B) is −2 : Now we
can use (A) to find the value of x.

2x+ y = 3 and y = −2 =⇒ 2x+ (−2) = 3
=⇒ 2x = 5

=⇒ x =
5
2

So x = 5/2, y = −2 is the unique solution to this system of linear equations.

This kind of “ad hoc” approach may not always work if we have a more complicated system,
involving a greater number of variables, or more equations. We will devise a general strategy for
solving complicated systems of linear equations.
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1.2 Elementary Row Operations

Example 1.2.1 Find all solutions of the following system :

x + 2y − z = 5
3x + y − 2z = 9
−x + 4y + 2z = 0

In other (perhaps simpler) examples we were able to find solutions by simplifying the system
(perhaps by eliminating certain variables) through operations of the following types :

1. We could multiply one equation by a non-zero constant.

2. We could add one equation to another (for example in the hope of eliminating a variable
from the result).

A similar approach will work for Example 1.2.1 but with this and other harder examples it
may not always be clear how to proceed. We now develop a new technique both for describing
our system and for applying operations of the above types more systematically and with greater
clarity.

Back to Example 1.2.1: We associate a matrix to our system of equations (a matrix is a rectangular
array of numbers).

x + 2y − z = 5
3x + y − 2z = 9
−x + 4y + 2z = 0 1 2 −1 5

3 1 −2 9
−1 4 2 0

 Eqn 1
Eqn 2
Eqn 3

Note that the first row of this matrix contains as its four entries the coefficients of the variables
x,y, z, and the number appearing on the right-hand-side of Equation 1 of the system. Rows 2 and
3 correspond similarly to Equations 2 and 3. The columns of the matrix correspond (from left to
right) to the variables x, y, z and the right hand side of our system of equations.

Definition 1.2.2 The above matrix is called the augmented matrix of the system of equations in Example
1.2.1.

In solving systems of equations we are allowed to perform operations of the following types:

1. Multiply an equation by a non-zero constant.

2. Add one equation (or a non-zero constant multiple of one equation) to another equation.

These correspond to the following operations on the augmented matrix :

1. Multiply a row by a non-zero constant.

2. Add a multiple of one row to another row.

3. We also allow operations of the following type : Interchange two rows in the matrix (this
only amounts to writing down the equations of the system in a different order).

Definition 1.2.3 Operations of these three types are called Elementary Row Operations (ERO’s) on a
matrix.

We now describe how ERO’s on the augmented matrix can be used to solve the system of
Example 1.2.1. The following table describes how an ERO is performed at each step to produce a
new augmented matrix corresponding to a new (hopefully simpler) system.
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ERO Matrix System 1 2 −1 5
3 1 −2 9

−1 4 2 0

 x + 2y − z = 5
3x + y − 2z = 9
−x + 4y + 2z = 0

1. R3→ R3 + R1

 1 2 −1 5
3 1 −2 9
0 6 1 5

 x + 2y − z = 5
3x + y − 2z = 9

6y + z = 5

2. R2→ R2 − 3R1

 1 2 −1 5
0 −5 1 −6
0 6 1 5

 x + 2y − z = 5
− 5y + z = −6

6y + z = 5

3. R2→ R2 + R3

 1 2 −1 5
0 1 2 −1
0 6 1 5

 x + 2y − z = 5
y + 2z = −1

6y + z = 5

4. R3→ R3 − 6R2

 1 2 −1 5
0 1 2 −1
0 0 −11 11

 x + 2y − z = 5
y + 2z = −1

−11z = 11

5. R3×
(
− 1

11

)  1 2 −1 5
0 1 2 −1
0 0 1 −1

 x + 2y − z = 5 (A)
y + 2z = −1 (B)

z = −1 (C)

We have produced a new system of equations. This is easily solved :

Backsubstitution

 (C) z = −1
(B) y = −1 − 2z =⇒ y = −1 − 2(−1) = 1
(A) x = 5 − 2y+ z =⇒ x = 5 − 2(1) + (−1) = 2

Solution : x = 2, y = 1, z = −1
You should check that this is a solution of the original system. It is the only solution both of the
final system and of the original one (and every intermediate one).
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NOTE : The matrix obtained in Step 5 above is in Row-Echelon Form. This means :

1. The first non-zero entry in each row is a 1 (called a Leading 1).

2. If a column contains a leading 1, then every entry of the column below the leading 1 is a
zero.

3. As we move downwards through the rows of the matrix, the leading 1’s move from left to
right.

4. Any rows consisting entirely of zeroes are grouped together at the bottom of the matrix.

NOTE : The process by which the augmented matrix of a system of equations is reduced to row-
echelon form is called Gaussian Elimination. In Example 1.2.1 the solution of the system was found
by Gaussian elimination with Backsubstitution.

General Strategy to Obtain a Row-Echelon Form

1. Get a 1 as the top left entry of the matrix.

2. Use this first leading 1 to “clear out” the rest of the first column, by adding suitable multiples
of Row 1 to subsequent rows.

3. If column 2 contains non-zero entries (other than in the first row), use ERO’s to get a 1 as
the second entry of Row 2. After this step the matrix will look like the following (where the
entries represented by stars may be anything):

1 ∗ ∗ . . . . . .
0 1 . . . . . . . . .
0 ∗ . . . . . . . . .
0 ∗ . . . . . . . . .
...

...
...

0 ∗ . . . . . . . . .


4. Now use this second leading 1 to “clear out” the rest of column 2 (below Row 2) by adding

suitable multiples of Row 2 to subsequent rows. After this step the matrix will look like the
following : 

1 ∗ ∗ . . . . . .
0 1 ∗ . . . . . .
0 0 ∗ . . . . . .
0 0 ∗ . . . . . .
...

...
...

...
...

0 0 ∗ . . . . . .


5. Now go to column 3. If it has non-zero entries (other than in the first two rows) get a 1 as the

third entry of Row 3. Use this third leading 1 to clear out the rest of Column 3, then proceed
to column 4. Continue until a row-echelon form is obtained.

Example 1.2.4 Let A be the matrix  1 −1 −1 2 0
2 1 −1 2 8
1 −3 2 7 2


Reduce A to row-echelon form.

Solution:

1. Get a 1 as the first entry of Row 1. Done.
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2. Use this first leading 1 to clear out column 1 as follows :

R2 → R2 − 2R1
R3 → R3 − R1

 1 −1 −1 2 0
0 3 1 −2 8
0 −2 3 5 2


3. Get a leading 1 as the second entry of Row 2, for example as follows :

R2 → R2 + R3

 1 −1 −1 2 0
0 1 4 3 10
0 −2 3 5 2


4. Use this leading 1 to clear out whatever appears below it in Column 2 :

R3 → R3 + 2R2

 1 −1 −1 2 0
0 1 4 3 10
0 0 11 11 22


5. Get a leading 1 in Row 3 :

R3 × 1
11

 1 −1 −1 2 0
0 1 4 3 10
0 0 1 1 2


This matrix is now in row-echelon form.

Definition 1.2.5 Let A be a matrix. The rank of A, denoted rank(A) is the number of leading 1’s in a
row-echelon form obtained from A by Gaussian elimination as above.

REMARKS :

1. The rank of the matrix A in Example 1.2.4 is 3, since the row-echelon form obtained had 3
leading 1’s (one in each row).

2. The rank of any matrix can be at most equal to the number of rows, since each row in a REF
(row-echelon form) can contain at most one leading 1. If a REF obtained from some matrix
contains rows full of zeroes, the rank of this matrix will be less than the number of rows.

3. Starting with a particular matrix, different sequences of ERO’s can lead to different row-
echelon forms. However, all have the same rank.
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1.3 The Reduced Row-Echelon Form (RREF)

Definition 1.3.1 A matrix is in reduced row-echelon form (RREF) if

1. It is in row-echelon form, and

2. If a particular column contains a leading 1, then all other entries of that column are zeroes.

If we have a row-echelon form, we can use ERO’s to obtain a reduced row-echelon form (using
ERO’s to obtain a RREF is called Gauss-Jordan elimination).

Example 1.3.2 In Example 1.2.4, we obtained the following row-echelon form : 1 −1 −1 2 0
0 1 4 3 10
0 0 1 1 2

 (REF, not reduced REF)

To get a RREF from this REF :

1. Look for the leading 1 in Row 2 - it is in column 2. Eliminate the non-zero entry above this
leading 1 by adding a suitable multiple of Row 2 to Row 1.

R1 → R1 + R2

 1 0 3 5 10
0 1 4 3 10
0 0 1 1 2


2. Look for the leading 1 in Row 3 - it is in column 3. Eliminate the non-zero entries above this

leading 1 by adding suitable multiples of Row 3 to Rows 1 and 2.

R1 → R1 − 3R3
R2 → R2 − 4R3

 1 0 0 2 4
0 1 0 −1 2
0 0 1 1 2


This matrix is in reduced row-echelon form.

The technique outlined in this example will work in general to obtain a RREF from a REF :
you should practise with similar examples!

REMARK: Different sequences of ERO’s on a matrix can lead to different row-echelon forms. How-
ever, only one reduced row-echelon form can be found from any matrix.
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1.4 Leading Variables and Free Variables

Example 1.4.1 Find the general solution of the following system :

x1 − x2 − x3 + 2x4 = 0 I
2x1 + x2 − x3 + 2x4 = 8 II
x1 − 3x2 + 2x3 + 7x4 = 2 III

SOLUTION :

1. Write down the augmented matrix of the system :

Eqn I
Eqn II
Eqn III

 1 −1 −1 2 0
2 1 −1 2 8
1 −3 2 7 2


x1 x2 x3 x4

Note : This is the matrix of Example 1.2.4

2. Use Gauss-Jordan elimination to find a reduced row-echelon form from this augmented
matrix. We have already done this in Examples 1.2.4 and 1.3.2 :-

RREF :

 1 0 0 2 4
0 1 0 −1 2
0 0 1 1 2


x1 x2 x3 x4

This matrix corresponds to a new system of equations:

x1 + 2x4 = 4 (A)
x2 − x4 = 2 (B)
x3 + x4 = 2 (C)

Remark : The RREF involves 3 leading 1’s, one in each of the columns corresponding to the
variables x1, x2 and x3. The column corresponding to x4 contains no leading 1.

Definition 1.4.2 The variables whose columns in the RREF contain leading 1’s are called leading
variables. A variable whose column in the RREF does not contain a leading 1 is called a free
variable.

So in this example the leading variables are x1, x2 and x3, and the variable x4 is free. What
does this distinction mean in terms of solutions of the system? The system corresponding
to the RREF can be rewritten as follows :

x1 = 4 − 2x4 (A)
x2 = 2 + x4 (B)
x3 = 2 − x4 (C)

i.e. this RREF tells us how the values of the leading variables x1, x2 and x3 depend on that
of the free variable x4 in a solution of the system. In a solution, the free variable x4 may
assume the value of any real number. However, once a value for x4 is chosen, values are
immediately assigned to x1, x2 and x3 by equations A, B and C above. For example

(a) Choosing x4 = 0 gives x1 = 4− 2(0) = 4, x2 = 2+ (0) = 2, x3 = 2− (0) = 2. Check that
x1 = 4, x2 = 2, x3 = 2, x4 = 0 is a solution of the (original) system.

(b) Choosing x4 = 3 gives x1 = 4 − 2(3) = −2, x2 = 2 + (3) = 5, x3 = 2 − (3) = −1. Check
that x1 = −2, x2 = 5, x3 = −1, x4 = 3 is a solution of the (original) system.
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Different choices of value for x4 will give different solutions of the system. The number of
solutions is infinite.

The general solution is usually described by the following type of notation. We assign the
parameter name t to the value of the variable x4 in a solution (so t may assume any real
number as its value). We then have

x1 = 4 − 2t, x2 = 2 + t, x3 = 2 − t, x4 = t; t ∈ R

or

General Solution : (x1, x2, x3, x4) = (4 − 2t, 2 + t, 2 − t, t); t ∈ R

This general solution describes the infinitely many solutions of the system : we get a partic-
ular solution by choosing a specific numerical value for t : this determines specific values
for x1, x2, x3 and x4.

Example 1.4.3 Solve the following system of linear equations :

x1 − x2 − x3 + 2x4 = 0 I
2x1 + x2 − x3 + 2x4 = 8 II
x1 − 3x2 + 2x3 + 7x4 = 2 III
x1 − x2 + x3 − x4 = −6 IV

Remark : The first three equations of this system comprise the system of equations of Example
1.4.1. The problem becomes : Can we find a solution of the system of Example 1.4.1 which is in
addition a solution of the equation x1 − x2 + x3 − x4 = −6 ?

SOLUTION We know that every simultaneous solution of the first three equations has the form

x1 = 4 − 2t, x2 = 2 + t, x3 = 2 − t, x4 = t,

where t can be any real number . Is there some choice of t for which the solution of the first three
equations is also a solution of the fourth? i.e. for which

x1 − x2 + x3 − x4 = −6 i.e. (4 − 2t) − (2 + t) + (2 − t) − t = −6

Solving for t gives

4 − 5t = −6
=⇒ −5t = 10

=⇒ t = 2

t = 2 : x1 = 4 − 2t = 4 − 2(2) = 0; x2 = 2 + t = 2 + 2 = 4; x3 = 2 − t = 2 − 2 = 0; x4 = t = 2

SOLUTION : x1 = 0, x2 = 4, x3 = 0, x4 = 2 (or (x1, x2, x3, x4) = (0, 4, 0, 2)).
This is the unique solution to the system in Example 1.4.3.

REMARKS:

1. To solve the system of Example 1.4.3 directly (without 1.4.1) we would write down the
augmented matrix : 

1 −1 −1 2 0
2 1 −1 2 8
1 −3 2 7 2
1 −1 1 −1 −6


Check: Gauss-Jordan elimination gives the reduced row-echelon form :

1 0 0 0 0
0 1 0 0 4
0 0 1 0 0
0 0 0 1 2
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which corresponds to the system

x1 = 0; x2 = 4; x3 = 0; x4 = 2

i.e. the unique solution is given exactly by the RREF. In this system, all four variables are
leading variables. This is always the case for a system which has a unique solution : that
each variable is a leading variable, i.e. corresponds in the RREF of the augmented matrix to
a column which contains a leading 1.

2. The system of Example 1.4.1, consisting of Equations 1,2 and 3 of that in Example 1.4.3, had
an infinite number of solutions. Adding the fourth equation in Example 1.4.3 pinpointed
exactly one of these infinitely many solutions.
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1.5 Consistent and Inconsistent Systems

Example 1.5.1 Consider the following system :

3x + 2y − 5z = 4
x + y − 2z = 1

5x + 3y − 8z = 6

To find solutions, obtain a row-echelon form from the augmented matrix : 3 2 −5 4
1 1 −2 1
5 3 −8 6

 R1↔ R2
−→

 1 1 −2 1
3 2 −5 4
5 3 −8 6


R2→ R2 − 3R1

−→
R3→ R3 − 5R1

 1 1 −2 1
0 −1 1 1
0 −2 2 1

 R2× (−1)
−→

 1 1 −2 1
0 1 −1 −1
0 −2 2 1


R3→ R3 + 2R2

−→

 1 1 −2 1
0 1 −1 −1
0 0 0 −1

 R3× (−1)
−→

 1 1 −2 1
0 1 −1 −1
0 0 0 1


(Row-Echelon Form)

The system of equations corresponding to this REF has as its third equation

0x+ 0y+ 0z = 1 i.e. 0 = 1

This equation clearly has no solutions - no assignment of numerical values to x,y and zwill make
the value of the expression 0x + 0y + 0z equal to anything but zero. Hence the system has no
solutions.

Definition 1.5.2 A system of linear equations is called inconsistent if it has no solutions. A system which
has a solution is called consistent.

If a system is inconsistent, a REF obtained from its augmented matrix will include a row of the
form 0 0 0 . . . 0 1, i.e. will have a leading 1 in its rightmost column. Such a row corresponds to an
equation of the form 0x1 + 0x2 + · · ·+ 0xn = 1, which certainly has no solution.

Example 1.5.3 (MA203 Summer 2005, Q1)

(a) Find the unique value of t for which the following system has a solution.

−x1 + x3 − x4 = 3
2x1 + 2x2 − x3 − 7x4 = 1
4x1 − x2 − 9x3 − 5x4 = t
3x1 − x2 − 8x3 − 6x4 = 1

SOLUTION: First write down the augmented matrix and begin Gauss-Jordan elimination.


−1 0 1 −1 3

2 2 −1 −7 1
4 −1 −9 −5 t
3 −1 −8 −6 1

 R1× (−1)
−→


1 0 −1 1 −3
2 2 −1 −7 1
4 −1 −9 −5 t
3 −1 −8 −6 1


R2→ R2 − 2R1
R3→ R3 − 4R1

−→
R4→ R4 − 3R1


1 0 −1 1 −3
0 2 1 −9 7
0 −1 −5 −9 t+ 12
0 −1 −5 −9 10

 R3→ R3 − R4
−→


1 0 −1 1 −3
0 2 1 −9 7
0 0 0 0 t+ 2
0 −1 −5 −9 10
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From the third row of this matrix we can see that the system can be consistent only if t + 2 = 0.
i.e. only if t = −2.

(b) Find the general solution of this system for this value of t.
SOLUTION: Set t = −2 and continue with the Gaussian elimination. We omit the third row, which
consists fully of zeroes and carries no information. 1 0 −1 1 −3

0 2 1 −9 7
0 −1 −5 −9 10

 R4× (−1)
−→

R3↔ R4

 1 0 −1 1 −3
0 1 5 9 −10
0 2 1 −9 7


R3→ R3 − 2R2

−→

 1 0 −1 1 −3
0 1 5 9 −10
0 0 −9 −27 27

 R3× (− 1
9 )

−→

 1 0 −1 1 −3
0 1 5 9 −10
0 0 1 3 −3


R1→ R1 + R3

−→
R2→ R2 + 5R3

 1 0 0 4 −6
0 1 0 −6 5
0 0 1 3 −3


Having reached a reduced row-echelon form, we can see that the variables x1, x2 and x3 are
leading variables, and the variable x4 is free. We have from the RREF

x1 = −6 − 4x4, x2 = 5 + 6x4, x3 = −3 − 3x4.

If we assign the parameter name s to the value of the free variable x4 in a solution of the system,
we can write the general solution as

(x1, x2, x3, x4) = (−6 − 4s, 5 + 6s,−3 − 3s, s), s ∈ R.

Summary of Possible Outcomes when Solving a System of Linear Equations:

1. The system may be inconsistent. This happens if a REF obtained from the augmented matrix
has a leading 1 in its rightmost column.

2. The system may be consistent. In this case one of the following occurs :

(a) There may be a unique solution. This will happen if all variables are leading variables,
i.e. every column except the rightmost one in a REF obtained from the augmented
matrix has a leading 1. In the case the reduced row-echelon form obtained from the
augmented matrix will have the following form :

1 0 0 . . . 0 ∗
0 1 0 . . . 0 ∗
0 0 1 . . . 0 ∗
...

...
...

. . .
...

...
0 0 0 . . . 1 ∗


with possibly some additional rows full of zeroes at the bottom. The unique solution
can be read from the right-hand column.
NOTE: If a system of equations has a unique solution, the number of equations must
be at least equal to the number of variables (since the augmented matrix must have
enough rows to accommodate a leading 1 for every variable).

(b) There may be infinitely many solutions. This happens if the system is consistent but at
least one of the variables is free. In this case the rank of the augmented matrix will be
less than the number of variables in the system.

14



Chapter 2

Gauss-Jordan Elimination and
Matrix Algebra

2.1 Review of Matrix Algebra

Am× n (“m by n”) matrix is a matrix havingm rows and n columns.

EXAMPLE:
(

2 3 −1
−3 −4 0

)
is a 2× 3 matrix.

 2 3
2 7
4 0

 is a 3× 2 matrix.

Two matrices are said to have the same size if they have the same number of rows and the same
number of columns. (So for example a 3 × 2 matrix and a 2 × 3 matrix are considered to be of
different size).

NOTATION: IfA is anm×nmatrix, the entry appearing in the ith row and jth column ofA (called
the (i,j) position) is denoted (A)ij.

EXAMPLE: Let A =

(
2 3 −1
4 0 5

)
.

Then (A)11 = 2, (A)21 = 4, (A)13 = −1, etc.

Like numbers, matrices have arithmetic associated to them. In particular, a pair of matrices
can be added or multiplied (subject to certain compatibility conditions on their sizes) to produce
a new matrix.

MATRIX ADDITION:
LetA and B be matrices of the same size (m×n). We define their sumA+B to be them×nmatrix
whose entries are given by

(A+ B)ij = (A)ij + (B)ij

for i = 1, . . . ,m and j = 1, . . . ,n
Thus A+ B is obtained from A and B by adding entries in corresponding positions.

EXAMPLE: Let A =

(
2 0 −1 −1
1 2 4 2

)
and B =

(
−1 1 0 −2

3 −3 1 1

)
. Then

A+ B =

(
2 + (−1) 0 + 1 −1 + 0 −1 + (−2)

1 + 3 2 + (−3) 4 + 1 2 + 1

)
=

(
1 1 −1 −3
4 −1 5 3

)
Subtraction of matrices is now defined in the obvious way - e.g., with A and B as above, we have

A− B =

(
2 − (−1) 0 − 1 −1 − 0 −1 − (−2)

1 − 3 2 − (−3) 4 − 1 2 − 1

)
=

(
3 −1 −1 1

−2 5 3 1

)
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MULTIPLICATION OF A MATRIX BY A REAL NUMBER:
Let A be a m × n matrix and let c be a real number. Then cA is the m × n matrix with entries
defined by

(cA)ij = c(A)ij

i.e. cA is obtained from A by multiplying every entry by c.

EXAMPLE: If A =

(
2 1
3 −4

)
, then

2A =

(
4 2
6 −8

)
, −3A =

(
−6 −3
−9 12

)
, 0A =

(
0 0
0 0

)
Them× nmatrix whose entries are all zero is called the zero (m× n) matrix.

Matrix Multiplication
Unlike addition, the manner in which matrices are multiplied does not appear completely natural
at first glance.

Suppose that A is a m × p matrix and B is a q × n matrix. Then the product AB is defined if
and only if p = q, i.e. if and only if

• The number of columns in A = the number of rows in B, or

• The number of entries in a row of A = the number of entries in a column of B.

In this case the size of AB ism× n.
In general the following “cancellation law” holds for the size of matrix products:

“(m× 6 p)× ( 6 p× n) = m× n”.

This means : if A is am× pmatrix and B is a p× nmatrix, then the product AB is defined and is
am×nmatrix in which the entry in the ith row and jth column is given by combining the entries
of the ith row of A with those of the jth column of B according to the following rule :

product of 1st entries + product of 2nd entries + · · ·+ product of pth entries

Example 2.1.1 Let A =

(
2 −1 3
1 0 −1

)
and let B =

 3 1
1 −1
0 2

 .

Find AB and BA.

SOLUTION :

1. A : 2× 3, B : 3× 2 =⇒ ABwill be a 2× 2 matrix.(
2 −1 3
1 0 −1

) 3 1
1 −1
0 2

 =

(
2(3) + (−1)(1) + 3(0) 2(1) + (−1)(−1) + 3(2)
1(3) + 0(1) + (−1)(0) 1(1) + 0(−1) + (−1)(2)

)

=

(
5 9
3 −1

)
2. B : 3× 2, A : 2× 3 =⇒ BA will be a 3× 3.

BA =

 7 −3 8
1 −1 4
2 0 −2


(Exercise)

NOTE: BA 6= AB : Matrix multiplication is not commutative. In this example AB and BA are both
defined but do not even have the same size. It is also possible for only one of AB and BA to be
defined, for example this will happen if A is 2 × 4 and B is 4 × 3. Even if AB and BA are both
defined and have the same size (for example if both are 3 × 3), the two products are typically
different.

The next example shows how the computations involved in matrix multiplication can arise in
a natural setting.
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Example 2.1.2 A salesperson sells items of three types I, II, and III, costing e10, e20 and e30 respec-
tively. The following table shows how many items of each type are sold on Monday morning and afternoon.

Type I Type II Type III
morning 3 4 1

afternoon 5 2 2

Let A denote the matrix (
3 4 1
5 2 2

)
Let B denote the 3×1 matrix whose entries are the prices of items of Type I, II and III respectively.

B =

 10
20
30


Let C denote the 2× 1 matrix whose entries are respectively the total income from morning sales
and the total income from afternoon sales. Then

1st entry of C : (3× 10) + (4× 20) + (1× 30) = 140
1st entry of C : (5× 10) + (2× 20) + (2× 30) = 150

So C =

(
140
150

)
Now note that according to the definition of matrix multiplication we have

AB = C.

.
1st entry of C: comes from combining the first row of A with the column of B according to :

product of 1st entries + product of 2nd entries + product of 3rd entries

(3× 10) + (4× 20) + (1× 30)

2nd entry of C: comes from combining the second row of A with the column of B in the same
way.

(5× 10) + (2× 20) + (2× 30)
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2.2 The n× n Identity Matrix

Notation: The set of n× nmatrices with real entries is denotedMn(R).

Example 2.2.1 A =

(
2 3

−1 2

)
and let I =

(
1 0
0 1

)
. Find AI and IA.

Solution:

AI =

(
2 3

−1 2

)(
1 0
0 1

)
=

(
2(1) + 3(0) 2(0) + 3(1)
−1(1) + 2(0) −1(0) + 2(1)

)
=

(
2 3

−1 2

)
= A

IA =

(
1 0
0 1

)(
2 3

−1 2

)
=

(
1(2) + 0(−1) 1(3) + 0(2)
0(2) + 1(−1) 0(3) + 1(2)

)
=

(
2 3

−1 2

)
= A

Both AI and IA are equal to A : multiplying A by I (on the left or right) does not affect A.

In general, if A =

(
a b
c d

)
is any 2× 2 matrix, then

AI =

(
a b
c d

)(
1 0
0 1

)
=

(
a b
c d

)
= A

and IA = A also.

Definition 2.2.2 I =
(

1 0
0 1

)
is called the 2× 2 identity matrix (sometimes denoted I2).

Remarks:

1. The matrix I behaves in M2(R) like the real number 1 behaves in R - multiplying a real
number x by 1 has no effect on x.

2. Generally in algebra an identity element (sometimes called a neutral element) is one which has
no effect with respect to a particular algebraic operation.
For example 0 is the identity element for addition of numbers because adding zero to an-
other number has no effect.
Similarly 1 is the identity element for multiplication of numbers.
I2 is the identity element for multiplication of 2× 2 matrices.

3. The 3 × 3 identity matrix is I3 =

 1 0 0
0 1 0
0 0 1

 Check that if A is any 3 × 3 matrix then

AI3 = I3A = A.

Definition 2.2.3 For any positive integer n, the n× n identity matrix In is defined by

In =



1 0 . . . . . . 0
0 1 0 . . . 0
... 0 1

...
...

...
. . .

...
0 . . . . . . . . . 1


(In has 1’s along the “main diagonal” and zeroes elsewhere). The entries of In are given by :

(In)ij =

{
1 i = j
0 i 6= j

Theorem 2.2.4 1. If A is any matrix with n rows then InA = A.

2. If A is any matrix with n columns, then AIn = A.
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(i.e. multiplying any matrix A (of admissible size) on the left or right by In leaves A unchanged).
Proof (of Statement 1 of the Theorem): Let A be a n× pmatrix. Then certainly the product InA is
defined and its size is n× p.

We need to show that for 1 6 i 6 n and 1 6 j 6 p,the entry in the ith row and jth column of
the product InA is equal to the entry in the ith row and jth column of A.

0
. . .

...
0 . . . 0 1 0

...
0





A1j
...

. . . Aij

...
Anj

 =


...
...

. . . . . . • . . .
...


In A InA

(InA)ij comes from the ith row of In and the jth column of A.

(InA)ij = (0)(A)1j + (0)(A)2j + · · ·+ (1)(A)ij + · · ·+ (0)(A)nj

= (1)(A)ij
= (A)ij

Thus (InA)ij = (A)ij for all i and j - the matrices InA and A have the same entries in each
position. Then InA = A.
The proof of Statement 2 is similar. �
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2.3 The Inverse of a Matrix

Notation: For a positive integer n, we let Mn(R) denote the set of n × n matrices with entries in
R.

Remark: When we work in the full set of matrices over R, it is not always possible to add or
multiply two matrices (these operations are subject to restrictions on the sizes of the matrices in-
volved). However, if we restrict attention toMn(R) we can add any pair of matrices and multiply
any pair of matrices, and we never move outsideMn(R).
Mn(R) is an example of the type of algebraic structure known as a ring.
In this section we will consider how we might define a version of “division” for matrices in

Mn(R).
In the set R of real numbers, dividing by a non-zero number x means multiplying by the

reciprocal 1/x of x. For example if we divide a real number by 5 we are multiplying it by 1
5 : 1

5 is
the reciprocal or multiplicative inverse of 5 in R. This means

1
5
× 5 = 1,

i.e., if you multiply 5 by 1
5 , you get 1; multiplying by 1

5 “reverses” the work of multiplying by 5.

Definition 2.3.1 Let A be a n× n matrix.If B is a n× n matrix for which

AB = In and BA = In

then B is called an inverse for A.

Example: Let A =

(
2 1
5 3

)
and let B =

(
3 −1

−5 2

)
. Then

AB =

(
2 1
5 3

)(
3 −1

−5 2

)
=

(
1 0
0 1

)
= I2

BA =

(
3 −1

−5 2

)(
2 1
5 3

)
=

(
1 0
0 1

)
= I2

So B is an inverse for A.
Remarks:

1. Suppose B and C are both inverses for a particular matrix A, i.e.

BA = AB = In and CA = AC = In

Then

(BA)C = InC = C

Also (BA)C = B(AC) = BIn = B

Hence B = C, and if A has an inverse, its inverse is unique. Thus we can talk about the
inverse of a matrix.

2. The inverse of a n× nmatrix A, if it exists, is denoted A−1.

3. Not every square matrix has an inverse. For example the 2 × 2 zero matrix
(

0 0
0 0

)
does

not.

In Example 1.5.1 we saw that the system

3x + 2y − 5z = 4
x + y − 2z = 1

5x + 3y − 8z = 6
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is inconsistent. This system can be written in matrix form as follows 3x + 2y − 5z
x + y − 2z

5x + 3y − 8z

 =

 4
1
6

 .

The left hand side of this equation can be written as the matrix product of the 3×3 coefficient
matrix of the system and the column containing the variable names to obtain the following
version :  3 2 −5

1 1 −2
5 3 −8

 x
y
z

 =

 4
1
6


We let A denote the 3× 3 matrix above.

If this matrix had an inverse, we could multiply both sides of the above equation on the left
by A−1 to obtain

A−1A

 x
y
z

 = A−1

 4
1
6

 =⇒

 x
y
z

 = A−1

 4
1
6

 .

This would mean that the system has a unique solution in which the values of x,y, z are the

entries of the matrix A−1

 4
1
6

.

Since we know from Example 1.5.1 that the system has no solution, we must conclude that
the matrix A has no inverse inM3(R).
General Fact : Suppose that a system of equations ha a square coefficient matrix. If this coefficient
matrix has an inverse the system has a unique solution.

4. A square matrix that has an inverse is called invertible or non-singular. A matrix that has
no inverse is called singular or non-invertible.

5. A Converse to Item 3 above: Suppose now that A is a n × n matrix (say 3 × 3) and that there
is a system of equations with A as coefficient matrix that has a unique solution. Then the
RREF obtained from the augmented matrix of the system has the following form 1 0 0 ∗

0 1 0 ∗
0 0 1 ∗

 .

Since the rightmost column does not contribute to the choice of elementary row operations,
it follows that every system of linear equations having A as coefficient matrix has an aug-
mented matrix with a RREF of the above form. Thus every system of equations having A as
coefficient matrix has a unique solution.

In particular then the system described by

A

 x
y
z

 =

 1
0
0


has a unique solution x = a1, y = a2, z = a3.

Similarly the systems described by

A

 x
y
z

 =

 0
1
0

 , A

 x
y
z

 =

 0
0
1


have unique solutions given respectively by x = b1, y = b2, z = b3 and x = c1, y = c2, z =
c3.
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Now define

B =

 a1 b1 c1
a2 b2 c2
a3 b3 c3

 ,

and look at the product AB. This is the 3 × 3 identity matrix I3. Thus B is an inverse for
A and A is invertible. We conclude that if A is the coefficient matrix of a system having a
unique solution, then A is invertible.

Putting this together with Item 3. above and the remarks at the end of Section 2.2, we obtain
the following :

Theorem 2.3.2 A n × n matrix A is invertible if and only if the following equivalent conditions
hold.

(a) Every system of linear equations with A as coefficient matrix has a unique solution.

(b) A can be reduced by elementary row operations to the n× n identity matrix.
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2.4 A Method to Calculate the Inverse of a Matrix

Let A =

 3 4 −1
1 0 3
2 5 −4

.

Assume for now that A is invertible and suppose that

A−1 =

 a1 b1 c1
a2 b2 c2
a3 b3 c3



Then AA−1 = I3 and in particular the first column of AA−1 is

 1
0
0

. This first column comes

from the entries of A combined with the first column of A−1. Thus we have

A

 a1
a2
a3

 =

 1
0
0

 .

This means x = a1, y = a2, z = a3 is the unique solution of the system of linear equations given
by

A

 x
y
z

 =

 1
0
0

 .

Thus the entries a1,a2,a3 of the first column ofA−1 will be written in the rightmost column of the
RREF obtained from the matrix  3 4 −1 1

1 0 3 0
2 5 −4 0

 .

Similarly the second and third columns ofA−1 are respectively the unique solutions of the systems

A

 x
y
z

 =

 0
1
0

 and A

 x
y
z

 =

 0
0
1

 .

They are respectively written in the rightmost columns of the RREFs obtained by EROs from the
augmented matrices  3 4 −1 0

1 0 3 1
2 5 −4 0

 and

 3 4 −1 0
1 0 3 0
2 5 −4 1

 .

So to find A−1 we need to reduce these three augmented matrices to RREF. This can be done with
a single series of EROs if we start with the 3× 6 matrix

A ′ =

 3 4 −1 1 0 0
1 0 3 0 1 0
2 5 −4 0 0 1

 .

Method : Reduce A ′ to RREF. If the RREF has I3 in its first three columns, then columns 4,5,6
contain A−1.

We proceed as follows.
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 3 4 −1 1 0 0
1 0 3 0 1 0
2 5 −4 0 0 1

 R1↔ R2
−→

 1 0 3 0 1 0
3 4 −1 1 0 0
2 5 −4 0 0 1


R2→ R2 − 3R1

−→
R3→ R3 − 2R1

 1 0 3 0 1 0
0 4 −10 1 −3 0
0 5 −10 0 −2 1

 R3→ R3 − R2
−→

 1 0 3 0 1 0
0 4 −10 1 −3 0
0 1 0 −1 1 1


R3↔ R2
−→

 1 0 3 0 1 0
0 1 0 −1 1 1
0 4 −10 1 −3 0

 R3↔ R3 − 4R2
−→

 1 0 3 0 1 0
0 1 0 −1 1 1
0 0 −10 5 −7 −4


R3× (− 1

10 )
−→

 1 0 3 0 1 0
0 1 0 −1 1 1
0 0 1 − 1

2
7
10

2
5

 R1→ R1 − 3R3
−→

 1 0 0 3
2 − 11

10 − 6
5

0 1 0 −1 1 1
0 0 1 − 1

2
7

10
2
5


The above matrix is in RREF and its first three columns comprise I3. We conclude that the

matrix A−1 is written in the last three columns, i.e.

A−1 =

 3
2 − 11

10 − 6
5

−1 1 1
− 1

2
7

10
2
5

 .

(It is easily checked that AA−1 = I3).

Note The above procedure can be used to find the inverse of any n× n matrix A or to show that
A is not invertible.

• Form the matrix A ′ = (A|In).

• Apply elementary row operations to A ′ to reduce it to RREF.

• If a row having 0 in all of the first n positions appears, then A is not invertible.

• If the RREF has In in the first n columns, then the matrix formed by the last n columns is
A−1.

Example: If we apply this technique to the matrix A =

 3 2 −5
1 1 −2
5 3 −8

 of Example 1.5.1, we get

 3 2 −5 1 0 0
1 1 −2 0 1 0
5 3 −8 0 0 1

 R1↔ R2
−→

 1 1 −2 0 1 0
3 2 −5 1 0 0
5 3 −8 0 0 1


R2→ R2 − 3R1

−→
R3→ R3 − 5R1

 1 1 −2 0 1 0
0 −1 1 1 −3 0
0 −2 2 0 −5 1

 R3→ R3 − 2R2
−→

 1 1 −2 0 1 0
0 −1 1 1 −3 0
0 0 0 ∗ ∗ ∗


At this stage we can conclude that the matrix A is not invertible.

Example (MA203 Summer 2004 Q2 (a))
Find the last row of A−1 where

A =


1 1 0 1
2 0 2 2

−1 0 2 1
2 1 0 1

 .

Solution: Suppose that the last row of A−1 is (x y z w). Then

(x y z w)


1 1 0 1
2 0 2 2

−1 0 2 1
2 1 0 1

 = (0 0 0 1).
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Thus
x + 2y − z + 2w = 0
x + w = 0

2y + 2z = 0
x + 2y + z − w = 1

So the entries of the fourth row of A−1 are the values of x,y, z,w in the unique solution of the
system with augmented matrix 

1 2 −1 2 0
1 0 0 1 0
0 2 2 0 0
1 2 1 −1 1

 .

The coefficient matrix here is AT , the transpose of A. The right-hand column contains the entries
of the fourth row of I4. Applying elementary row operations to the above matrix results in

1 0 0 0 3
7

0 1 0 0 1
7

0 0 1 0 − 1
7

0 0 0 1 − 3
7

 .

We conclude that the final row of A−1 is(
3
7

1
7

−
1
7

−
3
7

)
.
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2.5 Elementary Row Operations and the Determinant

RECALL: Let A be a 2 × 2 matrtix : A =

(
a b
c d

)
. The determinant of A, denoted by det(A) or

|A|, is the number ad− bc. So for example if

A =

(
2 4
1 5

)
, det(A) = 2(5) − 4(1) = 6.

The matrix A is invertible if and only if det(A) 6= 0, and in this case the inverse of A is given by

A−1 =
1

det(A)

(
d −b

−c a

)
.

The matrix
(

d −b
−c a

)
is called the adjoint or adjugate of A, denoted adj(A).

Determinants are defined for all square matrices. They have various interpretations and appli-
cations in algebra, analysis and geometry. For every square matrix A, we have that A is invertible
if and only if det(A) 6= 0.

If A is a 2× 2 matrix, A =

(
a b
c d

)
, then |det(A)| is the volume of the parallelogram having

the vectors ~v1 = (a,b) and ~v2 = (c,d) as edges. Similarly if

A =

 a b c
d e f
g h i


is a 3 × 3 matrix we have |det(A)| = Volume of P, where P is the parallelepiped in R3 having
~v1 = (a,b, c), ~v2 = (d, e, f) and ~v3 = (g,h, i) as edges.

The determinant of an n × n matrix can be defined recursively in terms of determinants of
(n − 1)× (n − 1) matrices (which in turn are defined in terms of (n − 2)× (n − 2) determinants,
etc.).

Definition 2.5.1 Let A be a n × n matrix. For each entry (A)ij of A, we define the minor Mij of (A)ij
to be the determinant of the (n− 1)× (n− 1) matrix which remains when the ith row and jth column (i.e.
the row and column containing (A)ij) are deleted from A.

EXAMPLE: Let A =

 1 3 0
2 −2 1

−4 1 −1

.

M11 : M11 = det
(

−2 1
1 −1

)
= −2(−1) − (1)(1) = 1

M12 : M12 = det
(

2 1
−4 −1

)
= 2(−1) − (1)(−4) = 2

M22 : M22 = det
(

1 0
−4 −1

)
= 1(−1) − (0)(−4) = −1

M23 : M23 = det
(

1 3
−4 1

)
= 1(1) − (3)(−4) = 13

M32 : M32 = det
(

1 0
2 1

)
= 1(1) − (0)(2) = 1

Definition 2.5.2 We define the cofactor Cij of the entry (A)ij of A as follows:
Cij = Mij if i+ j is even
Cij = −Mij if i+ j is odd
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So the cofactor Cij is either equal to +Mij or −Mij, depending on the position (i, j).
We have the following pattern of signs : in the positions marked “−”, Cij = −Mij, and in the

positions marked “+”, Cij =Mij :
+ − + + . . .
− + − . . .
+ − + . . .
− + . . .
...

 e.g. for 3× 3

 + − +
− + −
+ − +



EXAMPLE: A =

 1 3 0
2 −2 1

−4 1 −1


C11 : C11 =M11 = det

(
−2 1

1 −1

)
= −2(−1) − (1)(1) = 1

C12 : C12 = −M12 = −det
(

2 1
−4 −1

)
= −(2(−1) − (1)(−4)) = −2

C22 : C22 =M22 = det
(

1 0
−4 −1

)
= 1(−1) − (0)(−4) = −1

C23 : C23 = −M23 = −det
(

1 3
−4 1

)
= −(1(1) − (3)(−4)) = −13

C32 : C32 = −M32 = −det
(

1 0
2 1

)
= −(1(1) − (0)(2)) = −1

Definition 2.5.3 The determinant det(A) of the n× n matrix A is calculated as follows :

1. Choose a row or column of A.

2. For every Aij in the chosen row or column, calculate its cofactor.

3. Multiply each entry of the chosen row or column by its own cofactor.

4. The sum of these products is det(A).

Examples:

1. Let A =

 2 1 3
−1 2 1
−2 2 3

. Find det(A).

SOLUTION: We can calculate the determinant using cofactor expansion along the first row.
Find the cofactors of the entries in the 1st row of A:

C11 = +det
(

2 1
2 3

)
= 4

C12 = −det
(

−1 1
−2 3

)
= 1

C13 = +det
(

−1 2
−2 2

)
= 2

Then

= A11C11 +A12C12 +A13C13

= 2(4) + 1(1) + 3(2)
= 15
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NOTE: We could also do the cofactor expansion along the 2nd row:

det(A) = A21C21 +A22C22 +A23C23︸ ︷︷ ︸
entries of 2nd row of A multiplied by their cofactors

C21 = −det
(

1 3
2 3

)
= 3

C22 = +det
(

2 3
−2 3

)
= 12

C23 = −det
(

2 1
−2 2

)
= −6

det(A) = −1(3) + 2(12) + 1(−6) = 15

2. Let B =


3 1 5 −24
0 4 1 −6
0 0 25 4
0 0 0 −1

. Calculate det(A).

SOLUTION: Use cofactor expansion along the first column to obtain :

det(B) = 3 det

 4 1 −6
0 25 4
0 0 −1


On this 3× 3 determinant, use the first column again. Then

det(B) = 3× 4 det
(

25 4
0 −1

)
On this 2× 2 determinant, use the first column again. Then

det(B) = 3× 4× 25×−1 = −300.

NOTES

1. The matrix B above is an example of an upper triangular matrix (all of its non-zero entries are
located on or above its main diagonal). Note that det(B) is just the product of the entries
along the main diagonal of B.

2. If calculating a determinant using cofactor expansion, it is usually a good idea to choose a
row or column containing as many zeroes as possible.

DEFINITION: A n×nmatrix A is called upper triangular if all entries located below (and to the left
of) its main diagonal are zeroes (i.e. if Aij = 0 whenever i > j).

(In the following diagram the entries indicated by “∗” may be any real number.)

∗ ∗ . . . . . . ∗
0 ∗ ∗ . . . ∗

0 0 ∗
...

...
...

... 0
. . . ∗

0 . . . . . . 0 ∗


Upper triangular matrix

Theorem 2.5.4 If A is upper triangular, then detA is the product of the entries on the main diagonal of
A.
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The idea of the proof of Theorem 2.5.4 is suggested by Example 2 above - just use cofactor expan-
sion along the first column.
CONSEQUENCE OF THEOREM 2.5.4: An upper triangular matrix is invertible if and only if none
of the entries along its main diagonal is zero.

So determinants of upper triangular matrices are particularly easy to calculate. This fact can
be used to calculate the determinant of any square matrix, after using elementary row operations
to reduce it to row echelon form.

The following table describes the effect on the determinant of a square matrix of ERO’s of the
three types.

Type of ERO Effect on Determinant
1. Add a multiple of one row to another row No effect
2. Multiply a row by a constant c Determinant is multiplied by c
3. Interchange two rows Determinant changes sign

We can use these facts to find the determinant of any n× nmatrix A as follows :

1. Use elementary row operations (ERO’s) to obtain an upper triangular matrix A ′ from A.

2. Find detA ′ (product of entries on main diagonal).

3. Make adjustments to reverse changes to the determinant caused by ERO’s in Step 1.

Example 2.5.5 Find the determinant of the matrix

A =


2 4 2 1
4 3 0 −1

−6 0 2 0
0 1 1 2


SOLUTION:

Step 1: Perform elementary row operations to reduce A to upper triangular form.


2 4 2 1
4 3 0 −1

−6 0 2 0
0 1 1 2

 R2 − 2R1
−→

R3 + 3R1


2 4 2 1
0 −5 −4 −3
0 12 8 3
0 1 1 2

 R2 ↔ R4
−→

(det×(−1))


2 4 2 1
0 1 1 2
0 12 8 3
0 −5 −4 −3

 R3 − 12R2
−→

R4 + 5R2


2 4 2 1
0 1 1 2
0 0 −4 −21
0 0 1 7

 R3 ↔ R4
−→

(det×(−1))


2 4 2 1
0 1 1 2
0 0 1 7
0 0 −4 −21

 R4 + 4R3
−→


2 4 2 1
0 1 1 2
0 0 1 7
0 0 0 7


Step 2: Call this upper triangular matrix A ′. Then detA ′ = 2× 1× 1× 7 = 14.

Step 3: det(A ′) = det(A) since the determinant changed sign twice during the row reduction at
Step 1 but was otherwise unchanged. Thus

det(A) = det(A ′) = 2× 1× 1× 7 = 14
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Explanation of Effects of EROs on the Determinant

Type of ERO Effect on Determinant
1. Multiply a row by a constant c Determinant is multiplied by c
2. Add a multiple of one row to another row No effect
3. Interchange two rows Determinant changes sign

1. Suppose that a square matrix A ′ results from multiplying Row i of A by the non-zero con-
stant c. Using cofactor expansion by Row i to calculate det(A) and det(A ′), and using Cij

and C ′ij to denote the cofactors of the entries in the (i, j)-positions of A and A ′ resepctively,
we find

det(A) = Ai1Ci1 +Ai2Ci2 + · · ·+AinCin

det(A ′) = A ′i1C
′
i1 +A

′
i2C
′
i2 + · · ·+A ′inC ′in

= cAi1C
′
i1 + cAi2C

′
i2 + · · ·+ cAinC

′
in

= c(Ai1C
′
i1 +Ai2C

′
i2 + · · ·+AinC

′
in).

Since A and A ′ have the same entries outside Row i, the cofactors of entries in Row i of A
and Row i of A ′ are the same. Thus

det(A ′) = c(Ai1Ci1 +Ai2Ci2 + · · ·+AinCin) = cdet(A).

2. First suppose that in a square matrix B, Row 2 is a multiple of Row 1. This means that there
is a real number c for which

B21 = cB11, B22 = cB12, . . . ,B2n = cBin.

If we subtract c×Row i from Row k of B, we obtain a matrix having a full row of zeroes.
Thus the RREF obtainable from B by EROs is not the n× n identity matrix, as it contains at
least one row full of zeroes. Hence B is not invertible and det(B) = 0.
Thus : any matrix in which one row is a multiple of another has determinant zero.

Now suppose that A ′ is obtained from A by adding c×Row k to Row i. So the entries in
Row i of A ′ are

cAk1 +Ai1, cAk2 +Ai2, . . . , cAkn +Ain

Outside Row i, A and A ′ have the same entries. Hence the cofactors of the entries in Row i
of A and A ′ are the same. We let Cij denote the cofactor of the entry in the (i, j) position of
either of these matrices. Now if we calculate det(A) and det(A ′) using Row iwe obtain

det(A) = Ai1Ci1 +Ai2Ci2 + · · ·+AinCin

det(A ′) = (cAk1 +Ai1)Ci1 + (cAk2 +Ai2)Ci2 + · · ·+ (cAkn +Ain)Cin

= (cAk1Ci1 + cAk2Ci2 + · · ·+ cAinCin) + (Ai1Ci1 +Ai2Ci2 + · · ·+AinCin)

Now
cAk1Ci1 + cAk2Ci2 + · · ·+ cAinCin

is the determinant of a matrix in which Row k is just c×Row i, hence this number is zero by
the remarks above. Thus

det(A ′) = Ai1Ci1 +Ai2Ci2 + · · ·+AinCin = det(A).

3. We omit the full details, but consider the case whereA ′ is obtained fromA by swapping the
first two rows. UseMij andM ′ij to denote minors of A and A’, and Cij and C ′ij respectively
for cofactors of A and A ′. Using the first row of A and the second row of A ′ we obtain

det(A) = A11C11 +A12C12 + · · ·+A1nC1n

= A11M11 −A12M12 + · · · ±A1nC1n.
det(A ′) = A ′21C

′
21 +A

′
22C
′
22 + · · ·+A ′2nC ′2n

= A11C
′
21 +A12C

′
22 + · · ·+A1nC

′
2n

= −A11M
′
21 +A12M

′
22 − · · · ±A1nM

′
1n

= −A11M11 +A12M12 + · · · ±A1nM1n

= −det(A).
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The case of general row swaps is messier but basically similar.
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Chapter 3

Eigenvalues and Eigenvectors

3.1 Powers of Matrices

Definition 3.1.1 Let A be a square matrix (n× n). If k is a positive integer, then Ak denotes the matrix

A×A× · · · ×A︸ ︷︷ ︸
k times

.

Calculating matrix powers using the definition of matrix multiplication is computationally
very laborious. One of the topics that we will discuss in this chapter is how powers of matrices
may be calculated efficiently.

First we look at a reason for calculating such powers at all.

Example 3.1.2 Suppose that two competing Broadband companies, A and B, each currently have 50% of
the market share. Suppose that over each year, A captures 10% of B’s share of the market, and B captures
20% of A’s share. What is each company’s market share after 5 years?

SOLUTION: Let an and bn denote the proportion of the market held by A and B respectively at
the end of the nth year. We have a0 = b0 = 0.5 (beginning of Year 1 = end of Year 0).

Now an+1 and bn+1 depend on an and bn according to

an+1 = 0.8an + 0.1bn
bn+1 = 0.2an + 0.9bn

We can write this in matrix form as follows(
an+1
bn+1

)
=

(
0.8 0.1
0.2 0.9

)(
an
bn

)
.

We define A =

(
0.8 0.1
0.2 0.9

)
. Then

(
a1
b1

)
= A

(
a0
b0

)
= A

(
0.5
0.5

)
,
(
a2
b2

)
= A

(
a1
b1

)
= A2

(
0.5
0.5

)
.

In general (
an
bn

)
= An

(
0.5
0.5

)
=

(
0.8 0.1
0.2 0.9

)n( 0.5
0.5

)
.

So if we had an efficient way to calculate An, we could use it to calculate an and bn.
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3.2 The Characteristic Equation of a Matrix

Let A be a 2× 2 matrix; for example

A =

(
2 8
3 −3

)
.

If ~v is a vector in R2, e.g. ~v = (2, 3), then we can think of the components of ~v as the entries of a
column vector (i.e. a 2× 1 matrix). Thus

[2, 3]↔
(

2
3

)
.

If we multiply this vector on the left by the matrix A, we get another column vector with two
entries :

A

(
2
3

)
=

(
2 8
3 −3

)(
2
3

)
=

(
2(2) + 8(3)

3(2) + (−3)(3)

)
=

(
28
−3

)
So multiplication on the left by the 2 × 2 matrix A is a function sending the set of 2 × 1 column
vectors to itself - or, if we wish, we can think of it as a function from the set of vectors in R2 to
itself.

NOTE: In fact this function is an example of a linear transformation from R2 into itself. Linear
transformations are functions which have certain interesting geometric properties. Basically they
are functions which can be represented in this way by matrices.

In general, if v is a column vector with two entries, then Av is a another vector (with two

entries), which typically does not resemble v at all. For example if v =
(

1
2

)
then

Av =

(
2 8
3 −3

)(
1
2

)
=

(
18
−3

)
However, suppose v =

(
8
3

)
. Then

Av =

(
2 8
3 −3

)(
8
3

)
=

(
40
15

)
= 5

(
8
3

)
i.e. A

(
8
3

)
= 5

(
8
3

)
, or

Multiplying the vector
(

8
3

)
(on the left) by the matrix

(
2 8
3 −3

)
is the same as multiplying it by 5.

TERMINOLOGY:
(

8
3

)
is called an eigenvector for the matrixA =

(
2 8
3 −3

)
with corresponding

eigenvalue 5.

Definition 3.2.1 Let A be a n×nmatrix, and let v be a non-zero column vector with n entries (so not all
of the entries of v are zero). Then v is called an eigenvector for A if

Av = λ v,

where λ is some real number.

In this situation λ is called an eigenvalue for A, and v is said to correspond to λ.
NOTE: “λ” is the symbol for the Greek letter lambda. It is conventional to use this symbol to denote
an eigenvalue.

Example 3.2.2 If A =

(
−1 1
−2 −4

)
and v =

(
1

−2

)
, then

Av =

(
−1 1
−2 −4

)(
1

−2

)
=

(
−3

6

)
= −3

(
1

−2

)
= −3v

Thus
(

1
−2

)
is an eigenvector for the matrix

(
−1 1
−2 −4

)
corresponding to the eigenvalue −3.
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QUESTION: Given a n× nmatrix A, how can we find its eigenvalues and eigenvectors?
ANSWER: We are looking for column vectors v and real numbers λ satisfying

Av = λ v

i.e. λ v−Av =

 0
...
0


=⇒ λInv−Av =

 0
...
0


=⇒ (λIn −A)︸ ︷︷ ︸

a n×n matrix

v =

 0
...
0


This may be regarded as a system of linear equations in which the coefficient matrix is λIn−A

and the variables are the n entries of the column vector v, which we can denote by x1, . . . , xn. We
are looking for solutions to

(λIn −A)

 x1
...
xn

 =

 0
...
0


This system always has at least one solution : namely x1 = x2 = · · · = xn = 0 - all entries of v are
zero. However this solution does not give an eigenvector since eigenvectors must be non-zero.

The system can have additional solutions only if det(λIn − A) = 0 (otherwise if the square
matrix λIn −A is invertible, the system will have x1 = x2 = · · · = xn = 0 as its unique solution).
CONCLUSION: The eigenvalues of A are those values of λ for which det(λIn −A) = 0.

Example 3.2.3 Let A =

(
10 −8

4 −2

)
. Find all eigenvalues of A and find an eigenvector corresponding

to each eigenvalue.

SOLUTION: We need to find all values of λ for which det(λI2 −A) = 0.

λI2 −A = λ

(
1 0
0 1

)
−

(
10 −8

4 −2

)
=

(
λ 0
0 λ

)
−

(
10 −8
4 −2

)
=

(
λ− 10 8

−4 λ+ 2

)
det(λI2 −A) = (λ− 10)(λ+ 2) − 8(−4)

= λ2 − 10λ+ 2λ− 20 + 32
= λ2 − 8λ+ 12

So det(λI2 −A) is a polynomial of degree 2 in λ. The eigenvalues of A are those values of λ for
which

det(λI2 −A) = 0

i.e. λ2 − 8λ+ 12 = 0 =⇒ (λ− 6)(λ− 2) = 0, λ = 6 or λ = 2
Eigenvalues of A : 6, 2.
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To find an eigenvector of A corresponding to λ = 6, we need a vector
(
x
y

)
for which

A

(
x
y

)
= 6

(
x
y

)

i.e.
(

10 −8
4 −2

)(
x
y

)
= 6

(
x
y

)

=⇒
(

10x− 8y
4x− 2y

)
=

(
6x
6y

)
=⇒ 10x− 8y = 6x and 4x− 2y = 6y

Both of these equations say x − 2y = 0; hence any non-zero vector
(
x
y

)
in which x = 2y is an

eigenvector for A corresponding to the eigenvalue 6. For example we can take y = 1, x = 2 to

obtain the eigenvector
(

2
1

)
.

EXERCISES:

1. Show that
(

10 −8
4 −2

)(
2
1

)
= 6

(
2
1

)
.

2. Find an eigenvector for A corresponding to the other eigenvalue λ = 2.

Definition 3.2.4 Let A be a square matrix (n× n). The characteristic polynomial of A is the determi-
nant of the n× n matrix λIn −A. This is a polynomial of degree n in λ.

Example 3.2.5

(a) Let A =

(
4 −1
2 1

)
. Then

λI2 −A = λ

(
1 0
0 1

)
−

(
4 −1
2 1

)
=

(
λ 0
0 λ

)
−

(
4 −1
2 1

)
=

(
λ− 4 1
−2 λ− 1

)
det(λI2 −A) = (λ− 4)(λ− 1) − 1(−2) = λ2 − 5λ+ 6
Characteristic Polynomial of A: λ2 − 5λ+ 6.

(b) Let B =

 5 6 2
0 −1 −8
1 0 −2

.

λI3 − B =

 λ 0 0
0 λ 0
0 0 λ

−

 5 6 2
0 −1 −8
1 0 −2

 =

 λ− 5 −6 −2
0 λ+ 1 8
−1 0 λ+ 2



We can calculate det(λI3 − B) using cofactor expansion along the first row.

det(λI3 − B) = (λ− 5)[(λ+ 1)(λ+ 2) − (0)(8)]
−(−6)[0(λ+ 2) − 8(−1)] + (−2)[0(0) − (−1)(λ+ 1)]

= (λ− 5)(λ2 + 3λ+ 2) + 6(8) − 2(λ+ 1)
= λ3 − 2λ2 − 13λ− 10 + 48 − 2λ− 2
= λ3 − 2λ2 − 15λ+ 36.

Characteristic polynomial of B : λ3 − 2λ2 − 15λ+ 36.
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As we saw, the eigenvalues of a matrix A are those values of λ for which det(λI−A) = 0; i.e.,
the eigenvalues of A are the roots of the characteristic polynomial.

Example 3.2.6 Find the eigenvalues of the matrices A and B of Example 6.2.2.

(a) A =

(
4 −1
2 1

)
Characteristic Equation : λ2 − 5λ+ 6 = 0 =⇒ (λ− 3)(λ− 2) = 0
Eigenvalues of A: λ = 3, λ = 2.

(b) B =

 5 6 2
0 −1 −8
1 0 2


Characteristic Equation: λ3 − 2λ2 − 15λ+ 36 = 0

To find solutions to this equation we need to factor the characteristic polynomial, which is
cubic in λ (in general solving a cubic equation like this is not an easy task unless we can
factorize). First we try to find an integer root.

Fact: The only possible integer roots of a polynomial are factors of its constant term.

So in this example the only possible candidates for an integer root of the characteristic poly-
nomial p(λ) = λ3 − 2λ2 − 15λ+ 36 are the integer factors of 36 : i.e.

±1, ±2, ±3, ±4, ±6, ±9, ±12, ±18, ±36

Try some of these :

p(1) = 13 − 2(1)2 − 15(1) + 36 6= 0
p(2) = 23 − 2(2)2 − 15(2) + 36 6= 0
p(3) = 33 − 2(3)2 − 15(3) + 36 = 0

=⇒ 3 is a root of p(λ), and (λ− 3) is a factor of p(λ). Then

p(λ) = λ3 − 2λ2 − 15λ+ 36 = (λ− 3)(λ2 + aλ− 12)

To find a, look at the coefficients of λ2 (or λ) on the left and right

λ2 : −2 = −3 + a =⇒ a = 1

λ3 − 2λ2 − 15λ+ 36 = (λ− 3)(λ2 + λ− 12)
= (λ− 3)(λ− 3)(λ+ 4)
= (λ− 3)2(λ+ 4)

Eigenvalues of B: λ = 3 (occurring twice), λ = −4.

We conclude this section by calculating eigenvectors of B corresponding to these eigenvalues.

Example 3.2.7 Let B =

 5 6 2
0 −1 −8
1 0 −2


From Example 3.2.5, the eigenvalues of B are λ = 3 (occurring twice), λ = −4.
Find an eigenvector of B corresponding to the eigenvalue λ = −4.

SOLUTION: We need a column vector v =

 x1
x2
x3

, with entries not all zero, for which

 5 6 2
0 −1 −8
1 0 −2

 x1
x2
x3

 = −4

 x1
x2
x3
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i.e.

 5x1 + 6x2 + 2x3
− x2 − 8x3

x1 − 2x3

 =

 −4x1
−4x2
−4x3


=⇒

5x1 + 6x2 + 2x3 = −4x1
− x2 − 8x3 = −4x2

x1 − 2x3 = −4x3

=⇒
9x1 + 6x2 + 2x3 = 0

3x2 − 8x3 = 0
x1 + 2x3 = 0︸ ︷︷ ︸

system of 3 equations in x1,x2,x3

So we need to solve the system of linear equations with augmented matrix 9 6 2 0
0 3 −8 0
1 0 2 0


NOTE: The coefficient matrix here is just B− (−4)I3 i.e. 5 6 2

0 −1 −8
1 0 −2

−

 −4 0 0
0 −4 0
0 0 −4


To find solutions to the system : 9 6 2 0

0 3 −8 0
1 0 2 0

 R3↔ R1
→

 1 0 2 0
0 3 −8 0
9 6 2 0

 R3 − 9× R1
→

 1 0 2 0
0 3 −8 0
0 6 −16 0

 R3 − 2× R2
→

 1 0 2 0
0 3 −8 0
0 0 0 0

 R2× 1
3

→

 1 0 2 0
0 1 − 8

3 0
0 0 0 0

 : RREF

The variable x3 is free : let x3 = t. Then

x1 + 2x3 = 0 =⇒ x1 = −2t
x2 −

8
3x3 = 0 =⇒ x2 = 8

3t

For example if we take t = 3 we find x1 = −6 and x2 = 8. Hence v =

 −6
8
3

 is an eigenvector

for B corresponding to λ = −4
EXERCISE: Check that Bv = −4v.

NOTES:

1. To find an eigenvector v of a n × n matrix A corresponding to the eigenvalue λ : solve the
system

(A− λIn)

 x1
...
xn

 =

 0
...
0


i.e. the system whose coefficient matrix is A − λIn and in which the constant term (on the
right in each equation) is 0.

2. If v is an eigenvector of a square matrix A, corresponding to the eigenvalue λ, and if k 6= 0
is a real number, then kv is also an eigenvector of A corresponding to λ, since

A(kv) = k(Av) = k(λv) = λ(kv)
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In the above example any (non-zero) scalar multiple of

 −6
8
3

 is an eigenvector of A

corresponding to λ = −4 (these arise from different choices of value for the free variable t
in the solution of the relevant system of equations).

Example 3.2.8 Find an eigenvector of B corresponding to the eigenvalue λ = 3.

SOLUTION: We need to solve the system whose augmented matrix consists of B−3I3 and a fourth
column all of whose entries are zero.

B− 3I3 =

 2 6 2
0 −4 −8
1 0 −5


(obtained by subtracting 3 from each of the entries on the main diagonal of B and leaving the
other entries unchanged).

We apply elementary row operations to the augmented matrix of the system : 2 6 2 0
0 −4 −8 0
1 0 −5 0

 R1× 1
2

−→
R2× (− 1

4 )

 1 3 1 0
0 1 2 0
1 0 −5 0

 R3 − R1
−→

 1 3 1 0
0 1 2 0
0 −3 −6 0

 R3 + 3× R2
−→

 1 3 1 0
0 1 2 0
0 0 0 0

 R1 − 3× R2
−→

 1 0 −5 0
0 1 2 0
0 0 0 0

 : RREF

Let x3 = t. Then
x1 − 5x3 = 0 =⇒ x1 = 5t
x2 + 2x3 = 0 =⇒ x2 = −2t

Eigenvectors are given by  x1
x2
x3

 =

 5t
−2t
t


for t ∈ R, t 6= 0. For example of we choose t = 1 we find that v =

 5
−2

1

 is an eigenvector for

B corresponding to λ = 3. (Exercise: Check this).
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3.3 Diagonalization

Let A =

(
−4 1

4 −4

)
. Then

(
1
2

)
and

(
1

−2

)
are eigenvectors of A, with corresponding

eigenvalues −2 and −6 respectively (check). This means(
−4 1

4 −4

)(
1
2

)
= −2

(
1
2

)
,

(
−4 1

4 −4

)(
1

−2

)
= −6

(
1

−2

)
.

Thus (
−4 1

4 −4

)(
1 1
2 −2

)
=

(
−2
(

1
−2

)
− 6

(
1

−2

))
=

(
−2 −6
−4 12

)
We have (

−4 1
4 −4

)(
1 1
2 −2

)
=

(
1 1
2 −2

)(
−2 0

0 −6

)
(Think about this). Thus AE = ED where E =

(
1 1
2 −2

)
has the eigenvectors of A as columns

and D =

(
−2 0

0 −6

)
is the diagonal matrix having the eigenvalues of A on the main diagonal,

in the order in which their corresponding eigenvectors appear as columns of E.

Definition 3.3.1 A n × n matrix is A diagonal if all of its non-zero entries are located on its main
diagonal, i.e. if Aij = 0 whenever i 6= j.

Diagonal matrices are particularly easy to handle computationally. If A and B are diagonal
n × n matrices then the product AB is obtained from A and B by simply multiplying entries in
corresponding positions along the diagonal, and AB = BA.
If A is a diagonal matrix and k is a positive integer, then Ak is obtained from A by replacing each
entry on the main diagonal with its kth power.
Back to our Example : We have AE = ED. Note that det(E) 6= 0 so E is invertible. Thus

AE = ED

=⇒ AEE−1 = EDE−1

=⇒ A = EDE−1.

It is convenient to write A in this form if for some reason we need to calculate powers of A.
Note for example that

A3 = (EDE−1)(EDE−1)(EDE−1)

= EDI2DI2DE
−1

= ED3E−1

= E

(
(−2)3 0

0 (−6)3

)
E−1.

In general An = E

(
(−2)n 0

0 (−6)n

)
E−1, for any positive integer n. (In fact this is true for

negative integers too if we interpret A−n to mean the nth power of the inverse A−1 of A).

Example 3.3.2 Solve the recurrence relation

xn+1 = −4xn + 1yn
yn+1 = 4xn − 4yn

given that x0 = 1, y0 = 1.
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NOTE: this means we have sequences x0, x1, . . . and y0,y1, . . . defined by the above relations. If
for some nwe know xn and yn, the relations tell us how to calculate xn+1 and yn+1.
For example

x1 = −4x0 + y0 = −4(1) + 1 = −3
y1 = 4x0 − 4y0 = 4(1) − 4(1) = 0

x2 = −4x1 + y1 = −4(−3) + 0 = 12
y2 = 4x1 − 4y1 = 4(−3) − 4(0) = −12.

What it means to solve the recurrence relation is to give a pair of formulae stating exactly how xn
and yn depend on n, so that for example x100 could be calculated without knowledge of x99 and
y99. Of course it is not obvious in advance that such formulae exist.

SOLUTION OF THE PROBLEM:
The relations can be written in matrix form as(

xn+1
yn+1

)
=

(
−4xn + 1yn
4xn − 4yn

)
=

(
−4 1

4 −4

)(
xn
yn

)
= A

(
xn
yn

)
,

where A is the matrix
(

−4 1
4 −4

)
. Thus

(
x1
y1

)
= A

(
x0
y0

)
= A

(
1
1

)
(
x2
y2

)
= A

(
x1
y1

)
= A

(
A

(
1
1

))
= A2

(
1
1

)
(
x3
y3

)
= A

(
x2
y2

)
= A

(
A2
(

1
1

))
= A3

(
1
1

)
, etc.

In general
(
xn
yn

)
= An

(
1
1

)
.

To obtain general formulae for xn and yn we need a general formula for An. We have

An = (EDE−1)n = EDnE−1

where E =

(
1 1
2 −2

)
and D =

(
−2 0

0 −6

)
.

Note

E−1 = −
1
4

(
−2 −1
−2 1

)
=

1
4

(
2 1
2 −1

)
.

Thus

An =

(
1 1
2 −2

)(
(−2)n 0

0 (−6)n

)
1
4

(
2 1
2 −1

)

=

(
(−2)n (−6)n

2(−2)n −2(−6)n

)
1
4

(
2 1
2 −1

)

=
1
4

(
(−2)n(2) + (−6)n(2) (−2)n − (−6)n

4(−2)n − 4(−6)n 2(−2)n + 2(−6)n

)
and (

xn
yn

)
= An

(
1
1

)
=

1
4

(
(−2)n(2) + (−6)n(2) (−2)n − (−6)n

4(−2)n − 4(−6)n 2(−2)n + 2(−6)n

)(
1
1

)

=
1
4

(
3(−2)n + (−6)n

6(−2)n − 2(−6)n

)
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We conclude that

xn =
3
4
(−2)n +

1
4
(−6)n

yn =
3
2
(−2)n −

1
2
(−6)n

for n > 0.
(This is easily verified for small values of n using the recurrence relations). See Problem Sheet 3
for more problems of this type.

Definition 3.3.3 The n×nmatrixA is diagonalizable (or diagonable) if there exists an invertible matrix
E for which

E−1AE

is diagonal.

We have already seen that if E is a matrix whose columns are eigenvectors ofA, thenAE = ED,
where D is the diagonal matrix whose entry in the (i, i) position is the eigenvalue of A to which
the ith column of E corresponds as an eigenvector of A. If E is invertible then E−1AE = D and A
is diagonalizable. Hence we have the following statement

1. If there exists an invertible matrix whose columns are eigenvectors of A,
then A is diagonalizable.

On the other hand, suppose that A is diagonalizable. Then there exists an invertible n × n
matrix E and a diagonal matrix Dwhose entry in the (i, i) position can be denoted di, for which

D = E−1AE.

This means ED = AE, so

E


d1 . . .

... d2
. . .

dn

 = AE

. Looking at the jth column of each of these products shows that
E1j
E2j

...
Enj

dj = A


E1j
E2j

...
Enj

 .

Thus the jth column of E is an eigenvector of A (with corresponding eigenvalue dj). So

2. If the n× n matrix A is diagonalizable, then there exists an invertible matrix
whose columns are eigenvectors of A.

Putting this together with 1. above gives

Theorem 3.3.4 The square matrix A is diagonalizable if and only if there exists an invertible matrix
having eigenvectors of A as columns.

It is not true that every square matrix is diagonalizable.

Example 3.3.5 Let A =

(
2 −1
1 4

)
.
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Then
det(λI−A) = λ2 − 6λ+ 9 = (λ− 3)2.

So λ = 3 is the only eigenvalue of A and it occurs twice.
Eigenvectors : Suppose A

(
x
y

)
= 3
(
x
y

)
. Then

2x − y = 3x
x + 4y = 3y =⇒ x+ y = 0, x = −y.

So every eigenvector of A has the form
(

−y
y

)
for some non-zero real number y. Thus every

2× 2 matrix having eigenvectors of A as columns as of the form
(

−a −b
a b

)
for some non-zero

real numbers a and b. The determinant of such a matrix is −ab − (−ab) = 0. Thus no matrix
having eigenvectors of A as columns is invertible, and A is not diagonalizable.

Although the above example shows that not all square matrices are diagonalizable, we do
have the following fact.

Theorem 3.3.6 Suppose that the n × n matrix A has n distinct eigenvalues λ1, . . . , λn. If E is a matrix
whose columns are eigenvectors of A corresponding to the different eigenvalues, then E is invertible. Thus
A is diagonalizable.
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3.4 Further Properties of Eigenvectors and Eigenvalues

1. Suppose that v is an eigenvector of the square matrix A, corresponding to the eigenvalue λ.
Then so is kv for any non-zero real number k. To see this note that

A(kv) = kA(v) = k(λv) = (λk)v = λ(kv).

2. If v is an eigenvector of A corresponding to the eigenvalue λ, then v is also an eigenvector
of A2 and the eigenvalue to which it corresponds is λ2. To see this note

A2(v) = A(Av) = A(λv) = λ(Av) = λ(λv) = λ2v.

Similarly v is an eigenvector of An for any positive integer n, corresponding to the eigen-
value λn.

3. For any square matrix A, let AT denote the transpose of A. Then det(A) = det(AT ). It
follows that

det(λI−A) = det(λI−A)T = det(λI−AT ).

Thus A and AT have the same characteristic equation, and they have the same eigenvalues.
(However there is no general connection between the eigenvectors of AT and those of A).

4. Suppose that A has the property that for each of its rows, the sum of the entries in that row
is the same number s. For example if

A =

 1 3 6
2 −1 9

−2 5 7

 ,

the row sums of A are all equal to 10.

Then

A


1
1
...
1

 =


s
s
...
s

 = s


1
1
...
1

 .

Thus the vector whose entries are all equal to 1 is an eigenvector of A corresponding to the
eigenvalue s. In particular the common row sum s is an eigenvalue of A.

5. On the other hand suppose that the sum of the entries of every column of A is the same
number k. Then by 4 above k is an eigenvalue ofAT and hence by 3 above k is an eigenvalue
of A. In particular if the sum of the entries in every column of A is 1, then 1 is an eigenvalue
of A.
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Chapter 4

Markov Processes

4.1 Markov Processes and Markov Chains

Recall the following example from Section 3.1.
Two competing Broadband companies, A and B, each currently have 50% of the market share.
Suppose that over each year, A captures 10% of B’s share of the market, and B captures 20% of A’s
share.

This situation can be modelled as follows. Let an and bn denote the proportion of the market
held by A and N respectively at the end of the nth year. We have a0 = b0 = 0.5 (beginning of Year
1 = end of Year 0).

Now an+1 and bn+1 depend on an and bn according to

an+1 = 0.8an + 0.1bn
bn+1 = 0.2an + 0.9bn

We can write this in matrix form as follows(
an+1
bn+1

)
=

(
0.8 0.1
0.2 0.9

)(
an
bn

)
.

We defineM =

(
0.8 0.1
0.2 0.9

)
. Note that every entry inM is non-negative and that the sum of the

entries in each column is 1. This is no accident since the entries in the first column of M are the
respective proportions of A’s market share that are retained and lost respectively by A from one
year to the next. Column 2 contains similar data for B.

Definition 4.1.1 A stochastic matrix is a square matrix with the following properties :

(i) All entries are non-negative.

(ii) The sum of the entries in each column is 1.

So the matrixM of our example is stochastic.

Returning to the example, if we let vn denote the vector
(
an
bn

)
describing the position at the

end of year n, we have

v0 =

(
0.5
0.5

)
, v1 =Mv0, vn+1 =Mvn.

Note that the sum of the entries in each vi is 1.

Definition 4.1.2 A column vector with non-negative entries whose sum is 1 is called a probability vec-
tor.

It is not difficult to see that if v is a probability vector and A is a stochastic matrix, then Av is a
probability vector. In our example, the sequence v0, v1, v2, . . . of probability vectors is an example
of a Markov Chain. In algebraic terms a Markov chain is determined by a probability vector v and
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a stochastic matrix A (called the transition matrix of the process or chain). The chain itself is the
sequence

v0, v1 = Av0, v2 = Av1, . . .

More generally a Markov process is a process in which the probability of observing a particular
state at a given observation period depends only on the state observed at the preceding observa-
tion period.
Remark: Suppose that A is a stochastic matrix. Then from Item 5 in Section 3.4 it follows that 1 is
an eigenvalue of A (all the columns of A sum to 1). The transition matrix in our example is

M =

(
0.8 0.1
0.2 0.9

)
.

Eigenvectors ofM corresponding to the eigenvalue 1 are non-zero vectors
(
x
y

)
for which

(
0.8 0.1
0.2 0.9

)(
x
y

)
=

(
x
y

)
Thus

0.8x + 0.1y = x
0.2x + 0.9y = y

}
=⇒ y = 2x.

So any non-zero vector of the form
(

x
2x

)
is an eigenvector of M corresponding to the eigen-

value 1. Amongst all these vectors exactly one is a probability vector, namely the one with

x+ 2x = 1, i.e. x = 1
3 . This eigenvector is

(
1/3
2/3

)
The Markov process in our example is v0, v1, v2, . . . , where v0 =

(
0.5
0.5

)
and vi+1 =Mvi. We

can observe

v5 = M5v0 ≈
(

0.3613
0.6887

)

v10 = M10v0 ≈
(

0.3380
0.6620

)

v20 = M20v0 ≈
(

0.3335
0.6665

)

v30 = M30v0 ≈
(

0.3333
0.6667

)
So it appears that the vectors in the Markov chain approach the eigenvector

(
1/3
2/3

)
ofM as the

process develops. This vector is called the steady state of the process.
This example is indicative of a general principle.

Definition 4.1.3 A stochastic n × n matrix M is called regular if M itself or some power of M has all
entries positive (i.e. no zero entries).

Example

• M =

(
0.8 0.1
0.2 0.9

)
is a regular stochastic matrix.

• A =

(
0 1
1 0

)
is a stochastic matrix but it is not regular :

A2 =

(
1 0
0 1

)
, A3 =

(
0 1
1 0

)
= A, etc

The positive powers ofA just alternate between I2 andA itself. So no positive integer power
of A is without zero entries.
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Theorem 4.1.4 Suppose that A is a regular stochastic n× n matrix. Then

• There is a unique probability vector v for which Av = v.

• If u0 is any probability vector then the Markov chain u0,u1, . . . defined for i > 1 by ui = Aui−1
converges to v.
(This means that for 1 6 i 6 n, the sequence of the ith entries of u0,u1,u2, . . . converges to the ith
entry of v).

Notes

1. Theorem 4.1.4 says that if a Markov process has a regular transition matrix, the process will
converge to the steady state v regardless of the initial position.

2. Theorem 4.1.4 does not apply when the transition matrix is not regular. For example if

A =

(
0 1
1 0

)
and u0 =

(
a
b

)
(a 6= b) is a probability vector, consider the Markov chain

with initial state u0 that has A as a transition matrix.

u1 =

(
0 1
1 0

)(
a
b

)
=

(
b
a

)
, u2 =

(
0 1
1 0

)(
b
a

)
=

(
a
b

)
.

This Markov chain will switch between
(
a
b

)
and

(
b
a

)
and not converge to a steady

state.

Example 4.1.5 (Summer 2004 Q4) An airline has planes based in Knock, Cork and Shannon. Each week
1
4 of the planes originally based in Galway end up in Knock and 1

3 end up in Shannon - the rest return to
Galway.

Of the planes starting the week in Knock, 1
5 end up in Galway and 1

10 in Shannon. The rest return to
Knock.

Finally, of the planes starting the week in Shannon, 1
5 end up in Galway and 1

5 in Knock, the rest
returning to Shannon.

Find the steady state of this Markov process.

Solution: The Markov process is a sequence v1, v2, . . . of column vectors of length 3. The entries
of the vector vi are the proportions of the airline’s fleet that are located at Galway, Knock and
Shannon at the end of Week i. They are related by

vi+1 =Mvi,

whereM is the transition matrix of the process.
Step 1: Write down the transition matrix. If we let gi, ki, si denote the proportion of the airline’s
fleet at Galway, Knock and Shannon after Week i, we have

gi+1 = 5
12gi + 1

5ki + 1
5si

ki+1 = 1
4gi + 7

10ki + 1
5si

si+1 = 1
3gi + 1

10ki + 3
5si

Thus

vi+1 =

 gi+1
ki+1
si+1

 =


5

12
1
5

1
5

1
4

7
10

1
5

1
3

1
10

3
5


 gi
ki
si

 =Mvi.

M is the transition matrix of the process.
Note: If the rows and columns of M are labelled G,K,S for Galway, Knock and Shannon, then
the entry in the (i, j) position is the proportion of those planes that start the week in the airport
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labelling Column j which finish the week in the airport labelling Row i. Note that M is a regular
stochastic matrix.

Step 2: The steady state of the process is the unique eigenvector of m with eigenvalue 1 that is a
probability vector. To calculate this we need to solve the system of equations whose coefficient
matrix isM− 1I3 (and which has zeroes on the right). The coefficient matrix is

M− I3 =


− 7

12
1
5

1
5

1
4 − 3

10
1
5

1
3

1
10 − 2

5


Remark: If A is a stochastic matrix (transition matrix), then the sum of the entries in each column
of A is 1. It follows that the sum of the entries in each column of A− I is 0, since A− I is obtained
from A by subtracting 1 from exactly one entry of each column. So the sum of the rows of A − I
is the row full of zeroes. This means that in reducing A − I to reduced row echelon form, we can
begin by simply eliminating one of the rows (by adding the sum of the remaining rows to it).

We proceed as follows with elementary row operations on the matrixM− I. − 7
12

1
5

1
5

1
4 − 3

10
1
5

1
3

1
10 − 2

5

 R1↔ R3
−→

 1
3

1
10 − 2

5
1
4 − 3

10
1
5

− 7
12

1
5

1
5



R3→ R3 + (R1 + R2)
−→

 1
3

1
10 − 2

5
1
4 − 3

10
1
5

0 0 0

 R1× 3
−→
R2× 4

 1 3
10 − 6

5
1 − 12

10
4
5

0 0 0


R2→ R2 − R1

−→

 1 3
10 − 6

5
0 − 15

10 2
0 0 0

 R2× (−2/3)
−→

 1 3
10 − 6

5
0 1 − 4

3
0 0 0


R1→ R1 − (3/10)R2

−→

 1 0 − 4
5

0 1 − 4
3

0 0 0



Thus any vector

 x
y
z

 satisfying x = 4
5z and y = 4

3z is an eigenvector of M corresponding to

the eigenvalue λ = 1. We need the unique such eigenvector in which the sum of the entries is 1,
i.e.

4
5
z+

4
3
z+ z = 1 =⇒ 47

15
z = 1.

Thus z =
15
47

, and the steady state vector is


12
47

20
47

15
47

 .
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