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Chapter 1

The Real Numbers

1.1 The set R of real numbers

This section involves a consideration of properties of the set R of real numbers, the set Q of
rational numbers, the set Z of integers and other related sets of numbers. In particular, we will
be interested in what is special about R, what distinguishes the real numbers from the rational
numbers and why the set of real numbers is such an interesting and important thing that there is
a whole branch of mathematics (real analysis) devoted to its study.

WHAT IS R?

There are at least two useful ways to think about what real numbers are, and before considering
them it is useful to first recall what integers are and what rational numbers are.

Integers are “whole numbers”. The set of integers is denoted by Z :

Z = {. . . , −2, −1, 0, 1, 2, . . . }.

The notation “Z” comes from the German word Zahlen (numbers).
On the number line, the integers appear as an infinite set of evenly spaced points. The integers

are exactly those numbers whose decimal representations have all zeroes after the decimal point.

tt tt tt ttttttttpppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppptt tt tt tt tt tt tt
0 1 2-1-2-3-4

Note that the integers on the number line are separated by gaps. For example there are no
integers in the chunk of the number line between 7

5 and 63
32 .

The set of integers is well-ordered. This means (more or less) that given any integer, it makes
sense to talk about the next integer after that one. For example, the next integer after 3 is 4. To
see why this property (which might not seem very remarkable at first glance) is something worth
bothering about and to understand what it says, it might be helpful to observe that the same
property does not hold for the set Q of rational numbers described below.

A rational number is a number that can be expressed as a fraction with an integer as the numer-
ator and a non-zero integer as the denominator. The set of all rational numbers is denoted by Q
(Q is for quotient).

Q =
{a
b

: a ∈ Z,b ∈ Z, b 6= 0
}

.

Note: The above statement can be read as “Q is the set of all numbers that can be written in the form a
b

where a is an integer, b is an integer, and b is not zero”. In order to be able to make sense of written
mathematics it is essential to be able to read all the parts of statements of this kind and form a
clear mental impression of what is being said. In written mathematics, every mark on the page has
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meaning and you are expected to attend to that. This takes practice and care and it is not optional
if you want to learn mathematics. Mathematical writing is and needs to be entirely unambiguous
- this means it has to be technical and fussy, but there is no opportunity for misinterpretation once
you are familiar with the relevant definitions and notation.

So Q includes such numbers as 5
7 , −8

16 , 3141
22445 and so on. It includes all the integers, since any

integer n can be written in the form of a fraction as n
1 . The rational numbers are exactly those

numbers whose decimal representations either terminate (i.e. all digits are 0 from some point
onwards) or repeat (i.e. from some point onwards the decimal part consists of some string of
digits repeated over and over without end).

Note: The statement that Q includes all the integers can be written very concisely as Z ⊂ Q.
This says : Z is a subset of Q, i.e. every element of Z is an element of Q, i.e. every integer is a
rational number.

Since rational numbers (by definition) can be written as quotients (or fractions) involving inte-
gers, the sets Q and Z are closely related. However, on the number line these sets do not resemble
each other at all. As mentioned above, the integers are “spaced out” on the number line and there
are gaps between them. By contrast, the rational numbers are “densely packed” in the number
line. The diagram below is intended to show that the stretch of the number line between 1 and 2
contains infinitely many rational numbers - we can’t draw infinitely many of them in a picture,
but hopefully this picture indicates how we can keep adding more and more of them indefinitely.
By contrast with the situation for Z, there are no stretches of the number line that are without
rational numbers.

tt tttt tttt tt tt
........
........
........
........
........................................

............................................
........
........
........
....

1 2

3
2

7
4

13
8

27
16

55
32

Note: Does this picture persuade you that there are infinitely many rational numbers between 1
and 2? If not, do you believe this statement? It is up to you to consider its plausibility and reach
a conclusion.

Related to these remarks is the observation that the set of rational numbers is not well-ordered.
Given a particular rational number, there is no next rational number after it. For example 0 is a
rational number, but there is no next rational number after 0 on the number line. This is the same
as saying that there is no smallest positive rational number. If we had a candidate for this title, we
could divide by 2 and we would have a smaller but still positive rational number.

Exercise 1.1.1. Choose a stretch of the number line - for example the stretch from − 7
4 to − 11

8 (but pick
your own example). Persuade yourself that your stretch contains infinitely many rational numbers.

So the rational numbers are not sparse like the integers. They come close to covering the whole
number line in the sense that any stretch (however short) of the number line contains infinitely
many rational numbers. The idea of visualizing the points corresponding to rational numbers as
a “mist” on the number line has been suggested.
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Now imagine an infinite straight line, on which the integers are marked (in order) by an infi-
nite set of evenly spaced dots. Imagine that the rational numbers have also been marked by dots,
so that the dot representing 3

2 is halfway between the dot representing 1 and the dot representing
2, and so on. (Of course it is not physically possible to do all this marking, but it’s possible to
imagine what the picture would look like). At this stage a lot of dots have been marked - every
stretch of the line, no matter how short, contains an infinite number of marked dots.

However, many points on the line remain unmarked. For example, somewhere between the
dot representing the rational number 1.4142 and the dot representing the rational number 1.4143
is an unmarked point that represents the real number

√
2. This number is not rational - it cannot

be expressed in the form a
b for integers a and b. Somewhere between the dot that marks 3.1415

and the dot that marks 3.1416 is an unmarked point representing the irrational number π. The set
R of real numbers is the set of numbers corresponding to all points on the line, marked or not. It
includes both the rational and irrational numbers.
Note: Because the examples of irrational numbers that are usually cited are things like

√
2,π and

e, you could get the impression that irrational numbers are special and rare. This is far from being
true. In a very precise way that we will see later, the irrational numbers are more numerous that
the rational numbers. If you think of the points representing irrational numbers as a “mist” on
the number line, it would be a denser mist than the one for rational numbers. If all the rational
numbers were coloured blue on the number line and all the irrational numbers were coloured
red, the whole number line would be a jumble of blue and red points, but there would be more
red than blue. If you zoomed in, as far as you like, on any section of the number line, however
short, both blue and red would still appear, and there would still be more red than blue.

Exercise 1.1.2. Write down five irrational numbers between 4 and 5.

Hint: If you don’t know what to do, start with
√

2 or some other number that you know is
irrational. The number

√
2 is not between 4 and 5 obviously. What adjustments can be made?

Exercise 1.1.3. Suppose that a is a rational number and b is an irrational number.

• Might a+ b be irrational?

• Must a+ b be irrational?

• Might ab be irrational?

• Must ab be irrational?

• Might the product of two irrational numbers be irrational?

• Must the product of two irrational numbers be irrational?

Hint : If in doubt, give yourself some examples and investigate.

To conclude this section we propose two different ways of thinking about the set of real num-
bers.

1. (Arithmetic description) The set R of real numbers consists of all numbers that can be written
as (possibly non-terminating and possibly non-repeating) decimals.

This description is accurate and conceptually it is valuable, but it is not of much practical
use because it is not possible to write out a non-terminating non-repeating decimal or do
calculations with it. In reality, when we do calculations with decimals (either by hand or by
machine), we truncate them at some point and work with approximations which are rational
numbers. The set of numbers that a calculator works with is not the set of real numbers or
even the set of rational numbers - it is some subset of Q that depends on the precision of the
instrument.

This arithmetic description of the real numbers highlights the following point. All numbers
that can be expressed as decimals means all numbers that can be written as sequences of the
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digits 0,1,. . . ,9 (with a decimal point somewhere) with no pattern of repetition necessary in
the digits. In the universe of all such things, the ones that terminate (i.e. end in an infinite
string of zeroes) or have a repeating pattern from some point onwards are special and rare.
These are the rational numbers. The ones that have all zeroes after the decimal point are
even more special - these are the integers.

Later we will look at the following questions, which might seem at first glance not to even
make sense, but which have interesting and surprising answers.

• Are there more rational numbers than integers?

• Are there more real numbers than rational numbers?

2. (Geometric description) The set R of real numbers is the set of all points on the number line.
This is a continuum - there are no gaps in the real numbers and no point on the line that
doesn’t correspond to a real number.

Note: As this course proceeds you will need to know what the symbols Z, Q and R mean and be
able to recall this information easily. You’ll need to be familiar with all the notation involving sets
etc. that is used in this section and to be able to use it in an accurate way.
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1.2 Subsets of R
In this section we consider the notions of finite and infinite sets, and the cardinality of a set. Rea-
sonable goals for this section are to become familiar with these ideas and to practice interpreting
descriptions of sets that are presented in terse mathematical notation (this means, amongst other
things, distinguishing between different kinds of brackets : {}, [ ], ( ), etc.).

Definition 1.2.1. A set is finite if it is possible to list its distinct elements one by one, and this list comes
to an end.
A set is infinite if any attempt at listing its distinct elements continues indefinitely.

Example 1.2.2. The point of this example is not only to show some finite and infinite sets but also to
consider the notation that is used to describe them.

1. {1, 2, 3, 4, 5} is a finite set - its only elements are the integers 1,2,3,4,5, there are five of them.

2. The interval [1, 3] is an infinite set - it consists of all the real numbers that are at least equal to
1 and at most equal to 3.

[1, 3] := {x ∈ R : 1 6 x 6 3}.

Note: The symbol “:=” here means this is a statement of the definition of [1, 3].

3. Z and Q are infinite sets.

4. The set of real solutions of the equation

x5 + 2x4 − x2 + x+ 17 = 0

is a finite set. We don’t know how many elements it has, but it has at most five, since each
one corresponds to a factor of degree 1 of this polynomial of degree 5.

5. The set of prime numbers is infinite.
A pair of twin primes is a pair of primes that differ by 2 : e.g. 3 and 5, 11 and 13, 59 and 61.
It is not known whether the set of pairs of twin primes is finite or infinite.

Definition 1.2.3. The cardinality of a finite set S, denoted |S|, is the number of elements in S.

Example 1.2.4.

1. If S = {5, 7, 8} then |S| = 3.

2. |{4, 10,π}| = 3

3. |{x ∈ Z : π < x < 3π}| = 6.
Note: {x ∈ Z : π < x < 3π} = {4, 5, 6, 7, 8, 9}.

4. The cardinality of Q is infinite.

Remarks

1. The notation “| · |” is severely overused in mathematics. This can be a bit annoying since
mathematical text is supposed to be entirely unambiguous. If x is a real number, |x| means
the absolute value of x. If S is a set, |S| means the cardinality of S. If A is a matrix |A| means
the determinant of A. There are other usages as well. It is supposed to be clear from the
context what is meant.

2. Defining the concept of cardinality for infinite sets is trickier, since you can’t say how many
elements they have. We will be able to say though what it means for two infinite sets to
have the same (or different) cardinalities.
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Example 1.2.5. (A silly example) In a hotel, keys for all the guest rooms are kept on hooks behind the
reception desk. If a room is occupied, the key is missing from its hook because the guests have it. If the
receptionist wants to know how many rooms are occupied, s/he doesn’t have to visit all the rooms to check -
s/he can just count the number of hooks whose keys are missing.

There is nothing deep about this example, but it illustrates a point that is important in mathe-
matics. In the example, the occupied rooms are in one-to-one correspondence with the empty hooks.
This means that each occupied room corresponds to one and only one empty hook, and each empty
hook corresponds to one and only one occupied room. So the number of empty hooks is the same
as the number of occupied rooms and we can count one by counting the other.

Definition 1.2.6. Suppose that A and B are sets. Then a one-to-one correspondence or a bijective
correspondence between A and B is a pairing of each element of A with an element of B, in such a way
that every element of B is matched to exactly one element of A.

Definition 1.2.7. Suppose that A and B are sets. A function f : A −→ B is called a bijection if

• Whenever a1 and a2 are different elements of A, f(a1) and f(a2) are different elements of B.

• Every element b of B is the image of some element a of A.

Note: Definitions 1.2.6 and 1.2.7 are not really much different from each other, but the second
one has a bit more technical machinery of a sort that is sometimes useful in trying to describe
correspondences. The example about the keys and rooms is a case of both. The sets A and B here
are the respectively the set of empty hooks and occupied rooms. The bijective correspondence is
the matching of each empty hook to the room opened by its key, and the “function” f associates
to each hook the corresponding room. The fact that different hooks have different images under f
says that each key opens only one room, and the fact that every element of B is the image of some
element of A says that every occupied room is opened by some key belonging to an empty hook.

The translation between the concrete context of Example 1.2.5 and the formal definition 1.2.7
is completely unnecessary in terms of understanding the example, but the point is that sometimes
the objects we are dealing with don’t have a concrete context like this and the formal language
is actually necessary to describe the situation. The point of the example is just to show that
Definition 1.2.7 is not as obscure or as complicated as it might seem at first glance.

Quite often, in order to determine the cardinality of a set, it is easiest to determine the cardi-
nality of another set with which we know it is in bijective correpsondence.

Example 1.2.8. How many integers between 1 and 1000 are perfect squares?

Solution: The list of perfect squares in our range begins as follows

1, 4, 9, 16, . . .

One way of solving the problem would be to keep writing out successive terms of this sequence
until we hit one that exceeds 1000, and then delete that one and count the terms that we have.
This is actually more work than we are asked to do, since we are not asked for the list of squares
but just the number of them.

Alternatively, we could notice that (31)2 = 961 and (32)2 = 1024.
So the numbers 12, 22, . . . , (31)2 are all in the range 1 to 1000 and these are the only perfect squares
in that range, the answer to our question is 31.

What we are using here, technically, is the fact that the set of perfect squares in the range of
interest is in bijective correspondence with the set {1, 2, 3, . . . , 31} - the numbers in question are the
squares of the first 31 natural numbers. To get the answer 31, it’s not really the squares in the
range 1 to 1000 that we are counting but the integers in the range 1 to 31.

The following example shows that it could be possible to know that there is a bijective corre-
spondence between two finite sets, without knowing the cardinality of either of them. While this
example is a bit contrived, the point of it is to see that sometimes we can show that two sets must
be in bijective correspondence even if we don’t know much about their elements. This can be a
useful device.
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Example 1.2.9. Show that the equations

x3 + 2x+ 4 = 0 and x3 + 3x2 + 5x+ 7 = 0

have the same number of real solutions.

Solution: One way of doing this without having to solve the equations is to demonstrate a bijec-
tive correspondence their sets of real equations. We can write

x3 + 3x2 + 5x+ 7 = (x3 + 3x2 + 3x+ 1) + 2x+ 6
= (x+ 1)3 + (2x+ 2) + 4
= (x+ 1)3 + 2(x+ 1) + 4.

This means that a real number a is a solution of the second equation if and only if

(a+ 1)3 + 2(a+ 1) + 4 = 0

i.e. if and only if a+ 1 is a solution of the first equation.
The correspondence a←→ a+ 1 is a bijective correspondence between the solution sets of the

two equations. So they have the same number of real solutions.
Note: This number is either 1 or 3. Why?
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1.3 Infinite sets and cardinality

Recall from the last section that

• The cardinality of a finite set is defined as the number of elements in it.

• Two sets A and B have the same cardinality if (and only if) it is possible to match each ele-
ment of A to an element of B in such a way that every element of each set has exactly one
“partner” in the other set. Such a matching is called a bijective correpondence or one-to-one
correspondence. A bijective correspondence between A and Bmay be expressed as a function
from A to B that assigns different elements of B to all the elements of A and “uses” all the
elements of B. A function that has these properties is called a bijection.

In the case of finite sets, the second point above might seem to be overcomplicating the issue,
since we can tell if two finite sets have the same cardinality by just counting their elements and
noting that they have the same number. The notion of bijective correspondence is emphasized
for two reasons. First, as we saw in Example 1.2.9, it is occasionally possible to establish that
two finite sets are in bijective correspondence without knowing the cardinality of either of them.
More importantly, we would like to develop some notion of cardinality for infinite sets aswell.
We can’t count the number of elements in an infinite set. However, for a given pair of infinite sets,
we could possibly show that it is or isn’t possible to construct a bijective correspondence between
them.

Definition 1.3.1. Suppose that A and B are sets (finite or infinite). We say that A and B have the same
cardinality (written |A| = |B|) if a bijective correspondence exists between A and B.

In other words, A and B have the same cardinality if it’s possible to match each element of A
to a different element of B in such a way that every element of both sets is matched exactly once.
In order to say that A and B have different cardinalities we need to establish that it’s impossible
to match up their elements with a bijective correspondence. If A and B are infinite sets, showing
that such a thing is impossible is a formidable challenge.

The remainder of this section consists of a collection of examples of pairs of sets that have the
same cardinality. Recall the following definition.

Definition 1.3.2. The set N of natural numbers (“counting numbers”) consists of all the positive integers.

N = {1, 2, 3, . . . }.

Example 1.3.3. Show that N and Z have the same cardinality.

The sets N and Z are both infinite obviously. In order to show that Z has the same cardinality
of N, we need to show that the right-hand column of the table below can be filled in with the
integers in some order, in such a way that each integer appears there exactly once.

N Z
1 ←→ ?
2 ←→ ?
3 ←→ ?
4 ←→ ?
... ←→

...

So we need to list all the integers on the right hand side, in such a way that every integer appears
once. Just following the natural order on the integers won’t work, because then there is no first
entry for our list. Starting at a particular integer like 0 and then following the natural order won’t
work, because then we will never get (for example) any negative integers in our list. Something
that will work is suggested by following the arcs, starting from 0, in the picture below.
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 tt tttt tttt

0 1 2-1-2
We can start with 0, then list 1 and then −1, then 2 and then −2, then 3 and then −3 and so on.

This is a systematic way of writing out the integers, in the sense that given any integer, we can
identify the one position where it will appear in our list. For example the integer 10 will be Item
20 in our list, the integer −11 will be Item 22.

Our table becomes

N Z
1 ←→ 0
2 ←→ 1
3 ←→ −1
4 ←→ 2
5 ←→ −2
6 ←→ 3
... ←→

...

If we want to be fully explicit about how this bijective correspondence works, we can even give
a formula for the integer that is matched to each natural number. The correspondence above
describes a bijective function f : N −→ Z given for n ∈ N by

f(n) =


n
2 if n is even

−
(
n−1

2

)
if n is odd

Exercise 1.3.4. What integer occurs in position 50 in our list? In what position does the integer −65
appear?
As well as understanding this example at the informal/intuitive level suggested by the picture above, think
about the formula above, and satisfy yourself that it does indeed descibe a bijection between N and Z. If
you are convinced that the two questions above (and all others like them) have unique answers that can be
worked out, this basically says that our correspondence between N and Z is bijective.

Example 1.3.3 demonstrates a curious thing that can happen when considering cardinalities
of infinite sets. The set N of natural numbers is a proper subset of the the set Z of integers (this
means that every natural number is an integer, but the natural numbers do not account for all the
integers). Yet we have just shown that N and Z are in bijective correspondence. So it is possible
for an infinite set to be in bijective correspondence with a proper subset of itself, and hence to
have the same cardinality as a proper subset of itself. This can’t happen for finite sets (why?).

Putting an infinite set in bijective correspondence with N amounts to providing a robust and
unambiguous scheme or instruction for listing all its elements starting with a first, then a second,
third, etc., in such a way that it can be seen that every element of the set will appear exactly once
in the list.

Definition 1.3.5. A set is called countably infinite (or denumerable) if it can be put in bijective cor-
respondence with the set of natural numbers. A set is called countable if it is either finite or countably
infinite.

10



Basically, an infinite set is countable if its elements can be listed in an inclusive and organised
way. “Listable” might be a better word, but it is not really used. Example 1.3.3 shows that the set
Z of integers is countable. To fully appreciate the notion of countability, it is helpful to look at an
example of an infinite set that is not countable. This is coming up in Section 1.4.

Thus according to Definition 1.3.1, the sets N and Z have the same cardinality. Maybe this is
not so surprising, because N and Z have a strong geometric resemblance as sets of points on the
number line. What is more surprising is that N (and hence Z) has the same cardinality as the set
Q of all rational numbers. These sets do not resemble each other much in a geometric sense. The
natural numbers are sparse and evenly spaced, whereas the rational numbers are densely packed
into the number line. Nevertheless, as the following construction shows, Q is a countable set.

Example 1.3.6. Show that Q is countable.

We need to show that the rational numbers can be organized into a numbered list in a system-
atic way that includes all of them. Such a list is a one-to-correspondence with the set N of natural
numbers. To construct such a list, start with the following array of fractions.

. . . −3/1 −2/1 −1/1 0/1 1/1 2/1 3/1 . . .

. . . −3/2 −2/2 −1/2 0/2 1/2 2/2 3/2 . . .

. . . −3/3 −2/3 −1/3 0/3 1/3 2/3 3/3 . . .

. . . −3/4 −2/4 −1/4 0/4 1/4 2/4 3/4 . . .

...
...

...
...

...
...

...

In these fractions, the numerators increase through all the integers as we travel along the rows,
and the denominators increase through all the natural numbers as we travel downwards through
the columns. Every rational number occurs somewhere in the array. In order to construct a
bijective correspondence between N and the set of fractions in our array, we construct a systematic
path that will visit every fraction in the array exactly once. One way of doing this (not the only
way) is suggested by the arrows in the following diagram.

. . . −3/1 −2/1 ← −1/1 0/1 → 1/1 2/1 → 3/1 . . .
↑ ↓ ↑ ↓ ↑ ↓

. . . −3/2 −2/2 −1/2 ← 0/2 ← 1/2 2/2 3/2 . . .
↑ ↓ ↑ ↓

. . . −3/3 −2/3 → −1/3 → 0/3 → 1/3 → 2/3 3/3 . . .
↑ ↓

. . . −3/4 ← −2/4 ← −1/4 ← 0/4 ← 1/4 ← 2/4 ← 3/4 . . .

...
...

...
...

...
...

...

This path determines a listing of all the fractions in the array, that starts as follows

0/1, 1/1, 1/2, 0/2, −1/2, −1/1, −2/1, −2/2, −2/3, −1/3, 0/3, 1/3, 2/3, 2/2, 2/1, 3/1, 3/2, 3/3, 3/4, . . .

What this example demonstrates is a bijective correspondence between the set N of natural
numbers and the set of all fractions in our array. A bijective correspondence between some infinite
set and N is really just an ordered listing of the elements of that set (“ordered” here just means
for the purpose of the list, and the order in which elements are listed doesn’t need to relate to any
natural order on the set). This is not (exactly) a bijective correspondence between N and Q.

Exercise 1.3.7. Why not? (Think about this before reading on.)

11



The reason why not is that every rational number appears many times in our array. Already in
the section of the list above we have 1/1, 2/2 and 3/3 appearing - these represent different entries
in our array but they all represent the same rational number. Equally, the fraction 3/4 appears in
the segment of the list above, but 6/8, 9/12 and 90/120 will all appear later.

In order to get a bijective correspondence between N and Q, construct a list of all the rational
numbers from the array as above, but whenever a rational number is encountered that has already
appeared, leave it out. Our list will begin

0/1, 1/1, 1/2, −1/2, −1/1, −2/1, −2/3, −1/3, 1/3, 2/3, 2/1, 3/1, 3/2, 3/4, . . .

We conclude that the rational numbers are countable.

Note : Unlike our one-to-one correspondence between N and Z in Example 1.3.3, in this case we
cannot write down a simple formula to tell us what rational number will be Item 34 on our list
(i.e. corresponds to the natural number 34) or where in our list the rational number 292/53 will
appear.

In our next example we show that the set of all the real numbers has the same cardinality as
an open interval on the real line.

Example 1.3.8. Show that R has the same cardinality as the open interval
(
−π2 , π2

)
Note:

(
−π2 , π2

)
= {x ∈ R : −π2 < x < π

2 . The open interval
(
−π2 , π2

)
consists of all those real

numbers that are strictly between −π2 and π
2 , not including −π2 and π

2 themselves.
In order to do this we have to establish a bijective correspondence between the interval

(
−π2 , π2

)
and the full set of real numbers.

An example of a function that provides us with such a bijective correspondence is familiar
from calculus/trigonometry. Recall that for a number x in the interval

(
−π2 , π2

)
tan x is defined as

follows : travel from (1, 0) a distance |x| along the circumference of the unit circle, anti-clockwise
if x is positive and clockwise if x is negative. We arrive at a point which is in the right-hand side
of the unit circle, because we have travelled a distance of less than π

2 which would be one-quarter
of a full lap. Now tan x is the ratio of the y-coordinate of this point to the x-coordinate (which are
sin x and cos x respectively.
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(1,0)

(0, 1)

(0, −1)

x

(sin x, cos x)

Now tan 0 =
sin 0
cos 0

=
0
1

= 0, and as x increases from 0 towards π2 , tan x is increasing, since sin x
(the y-coordinate of a point on the circle) is increasing and cos x (the x-coordinate) is decreasing.
Moreover, since sin x is approaching 1 and cos x is approaching 0 as x approaches π

2 , tan x is
increasing without limit as x approaches π2 . Thus the values of tan x run through all the positive
real numbers as x increases from 0 to π

2 .
For the same reason, the values of tan x include every negative real number exactly once as x

runs between 0 and −π2 .
Thus for x ∈

(
−π2 , π2

)
the correspondence

x←→ tan x

establishes a bijection between the open interval
(
−π2 , π2

)
and the full set of real numbers. We

conclude that the interval
(
−π2 , π2

)
has the same cardinality as R.

Notes:

1. We don’t know yet if R (or
(
−π2 , π2 )

)
has the same cardinality as N - we don’t know if R is

countable.

2. The interval
(
−π2 , π2

)
may seem like an odd choice for an example like this. A reason for

using it in this example is that is convenient for using the tan function to exhibit a bijection

13



with R. However, note that the interval
(
−π2 , π2

)
is in bijective correspondence with the

interval (−1, 1), via the function that just multiplies everything by 2
π .(

−
π

2
,
π

2

)
←→ (−1, 1)

x ←→ 2x
π .

Exercise 1.3.9. Show that the the open interval (0, 1) has the same cardinality as

1. The open interval (−1, 1)

2. The open interval (1, 2)

3. The open interval (2, 6).

We finish this section now with a digression about bounded and unbounded subsets of R.
Basically, a subset X of R is bounded if, on the number line, its elements are all enclosed within

some region. In other words there exist real numbers a and bwith a < b, for which all the points
of X are in the interval (a,b).

Definition 1.3.10. Let X be a subset of R. Then X is bounded below if there exists a real number a with
a < x for all elements x of X. (Note that a need not belong to X here).
The set X is bounded above if there exists a real number b with x < b for all elements x of X. (Note that
b need not belong to X here).
The set X is bounded if it is bounded above and bounded below (otherwise it’s unbounded).

Example 1.3.11.

1. Q is unbounded.

2. N is bounded below but not above.

3. (0, 1), [0, 1], [2, 100] and all open and closed intervals are bounded.

4. {cos x : x ∈ R} is bounded, since cos x can only have values between −1 and 1.

Remark: Example 1.3.8 shows that it is possible for a bounded subset of R to have the same
cardinality as the full set R of real numbers.
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1.4 R is uncountable

Our goal in this section is to show that the set R of real numbers is uncountable or non-denumerable;
this means that its elements cannot be listed, or cannot be put in one-to-one correspondence with
the natural numbers. We saw at the end of Section 1.3 that R has the same cardinality as the
interval (−π2 , π2 ), or the interval (−1, 1), or the interval (0, 1). We will show that the open interval
(0, 1) is uncountable. This assertion and its proof date back to the 1890’s and to Georg Cantor. The
proof is often referred to as “Cantor’s diagonal argument” and applies in more general contexts
than we will see in these notes.

Georg Cantor : born in St Petersburg (1845), died in Halle (1918)

Theorem 1.4.1. The open interval (0, 1) is not a countable set.

Before embarking on a proof, we recall precisely what this set is. It consists of all real numbers
that are greater than zero and less than 1, or equivalently of all the points on the number line that
are to the right of 0 and to the left of 1. It consists of all numbers whose decimal representation
have only 0 before the decimal point (except 0.000 . . . which is equal to 0, and 0.99999 . . . which
is equal to 1). Note that the digits after the decimal point may terminate in an infinite string of
zeros, or may have a repeating pattern to their digits, or may not have either of these properties.
The interval (0, 1) includes all these possibilities.

Our goal is to show that the interval (0, 1) cannot be put in bijective correspondence with the
set N of natural numbers. Our strategy is to show that no attempt at constructing a bijective
correspondence between these two sets can ever be complete; it can never involve all the real
numbers in the interval (0, 1) no matter how it is devised. In order to achieve this, we will imagine
that we had a listing of the elements of the interval (0, 1); i.e. a bijective correspondence between
this interval and N. Such a correspondence would have to look something like the following.

N (0, 1)

1 ←→ 0.13567324 . . .
2 ←→ 0.10000000 . . .
3 ←→ 0.32323232 . . .
4 ←→ 0.56834662 . . .
5 ←→ 0.79993444 . . .
...

...

Note: The exact numbers that appear in the right-hand column above are not important, the
point is that a bijective correspondence between N and (0, 1) would have this general form. We
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don’t know whether any particular decimal number in the right hand side terminates in zeros (or
repeats) or not, but we know that some do and some don’t.

So the entries in the right hand column above are basically infinite sequences of digits from 0 to
9. The right hand column must then consist somehow of a list of all such sequences. Our problem
is to show that this is impossible : that no matter how the right hand column is constructed, it
can’t contain every sequence of digits from 1 to 9. We can do this by exhibiting an example of a
sequence that can’t possibly be there.

Suppose our list starts as follows.

N (0, 1)

1 ←→ 0.13567324 . . .
2 ←→ 0.10000000 . . .
3 ←→ 0.32323232 . . .
4 ←→ 0.56834662 . . .
5 ←→ 0.79993444 . . .
...

...

We will construct an element x of (0, 1) that is not in the list. To do so :

1. Look at the first digit after the decimal point in Item 1 in the list. If this is 1, write 2 as the
first digit after the decimal point in x. Otherwise, write 1 as the first digit after the decimal
point in x. So x differs in its first digit from Item 1 in the list.

2. Look at the second digit after the decimal point in Item 2 in the list. If this is 1, write 2 as
the second digit after the decimal point in x. Otherwise, write 1 as the second digit after the
decimal point in x. So x differs in its second digit from Item 2 in the list.

3. Look at the third digit after the decimal point in Item 3 in the list. If this is 1, write 2 as the
third digit after the decimal point in x. Otherwise, write 1 as the third digit after the decimal
point in x. So x differs in its third digit from Item 3 in the list.

4. Continue to construct x digit by digit in this manner. At the nth stage, look at the nth digit
after the decimal point in Item n in the list. If this is 1, write 2 as the nth digit after the
decimal point in x. Otherwise, write 1 as the nth digit after the decimal point in x. So x
differs in its nth digit from Item n in the list.

What this process constructs is an element x of the interval (0, 1) that does not appear in the
proposed list. The number x is not Item 1 in the list, because it differs from Item 1 in its 1st digit,
it is not Item 2 in the list because it differs from Item 2 in its 2nd digit, it is not Item n in the list
because it differs from Item n in its nth digit.

We conclude that the set of real numbers R is not countable (or uncountable).

Note:

1. In our example, the number xwould start 0.21111 . . . .

2. According to our construction, our x will always have all its digits equal to 1 or 2. So not
only have we shown that the interval (0, 1) is uncountable, we have even shown that the set
of all numbers in this interval whose digits are all either 1 or 2 is uncountable.

3. A challenging exercise : why would the same proof not succeed in showing that the set of
rational numbers in the interval (0, 1) is uncountable?

Informally, Cantor’s diagonal argument tells us that the “infinity” that is the cardinality of
the real numbers is “bigger” than the “infinity” that is the cardinality of the natural numbers,
or integers, or rational numbers. He was able to use the same argument to construct examples
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of infinite sets of different (and bigger and bigger) cardinalities. So he actually established the
notion of infinities of different magnitudes.

The work of Cantor was not an immediate hit within his own lifetime. It met some opposition
from the finitist school which held that only mathematical objects that can be constructed in a
finite number of steps from the natural numbers could be considered to exist. Foremost among
the proponents of this viewpoint was Leopold Kronecker. From the book “The Honors Class” by
Ben Yandell :

Many mathematicians, Leopold Kronecker in Berlin, in particular, were bothered by
this headlong leap into the infinite, accessible only by inference, not finite construc-
tion. Georg Cantor (1845-1918), teaching at Halle in 1888, had invented set theory in
the 1870s and was writing about infinities of different sizes and even doing arithmetic
with them. But Kronecker would admit only numbers or other mathematical objects
that were finitely ’constructible’.

Leopold Kronecker (1823-1891)

God made the integers, all else is the work of man.

What good your beautiful proof on π? Why investigate such problems, given that
irrational numbers do not even exist?

The work of Cantor had influential admirers too, among them David Hilbert, who set the
course of much of 20th Century mathematics in his address to the International Congress of Math-
ematicians in Paris in 1900.

David Hilbert (1862-1943)

No one shall expel us from the paradise that Cantor has created for us.

What new methods and new facts in the wide and rich field of mathematical thought
will the new centuries disclose?
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Hilbert’s address to the Paris Congress is one of the most famous mathematical lectures ever.
In it he posed 23 unsolved problems, the first of which was Cantor’s Continuum Hypothesis. The
Continuum Hypothesis proposes that every subset of R is either countable (i.e. has the same car-
dinality as N or Z or Q) or has the same cardinality as R. This seems like a question to which
the answer is either a straightforward yes or no, but it took the work of Kurt Gödel in the 1930s
and Paul Cohen in the 1960s to reach the remarkable conclusion that the answer to the question is
undecidable. This means essentially that the standard axioms of set theory do not provide enough
structure to determine the answer to the question. Both the Continuum Hypothesis and its nega-
tion are consistent with the working rules of mathematics. People who work in set theory can
legitimately assume that either the Continuum Hypothesis is satisfied or not. Fortunately most
of us can get on with our mathematical work without having to worry about this very often.
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1.5 The Completeness Axiom in R
The rational numbers and real numbers are closely related, even though the set Q of rational
numbers is countable and the set R of real numbers is not, and in this sense there are many more
real numbers than rational numbers. However, Q is “dense” in R. This means that every interval
of the real number line, no matter how short, contains infinitely many rational numbers. This
statement has a practical impact as well, which we use all the time whether consciously or not.

Lemma 1.5.1. Every real number (whether rational or not) can be approximated by a rational number
with a level of accuracy as high as we like.

Justification for this claim : 3 is a rational approximation for π.
3.1 is a closer one.
3.14 is closer again.
3.14159 is closer still.
3.1415926535 is even closer than that, and we can keep improving on this by truncating the deci-
mal expansion of π at later and later stages. For example if we want a rational approximation that
differs from the true value of π by less that 10−20 we can truncate the decimnal approximation of
π at the 21st digit after the decimal point. This is what is meant by “a level of accuracy as high as
we like” in the statement of the lemma.

Notes:

1. The fact that all real numbers can be approximated with arbitary closeness by rational num-
bers is used all the time in everyday life. Computers basically don’t deal with all the real
numbers or even with all the rational numbers, but with some specified level of precision.
They really work with a subset of the rational numbers.

2. The sequence
3, 3.1, 3.14, 3.141, 3.1415, 3.14159, 3.141592, . . .

is a list of numbers that are steadily appraoching π. All of these numbers are less than π;
they are increasing and they are approaching π. We say that this sequence converges to π
and we will investigate the concept of convergent sequences in Chapter 2.

3. We haven’t looked yet at the question of how the numbers in the above sequence can be
calculated, i.e. how we can get our hands on better and better approximations to the value
of the irrational number π. That’s another thing that we will look at in Chapter 2.

The goal of this last section of Chapter 1 is to pinpoint one essential property of subsets of R
that is not shared by subsets of Z or of Q. We need a few definitions and some terminology in
order to describe this.

Definition 1.5.2. Let S be a subset of R. An element b of R is an upper bound for S if x 6 a for all
x ∈ S. An element a of R is a lower bound for S if a 6 x for all x ∈ S.

So an upper bound for S is a number that is to the right of all elements of S on the real line,
and a lower bound for S is a number that is to the left of all points of S on the real line. Note that
if b is an upper bound for S, then so is every number b ′ with b < b ′. If a is a lower bound for S
then so is every number a ′ with a ′ < a. So if S has an upper bound at all it has infinitely many
upper bounds, and if S has a lower bound at all it has infinitely many lower bounds. Recall that

• S is bounded above if it has an upper bound,

• S is bounded below if it has a lower bound,

• S is bounded if it is bounded both above and below.

In this section we are mostly interested in sets that are bounded on at least one side.
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Definition 1.5.3. Let S be a subset of R. If there is a number m that is both an element of S and an upper
bound for S, thenm is called the maximum element of S and denoted max(S).
If there is a number l that is both an element of S and a lower bound for S, then l is called the minimum
element of S and denoted by min(S).

Notes

1. A set can have at most one maximum (or minimum) element. For suppose that bothm and
m ′ are maximum elements of S according to the definition. Then m ′ 6 m because m is a
maximum element of S, andm 6 m ′ becausem ′ is a maximum element of S. The only way
that both of these statements can be true is ifm = m ′.

2. Pictorially, on the number line, the maximum element of S is the rightmost point that be-
longs to S, if such a point exists. The minimum element of S is the leftmost point on the
number line that belongs to S, if such a point exists.

3. There are basically two reasons why a subset S of R might fail to have a maximum element.
First, S might not be bounded above - then it certainly won’t have a maximum element.
Secondly S might be bounded above, but might not contain an element that is an upper
bound for itself. Probably the easiest example of this to think about is an open interval like
(0, 1). This set is certainly bounded above - for example by 1. However, take any element
x of (0, 1). Then x is a real number that is strictly greater than 0 and strictly less than 1.
Between s and 1 there are more real numbers all of which belong to (0, 1) and are greater
than x. So x is not an upper bound for the interval (0, 1).

tttt ...................................... ................................
......tt
1 6∈ (0, 1)x

other elements
of (0,1) that are
greater than x

0 6∈ (0, 1)

An open interval like (0, 1), although it is bounded, has no maximum element and no mini-
mum element.

An example of a subset of R that does have a maximum and a minimum element is a closed
interval like [2, 3]. The minimum element of [2, 3] is 2 and the maximum element is 3.

Remark : Every finite subset of R has a maximum element and a minimum element (these may
be the same if the set has only one element).

For bounded subsets of R, there are notions called the supremum and infimum that are closely
related to maximum and minimum. Every subset of R that is bounded above has a supremum
and every subset of R that is bounded below has an infimum. This is the Axiom of Completeness
for R.

Definition 1.5.4. Let S be a subset of R that is bounded above. Then the set of all upper bounds for S has
a minimum element. This number is called the supremum of S and denoted sup(S).

Let S be a subset of R that is bounded below. Then the set of all lower bounds for S has a maximum
element. This number is called the infimum of S and denoted inf(S).

Notes

1. The supremum of S is also called the least upper bound (lub) of S. It is the least of all the
numbers that are upper bounds for S.

2. The infimum of S is also called the greatest lower bound (glb) of S. It is the greatest of all the
numbers that are lower bounds for S.
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3. Definition 1.5.4 is simultaneously a definition of the terms supremum and infimum and a
statement of the Axiom of Completeness for the real numbers.

To see why this statement says something special about the real numbers, temporarily imagine
that the only number system available to us is Q, the set of rational numbers. Look at the set

S := {x ∈ Q : x2 < 2}.

So S consists of all those rational numbers whose square is less than 2. It is bounded below, for
example by −2, and it is bounded above, for example by 2. This is saying that every rational
number whose square is less than 2 is itself between −2 and 2 (of course we could narrow this
interval with a bit more care). The positive elements of S are all those positive rational numbers
that are less than the real number

√
2.

Claim 1: S does not have a maximum element.
To see this, suppose that x is a candidate for being the maximum element of S. Then x is a

rational number and x2 6 2. For any (very large) integer n, x+ 1
n is a rational number and(

x+
1
n

)2

= x2 + 2
x

n
+

1
n2 .

We can choose n large enough that 2 xn + 1
n2 is so small that

(
x+ 1

n

)2 is still less than 2. Then the
number x + 1

n belongs to S, and it is bigger than x, contrary to the hypothesis that x could be a
maximum element of S.

Claim 2 : S has no least upper bound in Q
To see this, suppose that x is a candidate for being a least upper bound for S in Q. Then x2 > 2.

Note x2 cannot be equal to 2 because x ∈ Q.
For a (large) integer n(

x−
1
n

)2

= x2 − 2
x

n
+

1
n2 = x2 −

1
n

(
2x−

1
n

)
.

Choose n large enough that x2 − 1
n

(
2x− 1

n

)
is still greater than 2. Then x − 1

n is still an upper
bound for S, and it is less than x.
So S has no least upper bound in Q.

If we consider the same set S as a subset of R, we can see that
√

2 is the supremum of S in R
(and −

√
2 is the infimum of S in R).

This example demonstrates that the Axiom of Completeness does not hold for Q, i.e. a bounded
subset of Q need not have a supremum in Q or an infimum in Q.

Example 1.5.5 (Summer Examinations 2011). Determine with proof the supremum and infimum of the
set

T =

{
5 −

5
n

: n ∈ N
}

.

Solution: (Supremum) First, look at the numbers in the set. All of them are less than 5. They can
be very close to 5 if n is large.
Guess: sup(T) = 5.
We need to show :

1. 5 is an upper bound for T .
To see this, suppose that x ∈ T . Then x − 5 − 5

k for some k ∈ N. Since k is positive, 5
k is

positive and x < 5. Hence 5 is an upper bound for T .
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2. If b is an upper bound for T , then b cannot be less than 5.
To see this suppose that b < 5, so 5 − b is a positive real number. We can choose a natural
number m so large that 5

m < 5 − b. Then 5 − 5
m > b, which means that b is not an upper

bound for T , as 5 − 5
m ∈ T .

Thus 5 is the least upper bound (supremum) of T .

Solution: (Infimum) Look for the least elements of T . These occur when n is small : when n = 1
we get that 5 − 5

1 = 0 belongs to T .
Guess: inf(T) = 0.
We need to show :

1. 0 is a lower bound for T .
To see this, suppose that x ∈ T . Then x = 5 − 5

k for some k ∈ N. Since k ∈ N, k > 1 and
5
k 6 5. Thus 5 − 5

k > 5 − 5 which means x > 0 and 0 is a lower bound for T .

2. If a is a lower bound for T , then a cannot be greater than 0.
No number greater than 0 can be a lower bound for T , since 0 ∈ T . Thus 0 is the minimum
element (and therefore the infimum) of T .
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Chapter 2

Sequences, Series and Convergence

2.1 Introduction to sequences and series

Example 2.1.1. Does it make sense to talk about the “number”
∞∑
n=1

1
n2 = 1 +

1
4

+
1
9

+
1

16
+

1
25

+ . . .?

What does the question “does it make sense” mean? What we are talking about is the sum of
infinitely many specified positive numbers. We can’t actually do the addition and calculate what
this “number” is based on the definition above. But we can add up any finite collection of the
given terms and get an answer for that. Does this sum “settle down” to some identifiable value if
we keep adding more terms (whatever that means)? Does it keep growing and growing without
bound? Are there ways of finding out? Why would we want to know?

The following experiment might give a slightly vague but hopefully convincing answer to
some of these questions. Partially evaluating the sum above for various “initial segments” gives
the following results.

• 1 + 1
4 = 1.25

• 1 + 1
4 + 1

9 ≈ 1.361111

• 1 + 1
4 + 1

9 + 1
16 ≈ 1.423611

• 1 + 1
4 + 1

9 + · · ·+ 1
(10)2 ≈ 1.549767

• 1 + 1
4 + 1

9 + · · ·+ 1
(200)2 ≈ 1.639947

• 1 + 1
4 + 1

9 + · · ·+ 1
(10000)2 ≈ 1.644834

This experiment goes as far as computing the first 100000 terms of the sum, and it appears
that the values are not increasing without limit but “settling down” at around 1.6449. What is the
significance of this?

π2

6
≈ 1.644934

The series
∞∑
n=1

1
n2 converges to the number

π2

6
(we will have precise definitions for the italicized

terms a bit later). This fact is remarkable - there is no obvious connection between π and squares

of the form 1
n2 ; moreover all the terms in the series are rational but

π2

6
is certainly not. This

example gives us in principle a way of calculating the digits of π or at least of π2. (In practice
there are similar but better ways, as the convergence in this example is very slow).
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Example 2.1.2. What about ∞∑
i=1

1
n

= 1 +
1
2

+
1
3

+
1
4

+ . . .?

Try experimenting with initial segments again :

•

There’s no sign of this “settling down” or converging to anything that we can identify from this
information. This doesn’t tell us anything of course - maybe there is convergence but it can’t be
seen until we take many more millions of terms into our calculation? How could we know that
this doesn’t converge to anything?

Example 2.1.3. What about ∞∑
i=1

1
22n =

1
4

+
1

16
+

1
64

+ . . .?

Experimenting reveals

• 1
4 + 1

16 = 5
16

• 1
4 + 1

16 + 1
64 + 1

256 + 1
1024 = 341

1024 ≈ 0.33301

These calculations can be verified directly using properties of sums of geometric progressions. It
appears that this series is converging to 1

3 .
The following picture gives some graphical evidence for this hypothesis. The large square has

area 1, and the red squares have areas 1
4 , 1

16 , etc. The picture is intended to indicate that the red
squares occupy one-third of the total area, since every red square is “accompanied” by two white
squares of the same area, and all these squares together make up the total area 1. This picture is
not really a proof, as it is not possible to actually draw squares representing all the terms of the

series, but it is a visual way of understanding the statement that the series
∞∑
n=1

1
22n converges to

1
3

.
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2.2 Sequences

Note: Chapter 11 of Stewart’s Calculus is a good reference for this chapter of our lecture notes.

Definition 2.2.1. A sequence is basically an infinite ordered list

a1,a2,a3, . . .

• The items in list a1,a2 etc. are called terms (1st term, 2nd term, and so on).

• In our context the terms will generally be real numbers - but they don’t have to be.

• The sequence a1,a2, . . . can be denoted by {an} or by {an}∞n=1.

• There may be an overall formula for the terms of the sequence, or a “rule” for getting from
one to the next, but there doesn’t have to be.

Example 2.2.2. 1. {(−1)n + 1}∞n=1 : an = (−1)n + 1
a1 = −1 + 1 = 0, a2 = (−1)2 + 1 = 2,a3 = (−1)3 + 1 = 0, . . .

0, 2, 0, 2, 0, 2, . . .

2. {sin(nπ2 )}∞n=1 : an = sin(nπ2 )

a1 = sin(π2 ) = 1, a2 = sin(π) = 0, a3 = sin( 3π
2 ) = −1, a4 = sin(2π) = 0, . . . .

1, 0, −1, 0, 1, 0, −1, 0, . . .

3. { 1
n sin(nπ2 )}∞n=1 : an = sin(nπ2 )

a1 = sin(π2 ) = 1, a2 = 1
2 sin(π) = 0, a3 = 1

3 sin( 3π
2 ) = − 1

3 , a4 = 1
4 sin(2π) = 0, . . . .

1, 0, −
1
3

, 0,
1
5

, 0, −
1
7

, 0, . . .

One way of visualizing a sequence is to consider is as a function whose domain is the set of
natural numbers and think of its graph, which will be a collection of isolated points, one for each
natural number.

Example 2.2.3. {2 + (−1)n21−n}∞n=1. Write an = 2 + (−1)n21−n. Then

a1 = 2 − 20 = 1, a2 = 2 + 2−1 =
5
2

, a3 = 2 − 2−2 =
7
4

,a4 = 2 + 2−3 =
17
8

.

Graphical representation of {an}:

As n gets very large the positive number
1

2n−1 gets very small. By taking n as large as we like,

we can make
1

2n−1 as small as we like.

Hence for very large values of n, the number 2 + (−1)n 1
2n−1 is very close to 2. By taking n as

large as we like, we can make this number as close to 2 as we like.
We say that the sequence converges to 2, or that 2 is the limit of the sequence, and write

lim
n→∞

(
2 + (−1)n

1
2n−1

)
= 2.
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Note: Because (−1)n is alternately positive and negative as n runs through the natural numbers,
the terms of this sequence are alternately greater than and less than 2.

We now state the formal definition of convergence of a sequence. This is reminiscent of the
definition of a limit for a function. A sequence converges to the number L if no matter how
restrictive your notion of “near L” is, there is a point in the sequence beyond which every term is
near L.

Definition 2.2.4. The sequence {an} converges to the number L (or has limit L) if for every positive real
number ε (no matter how small) there exists a natural numberN with the property that the term an of the
sequence is within ε of L for all terms an beyond the Nth term. In more compact language :

∀ε > 0, ∃N ∈ N for which |an − L| < ε ∀n > N.

Notes

• If a sequence has a limit we say that it converges or is convergent. If not we say that it diverges
or is divergent.

• If a sequence converges to L, it means that no matter how small a radius around L we
choose, there is a point in the sequence beyond which all terms are within that radius of
L. This means (at least) that beyond a certain point all terms of the sequence are very close
together (and very close to L). Where that point is depends on how you interpret “very close
together”.

Being convergent is a very strong property for a sequence to have, and there are lots of differ-
ent ways for a sequence to be divergent.

Example 2.2.5. 1. {max({(−1)n, 0})}∞n=1 : 0, 1, 0, 1, 0, 1, . . .
This sequence alternates between 0 and 1 and does not approach any limit.

2. A sequence can be divergent by having terms that increase (or decrease) without limit.
{2n}∞n=1 : 2, 4, 8, 16, 32, 64, . . .

3. A sequence can have haphazard terms that follow no overall pattern, such as the sequence whose nth
term is the nth digit after the decimal point in the decimal representation of π.

Remark: The notion of a convergent is sometimes described informally with words like “the
terms get closer and closer to L as n gets larger”. It is not true however that the terms in a sequence
that converges to a limit Lmust get progressively closer to L asn increases, as the following example
shows.

Example 2.2.6. The sequence an is defined by

an = 0 if n is even, an = 1
n if n is odd.

This sequence begins :

1, 0,
1
3

, 0,
1
5

, 0,
1
7

, 0,
1
9

, 0, . . .

It converges to 0 although it is not true that every step takes us closer to zero.

The following is an example of a convergent sequence.

Example 2.2.7. Find limn→∞ n

2n− 1
.

Solution: As if calculating a limit as x → ∞ of an expression involving a continuous variable x, divide
above and below by n.

lim
n→∞ n

2n− 1
= lim
n→∞ n/n

2n/n− 1/n
= lim
n→∞ 1

2 − 1
n

=
1
2

.

So the sequence
{

n

2n− 1

}
converges to 1

2 .
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As for subsets of R, there is a concept of boundedness for sequences. Basically a sequence is
bounded (or bounded above or bounded below) if the set of its terms, considered as a subset of
R, is bounded (or bounded above or bounded below). More precisely :

Definition 2.2.8. The sequence {an} is bounded above if there exists a real numberM for which an 6 M

for all n ∈ N.
The sequence {an} is bounded below if there exists a real numberm for whichm 6 an for all n ∈ N.
The sequence {an} is bounded if it is bounded both above and below.

Example 2.2.9. The sequence {n} is bounded below (for example by 0 or 1) but not above. The sequence
{sinn} is bounded below (for example by −1) and above (for example by 1).

Theorem 2.2.10. If a sequence is convergent it must be bounded.

Proof

Note : what we have to do here is use the definitions of convergent and bounded to reason that every
sequence that is convergent must be bounded.

Suppose that {an}∞n=1 is a convergent sequence with limit L.

Then (by definition of convergence) there exists a natural number N such that every term of
the sequence after aN is between L− 1 and L+ 1.

(Note: there is nothing special here about L− 1 and L+ 1 - you could choose L− 1
2 and L+ 1

2 or anything
like that - the point is that when you choose a certain “window” around L, there is a point (N) beyond
which all the terms of the sequence are in this “window”.)

The set consisting of the first N terms of the sequence is a finite set : it has a maximum element
M1 and a minimum elementm1.
LetM = max{M1,L+ 1} and letm = min{m1,L− 1}.

(So M is defined to be either M1 or L + 1, whichever is the greater, and m is defined to be either m1 or
L− 1, whichever is the lesser.)

Then {an} is bounded above byM and bounded below bym.
So our sequence is bounded.

INCREASING AND DECREASING SEQUENCES

Definition 2.2.11. A sequence {an} is called increasing if an 6 an+1 for all n > 1.
A sequence {an} is called strictly increasing if an < an+1 for all n > 1.
A sequence {an} is called decreasing if an > an+1 for all n > 1.
A sequence {an} is called strictly decreasing if an > an+1 for all n > 1.

Definition 2.2.12. A sequence is called monotonic if it is either increasing or decreasing.
Similar terms : monotonic increasing, monotonic decreasing, monotonically increasing/decreasing.

Note: These definitions are not entirely standard. Some authors use the term increasing for what we
have called strictly increasing and/or use the term nondecreasing for what we have called increasing.
Examples

1. An increasing sequence is bounded below but need not be bounded above. For example

{n}∞n=1 : 1, 2, 3, . . .

2. A bounded sequence need not be monotonic. For example

{(−1)n} : −1, 1, −1, 1, −1, . . .
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3. A convergent sequence need not be monotonic. For example{
(−1)n+1

n

}∞
n=1

: 1, −
1
2

,
1
3

, −
1
4

, . . .

This sequence converges to 0 but is neither increasing nor decreasing.

4. A montonic sequence need not be convergent, as Example 1 above shows.

However, if a sequence is bounded and monotonic, it is convergent. This is the Monotone Convergence
Theorem, which is the major theorem of this section.

Theorem 2.2.13 (The Monotone Convergence Theorem). If a sequence {an}∞n=1 is montonic and
bounded, then it is convergent.

Proof: (We can start by giving ourselves a monotonic bounded sequence - we can take it to be increasing;
the argument for a decreasing sequence is similar.)
Suppose that {an} is increasing and bounded. Then the set {an : n ∈ N} is a bounded subset of R
and by the Axiom of Completeness it has a least upper bound (or supremum) L.

(We are just giving the name L here to the supremum of the set of values of the sequence. We are supposed
to be showing that the sequence is convergent, i.e. has a limit : L is our candidate for that limit)

We will show that the sequence {an} converges to L.

Choose a (very small) ε > 0. Then L− ε is not an upper bound for {an : n ∈ N}, becasue L is the least
upper bound for this set.

This means there is some N ∈ N for which L − ε < aN. Since L is an upper bound for
{an : n ∈ N}, this means

L− ε < aN 6 L

(i.e. aN is between L− ε and L).

Since the sequence {an} is increasing and its terms are bounded above by L, every term after aN is
between aN and L, and therefore between L− ε and L. These terms are all within ε of L.

Using the fact that our sequence is increasing and bounded, we have

• Identified L as the least upper bound for the set of terms in our sequence

• Showed that no matter how small an ε we take, there is a point in our sequence beyond
which all terms are within ε of L.

This is exactly what it means for the sequence to converge to L. This concludes the proof.

Example 2.2.14 (from 2011 Summer Exam). A sequence {an} is defined by

a1 = 0, an+1 =
√
an + 6 for all n > 1.

Show that this sequence is bounded above by 3 and that it is increasing.
Deduce that the sequence is convergent and find its limit.

Note: This is an example of a sequence that is defined recursively. This means that the first term is
given and subsequent terms are defined (one by one) in terms of previous ones. We are not given
a general formula for the nth term although one may exist.

Solution:

1. 3 is an upper bound.
Suppose that ak < 3 for some k. Then

ak+1 =
√
ak + 6 <

√
3 + 6 = 3.

This says that if ak 6 3, then ak+1 6 3 also.
Then, since a1 < 3, we have a2 < 3, then a3 < 3, etc.
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2. The sequence is increasing
Let k ∈ N. We need to show that ak 6 ak+1.
We know that 0 6 ak < 3 : note this implies that

ak =

√
a2
k <

√
3ak =

√
ak + 2ak <

√
ak + 6 = ak+1.

Then ak < ak+1 for each k, which means the sequence is increasing.

3. The sequence converges
Since the sequence is increasing and bounded, it converges by the Monotone Convergence
Theorem.

Let L be the limit. Then, taking limits as n→∞ on both sides of the equation

an+1 =
√
an + 6

we find that
L =
√
L+ 6 =⇒ L2 = L+ 6 =⇒ (L− 3)(L+ 2) = 0.

Thus L = 3 or L = −2, and since all the terms of our sequence are between 0 and 3 it must
be that L = 3.

29



2.3 Introduction to Infinite Series

Definition 2.3.1. A series or infinite series is the sum of all the terms in a sequence.

Example 2.3.2 (Examples of infinite series). 1.
∞∑
n=1

n = 1 + 2 + 3 + . . .

2. A geometric series ∞∑
n=1

1/2n

=
1 +

1
2

+
1
22 + . . .

Every term in this series is obtained from the previous one by multiplying by the common ratio 1
2 .

This is what geometric means.

3. The harmonic series ∞∑
n=1

1
n

= 1 +
1
2

+
1
3

+ . . .

4. An alternating series ∞∑
n=0

(−1)n = 1 + (−1) + 1 + (−1) + . . .

Notes

1. For now these infinite sums are just formal expressions or arrangements of symbols. Whether
it is meaningful to think of them as numbers or not is something that can be investigated.

2. A series is not the same thing as a sequence and it is important not to confuse these terms. A
sequence is just a list of numbers. A series is an infinite sum.

3. The “sigma” notation for sums : sigma (lower case σ, upper case Σ) is a letter from the Greek
alphabet, the upper case

∑
is used to denote sums. The notation

j∑
n=i

an

means : i and j are integers and i 6 j. For each n from i to j the number an is defined; the
expression above means the sum of the numbers an where n runs through all the values
from i to j, i.e.

j∑
n=i

an = ai + ai+1 + ai+2 + · · ·+ aj−1 + aj.

For example
5∑
n=2

n2 = 22 + 32 + 42 + 52 = 54.

For infinite sums it is possible to have −∞ and/or ∞ (instead of fixed integers i and j) as
subscripts and superscripts for the summation.

What does it mean to talk about the sum of infinitely many numbers? We cannot add infinitely
many numbers together in practice, although we can (in principle) at least, add up any finite
collection of numbers. In the examples above we can start from the beginning, adding terms at
the start of the series. Adding term by term we get the following lists.
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1.
∞∑
n=1

n = 1 + 2 + 3 + . . .

1, 1 + 2, 1 + 2 + 3, 1 + 2 + 3 + 4, 1 + 2 + 3 + 4 + 5, · · · : 1, 3, 6, 10, 15, . . .

Since the terms being added on at each stage are getting bigger, the numbers in the list above
will keep growing (faster and faster as n increases) - we can’t associate a numberical value
with this infinite sum.

2. A geometric series ∞∑
n=1

1/2n

=
1 +

1
2

+
1
22 + . . .

1, 1 +
1
2

, 1 +
1
2

+
1
22 , 1 +

1
2

+
1
22 +

1
23 . . . : 1,

3
2

, frac74, frac158,
31
16

,
63
32

. . .

In this example the terms that are being added on at each step ( 1
2n ) are getting smaller and

smaller as n increases, and the numbers in the list appear to be converging to 2.

3. The harmonic series ∞∑
n=1

1
n

= 1 +
1
2

+
1
3

+ . . .

1, 1 +
1
2

, 1 +
1
2

+
1
3

, 1 +
1
2

+
1
3

+
1
4

. . . : 1,
3
2

,
11
6

,
25
12

,
137
60

, . . .

It is harder to see what is going on here.

4. An alternating series ∞∑
n=0

(−1)n = 1 + (−1) + 1 + (−1) + . . .

1, 1 − 1, 1 − 1 + 1, 1 − 1 + 1 − 1, 1 − 1 + 1 − 1 + 1 . . . : 1, 0, 1, 0, 1, . . .

The terms being “added on” at each step are alternating between 1 and −1, and as we
proceed with the summation the “running total” alternates between 0 and 1. So there is no
numerical value that we can associate with the infinite sum

∑∞
n=0(−1)n.

Note: The series in 2. above converges to 2, the series in 1. and 4. are both divergent and it is not
obvious yet but the series in 3. is divergent as well. Our next task is to give precise meanings to
these terms for series. In order to do this we need some terminology. Bear in mind that we know
what it means for a sequence to converge, but we don’t yet have a definition of convergence for
series.

Definition 2.3.3. For a series
∞∑
n=1

an, and for k > 1, let

sk =

k∑
n=1

an = a1 + a2 + a3 + · · ·+ ak.

Thus s1 = a1, s2 = a1 + a2, s3 = a1 + a2 + a3 etc.
Then sk is called the kth partial sum of the series, and the sequence {sk}

∞
k=1 is called the sequence of

partial sums of the series.
If the sequence of partial sums converges to a limit s, the series is said to converge and s is called its sum.
In this situation we can write ∞∑

n=1

an = s.

If the sequence of partial sums diverges, the series is said to diverge.
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Example 2.3.4 (Convergence of a geometric series). Recall the second example above :

∞∑
n=0

1
2n

= 1 +
1
2

+
1
22 + . . .

In this example, for k > 0,

sk =

k∑
n=0

1
2n

= 1 +
1
2

+
1
4

+ . . .
1

2k

1
2
sk =

k∑
n=1

1
2n+1 =

1
2

+
1
4

+ . . .
1

2k
+

1
2k+1

Then
sk −

1
2
sk =

1
2
sk = 1 −

1
2k+1 =⇒ sk = 2 −

1
2k

.

So the sequence of partial sums has kth term 2 − 1
2k . This sequence converges to 2 so the series

converges to 2; we can write ∑
n

= 0∞ 1
2k

= 2.

General geometric series : Consider the sequence of partial sums for the geometric series

∞∑
n=0

arn = a+ ar+ ar2 + . . .

(This is a geometric series with initial term a and common ratio r.) The kth partial sum sk is given
by

sk =

k∑
n=0

arn = a + ar+ . . .ark

rsk =

k∑
n=0

arn+1 = ar+ ar2 + . . .ark+1

Then (1 − r)sk = a − ark+1 =⇒ sk =
a(1 − rk+1)

1 − r
. If |r| < 1, then rk+1 → 0 as k → ∞, and the

sequence of partial sums (hence the series) converges to
a

1 − r
. If |r| > 1 the series is divergent.

Next we show that the harmonic series is divergent.

Theorem 2.3.5. The harmonic series
∞∑
n=1

1
n

is divergent.

Proof: We show that the sequence of partial sums of the harmonic series is not bounded above.

• The first term is 1.

• The second term is 1
2 .

• The sum of the 3rd and 4th terms exceeds 1
2 :

1
3

+
1
4
>

1
4

+
1
4

=
1
2

.
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• The sum of the 5th, 6th, 7th and 8th terms exceeds 1
2 :

1
5

+
1
6

+
1
7

+
1
8
>

1
8

+
1
8

+
1
8

+
1
8

=
1
2

.

• For the same reason, the sum of the next 8 terms (terms 9 through 16) also exceeds 1
2 .

• In general the sum of the 2n−1 terms
1

2n−1 + 1
through

1
2n

exceeds 1
2 .

So, as we list terms in the sequence of partial sums of the harmonic series, we keep accumulating
non-overlapping stretches of terms that add up to more than 1

2 . Thus the entire series has infinitely
many non-overlapping stretches all individually summing to more than 1

2 . Then the sum of this
series is not finite and the series diverges.

Note: A necessary condition for the series
∑∞
n=1 an to converge is that the sequence {an}∞n=1 con-

verges to 0; i.e. that an → 0 as n→∞. If this does not happen, then the sequence of partial sums
has no possibility of converging.

The example of the harmonic series shows that the condition an → 0 as n→∞ is not sufficient
to guarantee that the series

∑∞
n=1 will converge.

33



2.4 Introduction to power series

Definition 2.4.1. A polynomial in the variable x is an expression of the form

n∑
i=0

aix
i = a0 + a1x+ a2x

2 + · · ·+ an−1x
n−1 + anx

n

or anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0,

where the coefficients ai are real numbers and n is a natural number. The degree of the polynomial is the
highest k for which xk appears with non-zero coefficient.

Examples

1. x3 + 5x2 is a polynomial of degree 3 (also called cubic).

2. 2 + 2x+ 2x2 + 2x7 is a polynomial of degree 7.

3. x4 + x3 + 3
x2 is not a polynomial, because it involves a negative power of x.

The point is that a polynomial can has a constant term (which may be zero) and a finite number
of terms involving particular positive powers of x that have numbers as coefficients. A polyno-
mial may be regarded as a function of x, and polynomials are functions of a special type.

Definition 2.4.2. A power series in the variable x resembles a polynomial, except that it may contain
infinitely many positive powers of x. It is an expression of the type

∞∑
i=0

aix
i = a0 + a1x+ a2x

2 + . . . ,

where each ai is a number.

Example 2.4.3. ∞∑
n=0

xn = 1 + x+ x2 + x3 + . . .

is a power series.

Question: Does it make sense to think of a power series as a function of x? We investigate this
question for the example above.

So define a “function” by

f(x) =

∞∑
n=0

xn = 1 + x+ x2 + . . .

• If we try to evaluate this function at x = 2, we get a series of real numbers.

f(2) =

∞∑
n=0

2n = 1 + 2 + 22 + . . .

This series is divergent, so our power series does not define a function that can be evaluated
at 2.

• If we try evaluating at 0 (and allow that the first term x0 of the power series is interpreted
as 1 for all values of x), we get

f(0) = 1 + 0 + 02 + · · · = 1.

So it does make sense to “evaluate” this function at x = 0.
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• If we try evaluating at x = 1
2 , we get

f(
1
2
) =

∞∑
n=0

(
1
2

)n
= 1 +

1
2

+

(
1
2

)2

+ . . .

From our work on geometric series in Section 2.3 we know that this is a geometric series
with first term a = 1 and common ratio r = 1

2 . We know that if |r| < 1, such a series

converges to the number
a

1 − r
. In this case

a

1 − r
=

1
1 − 1

2

= 2,

and we have f( 1
2 ) = 2.

In general we know that a geometric series of this sort converges provided that the absolute value
of its common ratio is less than 1. So for example if we put x = 1

3 we find that f( 1
3 ) is the sum of a

geomtric series with first term 1 and common ratio 1
3 ; this is

1
1 − 1

3

=
3
2

.

In general for any value of xwhose absolute value is less than 1 (i.e. any x in the interval (−1, 1)),

we find that f(x) is a convergent geometric series, converging to
1

1 − x
.

Conclusion: For values of x in the interval (−1, 1) (i.e. |x| < 1), the function f(x) = 1
1−x coincides

with the power series
∑∞
n=0 x

n.

1
1 − x

=

∞∑
n=0

xn, for |x| < 1.

The interval (−1, 1) is called the interval of convergence of the power series, and 1 is the radius of
convergence. We say that the power series representation of the function f(x) = 1

1−x is
∑∞
n=0 x

n, for
values of x in the interval (−1, 1).
Note: The expression 1

1−x makes sense of course for all values of x except x = 1. We are not saying
that the domain of the function f(x) = 1

1−x only consists of the interval (−1, 1), but just that it is
only on this interval that our power series represents this function.

Remark: The fact that for certain values of x we can represent 1
1−x with a power series might be

interesting (at least to some people!), but it is not of particular use if you want to calculate 1
1−x

for some particular value of x, because this is easily done directly. However, if we could obtain
a power series representation for a function like sin x and use it to evaluate (or approximate)
sin(1) or sin(9) or sin(20), that might be of real practical use. These numbers are not easy to
obtain directly because the definition of sin x doesn’t tell us how to calculate sin x for a particular
x - you can use a calculator of course but how does the calculator do it? If we had a power
series representation for sin x and we knew it converged for the value of x we had in mind, we
couldn’t necessarily write down the limit but we could calculate partial sums to get an estimation
as accurate as we like.

Questions: What functions can be represented by power series, and on what sorts of interval or
subsets of R? If a function could be represented by a power series, how would we calculate the
coefficients in this series?

We are not going to give a full answer to these questions, but a partial one involving Maclaurin
or Taylor series.

35



Suppose that f(x) is an infinitely differentiable function (this means that all the deriviatives of
f are themselves differentiable), and suppose that f is represented by the power series

f(x) =

∞∑
n=0

cnx
n.

We can work out appropriate values for the coefficients cn as follows.

• Put x = 0. Then f(0) = c0 +
∑∞
n=1 cn(0)n =⇒ f(0) = c0.

The constant term in the power series is the value of f at 0.

• To calculate c1, look at the value of the first derivative of f at 0, and differentiate the power
series term by term. We expect

f ′(x) = c1 + 2c2x+ 3c3x
2 + · · · =

∞∑
n=1

ncnx
n−1.

Then we should have

f ′(0) = c1 + 2c2 × 0 + 3c3 × 0 + · · · = c1.

Thus c1 = f ′(0).

• For c2, look at the second derivative of f. We expect

f ′′(x) = 2(1)c2 + 3(2)c3x+ 4(3)c4x
2 + 5(4)c5x

3 + · · · =
∞∑
n=2

n(n− 1)cnx
n−2.

Putting x = 0 gives f ′′(0) = 2(1)c2 or c2 =
f ′′(0)

2(1)
.

• For c3, look at the third derivative f(3)(x). We have

f(3)(x) = 3(2)(1)c3 + 4(3)(2)c4x+ 5(4)(3)c5x
2 + · · · =

∞∑
n=3

n(n− 1)(n− 2)cnx
n−3.

Setting x = 0 gives f(3)(0) = 3(2)(1)c3 or c3 =
f(3)(0)
3(2)(1)

Continuing this process, we obtain the following general formula for cn:

cn =
1
n!
f(n)(0).

Definition 2.4.4. For a positive integer n, the number n factorial, denoted n! is defined by

n! = n× (n− 1)× (n− 2)× . . . 3× 2× 1.

The number 0! (zero factorial) is defined to be 1.

Example 2.4.5 (Power series representation of ex).

The coefficient of xn in the Maclaurin series expansion of ex is

cn =
1
n!
dn

dxn
(ex)|x=0 =

1
n!
e0 =

1
n!

.

Thus the Maclaurin series for ex is given by
∞∑
n=0

1
n!
xn.

Note that if we differentiate this series term by term we get exactly the same series back, which is

what we would expect for a power series that represents ex, since
d

dx
(ex) = ex.
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Theorem 2.4.6. For every real number x, the above power series converges to ex. The interval of conver-
gence of this power series is all of R and the radius of convergence is infinite.

Example 2.4.7 (Power series representation of sin x).

Write f(x) = sin x, and write
∑∞
n=0 cnx

n for the Maclaurin series of sin x. Then

• f(0) = sin 0 = 0 =⇒ c0 = 0

• f ′(0) = cos 0 = 1 =⇒ c1 = 1

• f ′′(0) = − sin 0 = 0 =⇒ c2 = 0
2! = 0

• f(3)(0) = − cos 0 = −1 =⇒ c3 = −1
3! = − 1

6

• f(4)(0) = sin 0 = 0 =⇒ c4 = 0
4! = 0

This pattern continues : if k is even then f(k)(0) = ±sin0 = 0, so ck = 0.
If k is odd and k ≡ 1 mod 4 then f(k)(0) = cos 0 = 1 and ck = 1

k! .
If k is odd and k ≡ 3 mod 4 then f(k)(0) = − cos 0 = −1 and ck = − 1

k! .
Thus the Maclaurin series for sin x is given by

∞∑
k=0

(−1)k

(2k+ 1)!
x2k+1 = x−

1
3!
x3 +

1
5!
x5 −

1
7!
x7 + . . .

Note that this series only involves odd powers of x - this is not surprising because sin is an odd
function; it satisfies sin(−x) = − sin x.

Theorem 2.4.8. For every real number x, the above series converges to sin x.

Thus computing partial sums of this series gives us an effective way of approximating sin x
for any real number x.

Exercise 2.4.9. Show that the Maclaurin series for cos x is given by

∞∑
k=0

(−1)k

(2k!)
x2k.

(Note that this can be obtained by differentiating term-by-term the series for sin x, as we would

expect since
d

dx
(sin x) = cos x. )
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Chapter 3

Integral Calculus

3.1 Areas under curves - introduction and examples

Problem 3.1.1. A car travels in a straight line for one minute, at a constant speed of 10m/s. How far has
the car travelled in this minute?

SOLUTION: The car is travelling for 60 seconds, and covering 10 metres in each second, so in total
it covers 60× 10 = 600 metres.
That wasn’t very hard.

An easy example like this one can be a starting point for studying more complicated problems.
What makes this example easy is that the car’s speed is not changing so all we have to do is
multiply the distance covered in one second by the number of seconds. Note that we can interpret
the answer graphically as follows.

Suppose we draw a graph of the car’s speed against time, where the x-axis is labelled in
seconds and the y-axis inm/s. The graph is just the horizontal line y = 10 of course.

We can label the time when we start observing the car’s motion as t = 0 and the time when we
stop as t = 60. Note then that the total distance travelled – 600m – is the area enclosed under the
graph, between the x-axis, the horizontal line y = 10, and the vertical lines x = 0 (or time t = 0)
and x = 60 marking the beginning and end of the period of observation. This is no coincidence;
if we divide this rectangular region into vertical strips of width 1, one for each second, what we
get are 60 vertical strips of width 1 and height 10, each accounting for 10 units of area, and each
accounting for 10 metres of travel.
The next problem is a slightly harder example of the same type.

Problem 3.1.2. Again the car travels in one direction for one minute. This time it travels at 10m/s for
the first 20 seconds, at 12m/s for the next 20 seconds, and at 14m/s for the last 20 seconds.
What is the total distance travelled?
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SOLUTION: This is not much harder really (although it may be a physically unrealistic problem -
why?). This time, the car covers

• 20× 10 = 200 metres in the first 20 seconds

• 20× 12 = 240 metres in the next 20 seconds and

• 20× 14 = 280 metres in the last 20 seconds,

so the total distance is 720 metres.

Once again the total distance travelled is the area of the region enclosed between the lines
x = 0, x = 60, the y-axis and the graph showing speed against time. The region whose area
represents the distance travelled is the union of three rectangles, all of width 20, and of heights
10, 12 and 14.

Problem 3.1.3. Same set up, but this time the car’s speed is 10m/s for the first 5 seconds, 11m/s for
the next 5, and so on, increasing by 1m/s every five seconds so that the speed is 21 m/s for the last five
seconds. Again the problem is to calculate the total distance travelled in metres.

The answer is left as an exercise, but this time the distance is the area indicated below.

Problem 3.1.4. Again our car is travelling in one direction for one minute, but this time its speed increases
at a constant rate from 10m/s at the start of the minute, to 20m/s at the end. What is the distance
travelled?
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NOTE: This is a more realistic problem, in which the speed is increasing at a constant rate. This
constant acceleration would apply for example in the case of an object falling freely under gravity.

SOLUTION: This is a different problem from the others. Because the speed is varying all the time
this problem cannot be solved by just multiplying the speed by the time or by a combination of
such steps as in Problems 1.1.1 and 1.1.2.

The following picture shows the graph of the speed against time.

If the total distance travelled is represented in this example, as in the others, by the area under
the speed graph between t = 0 and t = 60, then we can observe that it’s the area of a region
consisting of a rectangle of width 60 and height 10, and a triangle of width 60 and perpendicular
height 10. Thus the total distance travelled is given by

(60× 10) +
1
2
(60× 10) = 900m.

QUESTION: Should we believe this answer? Just because the distance is given by the area under
the graph when the speed is constant, how do we know the same applies in cases where the speed
is varying continuously? Here is an argument that might justify this claim.

In Problem 1.1.4, the speed increases steadily from 10m/s to 20m/S over the 60 seconds. We
want to calculate the distance travelled.

We can approximate this distance as follows.

• Suppose we divide the one minute into 30 two-second intervals.

• At the start of the first two-second interval, the car is travelling at 10m/s. We make the sim-
plifying assumption that the car travels at 10m/s throughout the first two seconds, thereby
covering 20m in the first two seconds. Note that this actually underestimates the true dis-
tance travelled in the first second, because in fact the speed is increasing from 20m/s during
these two seconds.

• At the start of the second two-second interval, the car has completed one-thirtieth of its
acceleration from 10m/s to 20m/s, so its speed is

10 +
10
30

= 10
1
3
m/s.
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If we make the simplifying assumption that the speed remains constant at 10 1
3m/s through-

out the second two-second interval, we estimate that the car travels 20 2
3m during the second

two-second interval. This underestimates the true distance beacuse the car is actually accel-
erating from 10 1

3m/s during these two seconds.

• If we proceed in this manner we would estimate that the car travels

– 20m in the first two seconds;

– 20 2
3m in the next two seconds;

– 21 1
3m in the next two seconds, and so on;

– . . . 39 1
3m in the 30th two-second interval.

This would give us a total of 890m as the estimate for distance travelled, but that’s not really the
point of this discussion.

The distance that we estimate using the assumption that the speed remains constant for each
of the 30 two-second intervals, is indicated by the area in red in the diagram below, where the
black line is the true speed graph. Note that the red area includes all the area under the speed
graph, except for 30 small triangles of base length 2 and height 1

3 .

Suppose now that we refine the estimate by dividing our minute of time into 60 one-second
intervals and assuming the the speed remains constant for each of these, instead of into 30 two-
second intervals.

If do this we will estimate that the car travels

• 10m in the first seconds;

• 10 1
6m in the next seconds;

• 10 2
6m in the next second, and so on;

• . . . 19 5
6m in the 60th one-second interval.

This would give us a total of 895m as the estimate for distance travelled. What is the correspond-
ing picture? Draw it, or at least part of it, as an exercise.

Note that this still underestimates the distance travelled in each second, because it assumes that
the speed remains constant at its starting point for the duration of each second, whereas in reality
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it increases. But this estimate is closer to the true answer than the last one, because this estimate
takes into account speed increases every second, instead of every two seconds.

The corresponding “area” picture has sixty rectangles of width 1 instead of thirty of width 2,
and it includes all the area under the speed graph, except for sixty triangles of base length 1 and
height 1

6 .
If we used the same strategy but dividing our minute into 120 half-second intervals, we would

expect to get a better estimate again. As the number of intervals increases and their width de-
creases, the red rectangles in the picture come closer and closer to filling all the area under the
speed graph. The true distance travelled is the limit of these improving estimates, as the length of
the subintervals approaches zero. This is exactly the area under the speed graph, between x = 0
and x = 60.

So we can now assert more confidently that the answer to Problem 1.1.4 is 900m.

Problem 3.1.5. Again our car is travelling in one direction for one minute, but this time its speed v
increases from 10m/s to 20m/s over the minute, according to the formula

v(t) = 20 −
1

360
(60 − t)2,

where t is measured in seconds, and t = 0 at the start of the minute.
What is the distance travelled?

NOTE: The formula means that after t seconds have passed, the speed of the car in m/s is 20 −
1

360 (60 − t)2. So for example after 30 seconds the car is travelling at a speed of

20 −
1

360
(60 − 30)2 = 20 −

1
360

900 = 17.5m/s.

Note that 60 − t is decreasing as t increases from 0 to 60, so (60 − t)2 is decreasing also. Thus the
expression

20 −
1

360
(60 − t)2

is increasing as t goes from 0 to 60. So the car is accelerating throughout the minute.
Below is the graph of the speed (in m/s) against time (in s), with the area below it (between

t = 0 and t = 60) coloured red.

The argument above works in exactly the same way for this example, to persuade us that the
distance travelled should be given by the area under the speed graph, between t = 0 and t = 60.
This is the area that is coloured red in the picture above.

PROBLEM! The upper boundary of this area is a part of a parabola not a line segment. The region
is not a combination of rectangles and triangles as in Problem 1.1.4. We can’t calculate its area
using elementary techniques.
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So : what we need is a theory or a method that will allow us to calculate the area
bounded by a section of the graph of a function and the x-axis, over a specified interval.

IMPORTANT NOTE: The problem of calculating the distance travelled by an object from knowl-
edge of how its speed is changing is just one example of a scientific problem that can be solved
by calculating the area of a region enclosed between a graph and the x-axis. Here are just a few
more examples.

1. The fuel consumption of an aircraft is a function of its speed. The total amount of fuel
consumed on a journey can be calculated as the area under the graph showing speed against
time.

2. The energy stored by a solar panel is a function of the light intensity, which is itself a function
of time. The total energy stored in one day can be modelled as the area under a graph of the
light intensity against time for that day.

3. The volume of (for example) a square pyramid can be interpreted as the area of a graph of
its horizontal cross-section area against height above the base.

4. In medicine, if a drug is administered intravenously, the quantity of the drug that is in
the person’s bloodstream can be calculated as the area under the graph of a function that
depends both on the rate at which the drug is administered and on the rate at which it
breaks down.

5. The quantity of a pollutant in a lake can be estimated by calculating areas under graphs of
functions describing the rate at which the pollutant is being introduced and the the rate it
which is is dispersing or being eliminated.

6. The concept of area under a graph is widely used in probability and statistics, where for
example the probability that a randomly chosen person is aged between 20 and 30 years
is the area under the graph of the appropriate probability density function, over the relevant
interval.
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3.2 The Definite Integral

In the last section we concluded that a theory for discussing (and hopefully calculating) areas
enclosed between the graphs of known functions and the x-axis, within specified intervals, would
be useful. Such a theory does exist and it forms a large part of what is called integral calculus. In
order to develop and use this theory we need a technical language and notation for talking about
areas under curves. The goal of this section is to understand this notation and be able to use it -
it is a bit cumbersome and not the most intuitively appealing, but with a bit of practice it is quite
manageable.

Example 3.2.1. Suppose that f is the function defined by f(x) = x2. Note that f(x) is positive when
1 6 x 6 3. This means that in the region between the vertical lines x = 1 and x = 5, the graph y = f(x)
lies completely above the x − axis. The area that is enclosed between the graph y = f(x), the x-axis, and
the vertical lines x = 1 and x = 3 is called the definite integral of x2 from x = 1 to x = 3, and denoted
by ∫ 3

1
x2 dx.

This diagram shows the region whose area is the definite integral
∫3

1 x
2 dx.

NOTE: At the moment we are not trying to actually calculate this red area, we are just thinking
about how the integral notation is used and what it means.

Example 3.2.2. Suppose the function f is defined by

f(x) =

{
x+ 1 if 0 6 x 6 3
4 if x > 3

Then the graph of f consists of the section of the line y = x + 1 between x = 0 and x = 3
(this is the line segment joining the points (0, 1) and (3, 4), and the constant line y = 4 from x = 3
onwards.

Now
∫ 5

1
f(x)dx represents the area enclosed by the graph y = f(x), the x-axis, and the vertical

lines x = 1 and x = 5. From the diagram below we can see that this area consists of

• A (green) triangle of base length 2 and height 2, area 2;
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• A (red) rectangle of base length 2 and height 2, area 4;

• A (blue) rectangle of base length 2 and height 4, area 8.

Adding these three areas, we can conclude that∫ 5

1
f(x)dx = 2 + 4 + 8 = 14.

In this example we are able to calculate the actual value of the definite integral because the
region whose area is involved is just an arrangement of rectangles and triangles. Note from this
example that in general for a function f and numbers a and b, the definite integral

∫b
a f(x)dx is a

number.
We now move on to the general definition of a definite integral.

Definition 3.2.3. Let a and b be fixed real numbers, with a < b (so a is to the left of b on the number
line). Let f be a function for which it makes sense to talk about the area enclosed between the graph of f and
the x-axis, over the interval from a to b. Then the definite integral from a to b of f, denoted∫b

a

f(x)dx

is defined to be the number obtained by subtracting the area enclosed below the x-axis by the graph y = f(x)
and the vertical lines x = a and x = b from the area enclosed above the x-axis by the graph y = f(x) and
the vertical lines x = a and x = b.

Example 3.2.4. If the graph y = f(x) is as shown in the diagram below, then
∫b
a

f(x)dx is the number

obtained by subtracting the total area that is coloured blue from the total area that is coloured red.

Example 3.2.5. (a) Calculate
∫ 4

−2
2x− 3dx.

(b) Calculate the total area enclosed between the x-axis and the line y = 2x−3, between x = −2 and x = 4.
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SOLUTION: (a) We need to describe the areas enclosed by the curve y = 2x − 3, above and below
the x-axis, between x = −2 and x = 4.
The curve y = 2x− 3 is a line; it passes through the points (−2, −7) and (4, 5) and it intercepts the

x-axis at x =
3
2

.
The diagram below describes the problem :

The area of the red triangle is
1
2
× 5

2
× 5 =

25
4

,

and the area of the blue triangle is
1
2
× 7

2
× 7 =

49
4

.

Thus
∫ 4

−2
2x− 3dx =

25
4

−
49
4

= −
24
4

= −6.

(b) The total area enclosed between the x-axis and the line y = 2x − 5, between x = −2 and x = 4,
is the sum of the areas of the red and blue triangles, which is 25

4 + 49
4 = 37

2 .

Note the difference between the two parts of this question, and be careful about this distinction.

NOTES

1. In Definition 3.2.3, What is meant by the phrase “for which it makes sense to talk about the
area enclosed between the graph of f and the x-axis” is (more or less) that the graph y = f(x)
is not just a scattering of points, but consists of a curve or perhaps more than one curve.
There is a formal theory about “integrable functions” that makes this notion precise.

2. Note on Notation
The notation surrounding definite integrals is a bit unusual. This note explains the various
components involved in the expression ∫b

a

f(x)dx.
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• “
∫

” is the integral sign.

• The “dx” indicates that f is a function of the variable x, and that we are talking about
area between the graph of f(x) against x and the x-axis.

• The “f(x)” in
∫b
a f(x)dx is called the integrand. It is the function whose graph is the

upper (or lower) boundary of the region whose area is being described.

• The numbers a and b are respectively called the lower and upper (or left and right) limits
of integration. They determine the left and right boundaries of the region whose area is
being described.

In the expression
∫b
a f(x)dx, the limits of integration a and b are taken to be values of

the variable x - this is included in what is to be interpreted from ′′dx ′′. If there is any
danger of ambiguity about this, you can write∫x=b

x=a

f(x)dx instead of
∫b
a

f(x)dx.

Please do not confuse this use of the word “limit” with its other uses in calculus.

• Important note about this notation : neither the symbol “
∫

” nor the symbol “dx” in
this setup is meaningful by itself : they must always accompany each other. You could
think of them as being a bit like left and right parentheses or left and right quotation
marks - a phrase that is opened with a left parenthesis “( ” must be closed by a right
parenthesis “)” - neither of these parentheses is meaningful by itself. In the language
of definite integrals, an expression that is opened with the integral sign “

∫
” must be

closed with the symbol “dx” (or “dt” or “du” as appropriate) indicating the variable
involved. The symbol “dx” doesn’t really have a meaning by itself - it is a companion
to the integral sign.

SOME HISTORICAL REMARKS

The notation that is currently in use for the definite integral was introduced by Gottfried Leibniz
around 1675. The rationale for it is as follows :
Areas were estimated as we did in Section 1.1. The interval from a to b would be divided into
narrow subintervals, each of width ∆x. The name xi would be given to the left endpoint of the ith
subinterval, and the height of the graph above the point xi would be given by f(xi). So the area
under the graph on this ith subinterval would be approximated by that of a rectangle of width
∆x and height f(xi). The total area would be approximated by the sum of the areas of all of these
narrow rectangles, which was written as ∑

f(xi)∆x.

The accuracy of this estimate improves as the width of the subintervals gets smaller and the
number of them gets larger; the true area is the limit of this process as ∆x → 0. The notation
“dx” was introduced as an expression to replace ∆x in this limit, and the integral sign

∫
is a “limit

version” of the summation sign
∑

. The integral symbol itself is based on the “long s” character
which was in use in English typography until about 1800.

The idea of calculating areas of regions by taking finer and finer subdivisions in this manner
dates back to the ancient Greeks; early examples of what is now called “integration” can be found
in the work of Archimedes (circa 225 BC). The idea of computing areas under graphs by taking
narrower and narrower vertical columns was put on a firm theoretical basis by Bernhard Riemann
in the 1850s.

For more information on the history of calculus and of mathematics generally, see
http://www-history.mcs.st-and.ac.uk/index.html.
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3.3 The Fundamental Theorem of Calculus

In this section, we discuss the Fundamental Theorem of Calculus which establishes a crucial link
between differential calculus and the problem of calculating definite integrals, or areas under
curves. At the end of this section, you should be able to explain this connection and demonstrate
with some examples how the techniques of differential calculus can be used to calculate definite
integrals.

Differential calculus is about how functions are changing. Suppose for example, that you are
thinking of temperature (in ◦C) as a function of time (in hours). You might write temperature
as T(t) to indicate that the temperature T varies with time t. The derivative of the function T(t),
denoted T ′(t), tells us how the temperature is changing over time. If you know that at 10.00am
yesterday the derivative of T was 0.5 (◦C/hr), then you know that the temperature was increasing
by half a degree per hour at that time. However this does not tell you anything about what the
temperature actually was at this time. If you know that by 10.00pm last night the derivative of
the temperature was −2◦C/hr you still don’t know anything about what the temperature was at
the time, but you know that it was cooling at a rate of 2 degrees per hour. The derivative T ′ is
itself a function of time, as the rate of increase or decrease of temperature will not remain constant
throughout the day. Knowing about T ′(t) doesn’t tell us anything about how warm or cold it was
at any given time, but it gives us such information as when it was getting warmer, when it was
getting colder, when it stopped getting warmer and started to cool, and so on.

RECALL : Suppose that f is a function of a variable x. Then f ′(x) is the derivative of f, also a
function of x. The value of f ′ at a particular point a is the slope of the tangent line to the graph
y = f(x) at the point (a, f(a)). The diagram below shows the graph of the function defined by
f(x) = 1

2x
2 and the tangent line to this graph at the point (3,4.5). The slope of this tangent line

(which happens to be 3) is the derivative of f when x = 3, i.e. it is f ′(3). As x varies – as we move
along the graph from left to right – the slope of the tangent line varies too, so f ′ is a function of x;

as we know it is given in this example by the formula f ′(x) =
d

dx

(
1
2
x2
)

= x.

Now we are going to define a new function related to definite integrals and consider its deriva-
tive - we start with an example.

Example 3.3.1. At time t = 0 an object is travelling at 5 metres per second. After t seconds its speed in
m/s is given by

v(t) = 5 + 2t.

Let s(t) denote the distance travelled by the object after t seconds. So s(t) depends on t
obviously since the object is moving over time. From our work in Section 3.1 we know that
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s(t) is the area under the graph of v(t) against t, between the vertical lines through 0 and t. We
can calculate this in terms of t, by drawing a picture of the graph.

Look at the shape of the region between the graph and the x-axis, between the vertical lines
through 0 and t. It is a trapezoid with

• bottom edge formed by a segment of the x-axis of length t;

• left and right edges formed by segments of the vertical lines through 0 and t, of lengths 5
and 5 + 2t respectively;

• Top edge formed by part of the graph y = 5 + 2t.

The area of this region is s(t). As shown in the diagram, it is the sum of the areas of a rectangle
of width t and height 5 (area 5t) and a triangle of width t and height 2t (area t2). This means : for
any t > 0, the distance covered by this object in the first t seconds of its movement is given by s(t) = 5t+t2.

IMPORTANT NOTE: The function s(t) associates to t the area under the graph y = v(t) from time 0
to time t. As t increases (i.e. as time passes), this area increases (it represents the distance travelled
which is obviously increasing). Note that the derivative of s(t) is exactly v(t).

s(t) = 5t+ t2; s ′(t) = 5 + 2t = v(t).

We shouldn’t really be surprised by this given the physical context of the problem : s(t) is the
total distance travelled at time t, and s ′(t) at time t is v(t), the speed at time t. So this is saying
that the instantaneous rate of change of the distance travelled at a particular moment is the speed at
which the object is travelling at that moment - which makes sense.

However, there is another way to interpret this statement, which makes sense for definite
integrals generally :

• v is a function whose graph we are looking at.

• For a positive number t, s(t) is the area under the graph of v, to the right of 0 and to the left
of t.

• Then the derivative of s is just v, the function under whose graph the area is being measured,
i.e s ′(t) = v(t).

The more general version of this statement is the Fundamental Theorem of Calculus, stated below.

Theorem 3.3.2. (Fundamental Theorem of Calculus (FToC))
Let f be a (suitable) function, and let r be a fixed number. Define a function A by

A(x) =

∫x
r

f(t)dt.

This means : for a number x, A(x) is the area enclosed by the graph of f and the x − axis, between the
vertical lines through r and x. The picture below shows what the function A does.
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A(x) =

∫x
r

f(t)dt is the area shown in red.

The function A depends on the variable x, via the right limit in the definite integral. The Fundamental
Theorem of Calculus tells us that the function f is exactly the derivative of this area accumulation function
A. Thus

A ′(x) = f(x).

Example 3.3.3. Define a function F for x > −6 by

F(x) =

∫x
−6

cos(πet
2−4)dt.

Find F ′(−2).

Solution: By the FToC,
F ′(x) = cos(πex

2−4), for x > −6.

Then F ′(−2) = cos(πe(−2)2−4) = cos(π) = −1.
NOTES

1. We won’t prove the Fundamental Theorem of Calculus, but to get a feeling for what it says,
look again at the picture above, and think about how A(x) changes when x moves a little
to the right. If f(x) = 0, A(x) doesn’t change at all as no area is accumulating under the
graph of f. If f(x) is positive and large,A(x) increases quickly as xmoves to the right. If f(x)
is positive but smaller, A(x) increases more slowly with x, because area accumulates more
slowly under the “lower” curve. If f(x) is negative, then A(x) will decrease as x increases,
because we will be accumulating “negative” area.

2. The Fundamental Theorem of Calculus is interesting because it connects differential calculus
to the problem of calculating definite integrals, or areas under curves.

3. The Fundamental Theorem of Calculus is useful because we know a lot about differential
calculus. Using the machinery of differentiation (the product rule, chain rule etc), we can
calculate the derivative of just about anything that can be written in terms of elementary
functions (like polynomials, trigonometric functions, exponentials and so on). So we have
a lot of theory about differentiation that is all of a sudden relevant to calculating definite
integrals as well.

4. The Fundamental Theorem of Calculus can be traced back to work of Isaac Barrow and Isaac
Newton in the mid 17th Century.

Finally we show how to use the Fundamental Theorem of Calculus to calculate definite inte-
grals.

Example 3.3.4. Calculate
∫ 3

1
x2 dx.
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Solution: The area that we want to calculate is shown in the picture below.

Imagine that r is some point to the left of 1, and that the function A is defined for x > r by

A(x) =

∫x
r

x2 dx,

i.e. A(x) is the area under the graph of x2 between r and x. Then∫ 3

1
x2 dx = A(3) −A(1);

this is the area under the graph that is to the left of 3 but to the right of 1. So - if we could calculate
A(x), we could evaluate this function at x = 3 and at x = 0.

What we know about the function A(x), from the Fundamental Theorem of Calculus, is that
its derivative is given by A ′(x) = x2. What function A has derivative x2?

The derivative of x3 is 3x2, so the derivative of
1
3
x3 is x2.

Note :
1
3
x3 is not the only expression whose derivative is x2. For example

1
3
x3 + 1,

1
3
x3 − 5

and any expression of the form
1
3
x3 + C for any constant C, also have derivative x2. All of these

are candidates for A(x) : basically they just correspond to different choices for the point r. All of
these choices forA(x) give the same outcome when we use them to evaluate

∫3
1 x

2 dx as suggested
above.
So : take A(x) =

1
3
x3. Then∫ 3

1
x2 dx = A(3) −A(1) =

1
3
(33) −

1
3
(13) = 9 −

1
3

=
26
3

.

This technique is described in general terms in the following version of the Fundamental The-
orem of Calculus :

Theorem 3.3.5. (Fundamental Theorem of Calculus, Part 2) Let f be a function. To calculate the definite
integral ∫b

a

f(x)dx,

first find a function F whose derivative is f, i.e. for which F ′(x) = f(x). (This might be hard). Then∫b
a

f(x)dx = F(b) − F(a).
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3.4 Techniques of Integration

Recall the following strategy for evaluating definite integrals, which arose from the Fundamental
Theorem of Calculus (see Section 3.3). To calculate∫b

a

f(x)dx

1. Find a function F for which F ′(x) = f(x), i.e. find a function Fwhose derivative is f.

2. Evaluate F at the limits of integration a and b; i.e. calcuate F(a) and F(b). This means
replacing x separately with a and b in the formula that defines F(x).

3. Calculate the number F(b) − F(a). This is the definite integral
∫b
a

f(x)dx.

Of the three steps above, the first one is the hard one. There are many examples of (very
reasonable looking) functions f for which it is not possible to write down a function F whose
derivative is f in a manageable way. But there are many also for which it is, and they will be the
focus of our attention in this chapter.

Suppose for example we look at the function g defined by g(x) = sin(x2 + x). From the chain
rule for differentiation we know that g ′(x) = (2x + 1) cos(x2 + x). But suppose that we started
with

(2x+ 1) cos(x2 + x)

and we wanted to find something whose derivative with respect to xwas equal to this expression.
How would we get back to sin(x2 + x)? In this section we will develop answers to this question, but
it doesn’t have a neat answer. The answer consists of a collection of strategies, techniques and
observations that have to be employed judiciously and adapted for each example. It takes some
careful practice to become adept at reversing the differentiation process which is basically what
we have to do.

Recall the following notation: if F is a function that satisfies F ′(x) = f(x), then

F(x)|
b
a or F(x)|x=b

x=a means F(b) − F(a).

We also need the following definition:

Definition 3.4.1. Let f be a function. Another function F is called an antiderivative of f if the derivative
of F is f, i.e. if F ′(x) = f(x), for all (relevant) values of the variable x.

Thus for example x2 is an antiderivative of 2x. Note that x2 + 1, x2 + 5 and x2 − 20e are also
antiderivatives of 2x. So we talk about an antiderviative of a function or expression rather that the
antiderivative. So: a function may have more than one antiderivative, but different antideriva-
tives of a particular function will always differ from each other by a constant.
Note : Two functions will have the same derivative if their graphs differ from each other only by
a vertical shift; in this case the tangent lines to these graphs for particular values of x will always
have the same slope.

Definition 3.4.2. Let f be a function. The indefinite integral of f, written∫
f(x)dx

is the “general antiderivative” of f. If F(x) is a particular antiderivative of f, then we would write∫
f(x)dx = F(x) + C,

to indicate that the differnt antiderivatives of f look like F(x) + C, where C maybe any constant. (In this
context C is often referred to as a constant of integration).
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Example 3.4.3. We would write ∫
2xdx = x2 + C

to indicate that every antiderivative of 2x has the form x2+C for some constantC, and that every expression
of the form x2 + C (for a constant C) has derivative equal to 2x.

In this section we will consider examples where antiderivatives can be determined without
recourse to any sophisticated techniques (which doesn’t necessarily mean easily).

The following table reminding us of the derivatives of some elementary functions may be
helpful.

f(x) f’(x)

x 1

x2 2x

x3 3x2

1
x2 − 2

x3

xn nxn−1

f(x) f’(x)

sin x cos x

cos x − sin x

sin 2x 2 cos 2x

ex ex

e3x 3e3x

Basically our goal is to figure out how to get from the right to the left column in a table like this.

Example 3.4.4. Find (i)
∫
x2 dx, (ii)

∫6
4 x

2 dx

SOLUTION: (i)
d

dx
(x3) = 3x2 - so x3 is not an antiderivative of x2, it is “too big” by a factor of 3.

Thus 1
3x

3 should be an antiderivative of x2; indeed

d

dx

(
1
3
x3
)

=
1
3

3x2 = x2.

We conclude ∫
x2 dx =

1
3
x3 + C.

This means that every antiderivative of x2 has the form 1
3x

3 + C for some constant C.

(ii) By FTC (Part 2) we have ∫ 6

4
x2 dx =

x3

3

∣∣∣∣6
4

=
63

3
−

43

3
=

153
3

.

Example 3.4.5. Determine
∫

cos 2xdx.
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SOLUTION: The question is : what do we need to differentiate to get cos 2x? Well, what do we
need to differentiate to get something involving cos?
(If you can’t answer this question fairly quickly, you are advised to brush up on your knowledge
of derivatives of trigonometric functions - don’t forget that the SUMS centre can help in this
situation).
We know that the derivative of sin x is cos x.
So a reasonable guess would say that the derivative of sin 2xmight be “something like” cos 2x.
By the chain rule, the derivative of sin 2x is in fact 2 cos 2x.
So, in our search for an antiderivative of cos 2x, sin 2x is pretty close but it gives us twice what we
want - we are out by a factor of 2.

So we should compensate for this by taking
1
2

sin 2x; its derivative is

1
2
(2 cos 2x) = cos 2x.

CONCLUSION:
∫

cos 2xdx =
1
2

sin 2x+ C.

NOTE: The reason for the commentary on this example is to give you an idea of the sorts of
thought processes a person might go through while figuring out an antiderivative of cos 2x. You
would not be expected to provide this sort of commentary if you were answering a question like
this in an assessment - it would be enough to just write the line labelled “CONCLUSION” above.
The following examples are similar, with less commentary as we continue.

Example 3.4.6. Determine
∫
e

1
2x dx

SOLUTION: We are looking for something whose derivative is e
1
2x. We know that the derivative

of ex is ex, so the answer should be something like e
1
2x. But this is not exactly right because the

derivative of e
1
2x is

1
2
e

1
2x,

which is only half of what we want - we are out by a factor of 1
2 - what we want is twice what we

have. We can compensate for this by multiplying what we have by 2 (or dividing it by 1
2 which

is the same). So what we want is 2e
1
2x - use the chain rule to confirm that the derivative of this

expression is e
1
2x as required.

CONCLUSION:
∫
e

1
2x dx = 2e

1
2x + C

Example 3.4.7. Determine
∫
x5 dx

SOLUTION: The derivative of x6 is 6x5. So the derivative of
1
6
x6 is x5. Hence∫

x5 dx =
1
6
x6 + C.

IMPORTANT NOTE: We know that in order to calculate the derivative of an expression like xn, we
reduce the index by 1 to n− 1, and we multiply by the constant n. So

d

dx
xn = nxn−1

in general. To find an antiderivative of xn we have to reverse this process. This means that the

index increases by 1 to n+ 1 and we multiply by the constant
1

n+ 1
. So∫

xn dx =
1

n+ 1
xn+1 + C.
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This makes sense as long as the number n is not equal to −1 (in which case the fraction 1
n+1

wouldn’t be defined). We will see later how to manage
∫
x−1 dx or

∫ 1
x dx.

Note: included in the general description of
∫
xn dx above is the statement that∫

1dx = x+ C.

This makes sense when we ask ourselves what we need to differentiate in order to get 1. The
answer is x.

Example 3.4.8. Determine
∫

3x2 + 2x+ 4dx.

SOLUTION:
∫

3x2 + 2x+ 4dx = 3(x3/3) + 2(x2/2) + 4x+ C = x3 + 2x2 + 4x+ C.

Remark: Here we are separately applying our ability to integrate expressions of the form xn to
the x3 term, the x2 term, and the constant term. We are also making use of the following fact that
indefinite integration behaves linearly. This means : if f(x) and g(x) are expressions involving x
and a and b are real numbers, we have∫

af(x) + bg(x)dx = a

∫
f(x)dx+ b

∫
g(x)dx.

Example 3.4.9. Determine
∫π

0
sin x+ cos xdx.

SOLUTION: We need to write down any antiderivative of sin x+ cos x and evaluate it at the limits
of integration : ∫π

0
sin x+ cos xdx = − cos x+ sin x|π0

= (− cosπ+ sinπ) − (− cos 0 + sin 0)

= −(−1) + 0 − (−1 + 0) = 2.

NOTE: In case you don’t find it easy to remember things like cosine and sine of π, π2 etc, it is easy
enough if you think about it in terms of the definitions of the trigonometric functions. To deter-
mine cosπ, start at the point (1, 0) and travel counter–clockwise around the unit circle through an
angle of π radians (180 degrees), arriving at the point (−1, 0). The x-coordinate of the point you
are at now is cosπ, and the y-coordinate is sinπ.

Example 3.4.10. Determine
∫
x1/3 dx.

SOLUTION:
∫
x1/3 dx =

1
4/3

x4/3 + C =
3
4
x4/3 + C.

3.4.1 Substitution - Reversing the Chain Rule

The Chain Rule of Differentation tells us that in order to differentiate the expression sin x2, we
should regard this expression as sin(“something”) whose derivative (with respect to “something”
is cos(“something”), then multiply this expression by the derivative of the “something” with re-
spect to x. Thus

d

dx
(sin x2) = cos x2 d

dx
(x2) = 2x cos x2.

Equivalently ∫
2x cos x2 dx = sin x2 + C.

In this section, through a series of examples, we consider how one might go about reversing the
differentiation process to get from 2x cos x2 back to sin x2.
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Example 3.4.11. Determine
∫

2x
√
x2 + 1dx.

SOLUTION: Notice that the integrand (i.e. the expression to be integrated) involves both the ex-
pressions x2 + 1 and 2x. Note also that 2x is the derivative of x2 + 1.

Introduce the notation u and set u = x2 + 1. Note
du

dx
= 2x.

Then 2x
√
x2 + 1 = du

dx

√
u = u

1
2
du

dx
.

Suppose we were able to find a function F of u for which
d

du
(F(u)) = u

1
2 . Then by the chain rule

we would have
d

dx
(F(u)) =

d

du
(F(u))

du

dx
= u

1
2 (2x) = 2x

√
x2 + 1.

So F(u) would be an antiderivative (with respect to x) of 2x
√
x2 + 1.

Thus we want
d

du
(F(u)) = u

12
.

So take
F(u) =

∫
u

1
2 du =

2
3
u

3
2 + C.

(At this stage we are just using the note after Example 3.4.7, with n = 1
2 ).

Thus ∫
2x
√
x2 + 1dx =

2
3
(x2 + 1)

3
2 + C.

We usually formulate this procedure of “integration by substitution” in the following more
concise way.
To find

∫
2x
√
x2 + 1dx. :

Let u = x2 + 1.

Then
du

dx
= 2x =⇒ du = 2xdx. Then∫

2x
√
x2 + 1dx =

∫√
x2 + 1(2xdx) =

∫
u

1
2 du =

2
3
u

3
2 + C.

So ∫
2x
√
x2 + 1dx =

2
3
(x2 + 1)

3
2 + C.

Example 3.4.12. Determine
∫
x sin(2x2)dx

SOLUTION: Let u = 2x2.
Then

du

dx
= 4xdx; xdx =

1
4
du. So∫

x sin(2x2)dx =
1
4

∫
sinudu = −

1
4

cosu+ C =
1
4

cos(2x2) + C.

REMARK: It is good practice to check your answer to a problem like this, either mentally or on
paper. Check that the derivative of − 1

4 cos(2x2) is indeed equal to x sin(2x2).

Example 3.4.13. Determine
∫
(1 − cos t)2 sin t dt
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SOLUTION: Write u = 1 − cos t.

Then
du

dt
= sint; du = sin t dt.

So ∫
(1 − cos t)2 sin t dt =

∫
u2du =

1
3
u3 + C =

1
3
(1 − cos t)3 + C.

QUESTION: How do we know what expression to extract and refer to as u?
Really what we are doing in this process is changing the integration problem in the variable t to
a (hopefully easier) integration problem in a new variable u - there is a change of variables taking
place.

There is no easy answer to the question of how to decide what to rename as “u”, but with
practice we can develop a sense of what might work. In this example the integrand involves the
expression 1 − cos t and also its derivative sin t. This is what makes the substitution u = 1 − cos t
effective for this problem. The “sin t” part of the integrand gets “absorbed” into the “du” in the
change of variables, and the “1 − cos t” part is obviously easily written in terms of u. We could
try the alternative u = sin t, but this is not likely to be helpful, since it is not so easy to see how
to express 1 − cos t in terms of this u, or what would happen with duwhich would be effectively
cos t dt.

Example 3.4.14. To determine
∫

(1 +
√
x)3

√
x

dx

SOLUTION: How are we to choose u? Well, what are the candidates?
The integrand involves the expressions 1 +

√
x and 1√

x
. The derivative of 1 +

√
x is “something

like” 1√
x

, so setting u = 1 +
√
xmight be worth a try.

Let u = 1 +
√
x.

Then
du

dx
=

1
2
u− 1

2 =
1
2

1√
x

;
1√
x
dx = 2du.

So ∫
(1 +

√
x)3

√
x

dx = 2
∫
u3 du =

2
4
u4 + C =

1
2
(1 +

√
x)4 + C.

Example 3.4.15. Determine
∫

16x√
8x2 + 1

dx

SOLUTION: Let u =
√

8x2 + 1.

Then
du

dx
=

1
2
(8x2 + 1)− 1

2 (16x) =
8x√

8x2 + 1
.

Thus
16x√

8x2 + 1
dx = 2du, and∫

16x√
8x2 + 1

dx = 2
∫
du = 2u+ C = 2

√
x2 + 1 + C.

NOTE: An alternative here would have been to set u = 8x2 +1. That this would also be successful
is left for you to check as an exercise.

DIGRESSION - IMPORTANT NOTE: The Integral
∫

1
x
dx

Suppose that x > 0 and y = ln x. Recall this means (by definition) that ey = x. Differentiating
both sides of this equation (with respect to x) gives

ey
dy

dx
= 1 =⇒ dy

dx
=

1
ey

=
1
x

.

Thus the derivative of ln x is
1
x

, and∫
1
x
dx = ln x+ C, for x > 0.
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If x < 0, then ∫
1
x
dx = ln |x| + C.

This latter formula applies for all x 6= 0.

Example 3.4.16. To determine
∫

sec2 x

tan x
dx

Note : the derivative of tan x is sec2 x, suggesting the substitution u = tan x. You are not
necessarily expected to know the derivative of tan x (or of any of the trigonometric functions) of
the top of your head, but you should know where to find them in the “Formulae and Tables”
booklet.
Let u = tan x.

Then
du

dx
= sec2 x; du = sec2 xdx. Thus

sec2 x

tan x
dx =

1
u
du, and∫

sec2 x

tan x
dx =

∫
1
u
du = log |u| + C = log | tan x| + C.

SUBSTITUTION AND DEFINITE INTEGRALS

Example 3.4.17. Evaluate
∫ 1

0

5r
(4 + r2)2 dr.

SOLUTION: To find an antiderivative, let u = 4 + r2.

Then
du

dr
= 2r, du = 2r dr; 5r dr =

5
2
du.

So ∫
5r

(4 + r2)2 dr =
5
2

∫
1
u2 du =

5
2

∫
u−2 du.

Thus
∫ 5r

(4 + r2)2 dr = −
5
2
× 1
u

+ C, and we need to evaluate − 5
2 ×

1
u at r = 0 and at r = 1. We

have two choices :

1. Write u = 4 + r2 to obtain∫ 1

0

5r
(4 + r2)2 dr = −

5
2

1
4 + r2

∣∣∣∣r=1

r=0

= −
5
2

1
4 + 12 −

(
−

5
2
× 1

4 + 02

)
= −

5
2
× 1

5
+

5
2
× 1

4

=
1
8

.

2. Alternatively, write the antiderivative as − 5
2

1
u and replace the limits of integration with the

corresponding values of u.
When r = 0 we have u = 4 + 02 = 4.
When r = 1 we have u = 4 + 12 = 5.
Thus ∫ 1

0

5r
(4 + r2)2 dr = −

5
2
× 1
u

∣∣∣∣u=5

u=4

= −
5
2
× 1

5
−

(
−

5
2
× 1

4

)
=

1
8

.
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3.4.2 Integration by parts - reversing the product rule

In this section we discuss the technique of “integration by parts”, which is essentially a reversal
of the product rule of differentiation.

Example 3.4.18. Find
∫
x cos xdx.

There is no obvious substitution that will help here.
How could x cos x arise as a derivative?
Well, cos x is the derivative of sin x. So, if you were differentiating x sin x, you would get x cos x
but according to the product rule you would also get another term, namely sin x. Thus

d

dx
(x sin x) = x cos x+ sin x

=⇒ d

dx
(x sin x) − sin x = x cos x.

Note that sin x =
d

dx
(− cos x). So

d

dx
(x sin x) −

d

dx
(− cos x) = x cos x =⇒ d

dx
(x sin x+ cos x) = x cos x.

CONCLUSION:
∫
x cos xdx = x sin x+ cos x+ C.

What happened in this example was basically that the product rule was reversed. This pro-
cess can be managed in general as follows. Recall from differential calculus that if u and v are
expressions involving x, then

(uv) ′ = u ′v+ uv ′.

Suppose we integrate both sides here with respect to x. We obtain∫
(uv) ′ dx =

∫
u ′v dx+

∫
uv ′ dx =⇒ uv =

∫
u ′v dx+

∫
uv ′ dx.

This can be rearranged to give the Integration by Parts Formula :∫
uv ′ dx = uv−

∫
u ′v dx.

Strategy : when trying to integrate a product, assign the name u to one factor and v ′ to the other.
Write down the corresponding u ′ (the derivative of u) and v (an antiderivative of v ′).

The integration by parts formula basically allows us to exchange the problem of integrating
uv ′ for the problem of integrating u ′v - which might be easier, if we have chosen our u and v ′ in
a sensible way.

Here is the first example again, handled according to this scheme.

Example 3.4.19. Use the integration by parts technique to determine
∫
x cos xdx.

SOLUTION: Write
u = x v ′ = cos x
u ′ = 1 v = sin x

Then ∫
x cos xdx =

∫
uv ′ dx = uv−

∫
u ′v dx

= x sin x−

∫
1 sin xdx

= x sin x+ cos x+ C.

59



NOTE: We could alternatively have written u = cos x and v ′ = x. This would be less successful
because we would then have u ′ = − sin x and v = x2

2 , which looks worse than v ′. The integration
by parts formula would have allowed us to replace∫

x cos xdx with
∫
x2

2
sin xdx,

which is not an improvement.
So it matters which component is called u and which is called v ′.

Example 3.4.20. To determine
∫

ln xdx.

SOLUTION: Let u = ln x, v ′ = 1. Then u ′ = 1
x , v = x.∫

ln xdx =

∫
uv ′ dx = uv−

∫
u ′v dx

= x ln x−

∫
1
x
xdx

= x ln x− x+ C.

NOTE: Example 3.4.20 shows that sometimes problems which are not obvious candidates for
integration by parts can be attacked using this technique.

Sometimes two applications of the integration by parts formula are needed, as in the following
example.

Example 3.4.21. To evaluate
∫
x2ex dx.

SOLUTION: Let u = x2, v ′ = ex. Then u ′ = 2x, v = ex.∫
x2ex dx =

∫
uv ′ dx = uv−

∫
u ′v dx

= x2ex −

∫
2xex dx

= x2ex − 2
∫
xex dx.

Let I =

∫
xex dx.

To evaluate I apply the integration by parts formula a second time.

u = x v ′ = ex

u ′ = 1 v = ex.

Then I =

∫
xex dx = xex −

∫
ex dx = xex − ex + C. Finally

∫
x2ex dx = x2ex − 2xex + 2ex + C.

The next example shows another mechanism by which a second application of the integration
by parts formula can succeed where the first is not enough.

Example 3.4.22. Determine
∫
ex cos xdx.
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Let
u = ex v ′ = cos x
u ′ = ex v = sin x.

Then ∫
ex cos xdx = ex sin x−

∫
ex sin xdx.

For
∫
ex sin xdx: Let

u = ex v ′ = sin x
u ′ = ex v = − cos x.

Then ∫
ex sin xdx = −ex cos x+

∫
ex cos xdx,

and ∫
ex cos xdx = ex sin x−

(
−ex cos x+

∫
ex cos xdx

)
=⇒ 2

∫
ex cos xdx = ex sin x+ ex cos x+ C

=⇒
∫
ex cos xdx =

1
2
(ex sin x+ ex cos x) + C

Finally, an example of a definite integral evaluated using the integration by parts technique.

Example 3.4.23. Evaluate
∫ 1

0
(x+ 3)e2x dx.

SOLUTION: Write
u = x+ 3 v ′ = e2x

u ′ = 1 v = 1
2e

2x

Then ∫ 1

0
(x+ 3)e2x dx =

∫
uv ′ dx = (uv)|

1
0 −

∫ 1

0
u ′v dx

=
x+ 3

2
e2x
∣∣∣∣1
0
−

1
2

∫ 1

0
e2x dx

=
x+ 3

2
e2x
∣∣∣∣1
0
−

1
2
× 1

2
e2x
∣∣∣∣1
0

=
4
2
e2 −

3
2
e0 −

1
4
e2 +

1
4
e0

=
7
4
e2 −

5
4

.

3.4.3 Partial Fraction Expansions - Integrating Rational Functions

We know how to integrate polynomial functions; for example∫
2x2 + 3x− 4dx =

2
3
x3 +

3
2
x2 − 4x+ C.

We also know that ∫
1
x
dx = ln |x| + C.
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This section is about integrating rational functions; i.e. quotients in which the numerator and
denominator are both polynomials.

REMARK: If we were presented with the task of adding the expressions
2

x+ 3
and

1
x+ 4

, we

would take (x+ 3)(x+ 4) as a common denominator and write

2
x+ 3

+
1

x+ 4
=

2(x+ 4)

(x+ 3)(x+ 4)
+

1(x+ 3)

(x+ 3)(x+ 4)
=

2(x+ 4) + 1(x+ 3)

(x+ 3)(x+ 4)
=

3x+ 11
(x+ 3)(x+ 4)

.

Question: Suppose we were presented with the expression
3x+ 11

(x+ 3)(x+ 4)
and asked to rewrite

it in the form
A

x+ 3
+

B

x+ 4
, for numbers A and B. How would we do it?

Another Question Why would we want to do such a thing?

Answer to the second question: Maybe if we want to integrate the expression : we know how to

integrate things like
1

x+ 3
, but not things like

3x+ 11
(x+ 3)(x+ 4)

.

Answer to the first question: Write

3x+ 11
(x+ 3)(x+ 4)

=
A

x+ 3
+

B

x+ 4
.

Then
3x+ 11

(x+ 3)(x+ 4)
=

A(x+ 4)

(x+ 3)(x+ 4)
+

B(x+ 3)

(x+ 3)(x+ 4)
=

(A+ B)x+ 4A+ 3B
(x+ 3)(x+ 4)

.

This means 3x+ 11 = (A+ B)x+ 4A+ 3B for all x, which means

A+ B = 3, and 4A+ 3B = 11.

Thus −4A− 4B = −12, −B = −1, B = 1 and A = 2. So

3x+ 11
(x+ 3)(x+ 4)

=
2

x+ 3
+

1
x+ 4

.

Alternative Method: We want
3x+ 11 = A(x+ 4) + B(x+ 3),

for all real numbers x. If this statement is true for all x, then in particular it is true when x = −4.
Setting x = −4 gives

−12 + 11 = A(0) + B(−1) =⇒ B = 1.

Setting x = −3 gives
−9 + 11 = A(1) + B(0) =⇒ A = 2.

Thus
3x+ 11

(x+ 3)(x+ 4)
=

2
x+ 3

+
1

x+ 4
.

Expansions of rational functions of this sort are called partial fraction expansions.

Example 3.4.24. Determine
∫

3x+ 11
(x+ 3)(x+ 4)

dx.

SOLUTION : Write ∫
3x+ 11

(x+ 3)(x+ 4)
dx =

∫
2

x+ 3
dx+

∫
1

x+ 4
dx

Then ∫
3x+ 11

(x+ 3)(x+ 4)
dx = 2 ln |x+ 3| + ln |x+ 4| + C = ln(x+ 3)2 + ln |x+ 4| + C.
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Example 3.4.25. Determine
∫

1
x2 + 5x+ 6

dx.

SOLUTION: Write
1

x2 + 5x+ 6
=

1
(x+ 2)(x+ 3)

in the form

A

x+ 2
+

B

x+ 3
,

for constants A and B. This means

1
(x+ 2)(x+ 3)

=
A(x+ 3) + B(x+ 2)

(x+ 2)(x+ 3)
,

i.e. 1 = A(x+ 3) + B(x+ 2) for all x.
Thus

0x+ 1 = (A+ B)x+ (3A+ 2B),

which means A + B = 0 and 3A + 2B = 1. This pair of equations has the unique solution A =
1, B = −1. Thus

1
(x+ 2)(x+ 3)

=
1

x+ 2
=

1
x+ 3

=⇒
∫

1
(x+ 2)(x+ 3)

=

∫
1

x+ 2
−

1
x+ 3

dx

= ln |x+ 3| − ln |x+ 2| + C.

NOTE: Any expression of the form
f(x)

g(x)
where

1. f(x) and g(x) are polynomials and g(x) has higher degree than f(x), and

2. g(x) can be factorized as the product of distinct linear factors

g(x) = (x− a1)(x− a2) . . . (x− ak)

has a partial fraction expansion of the form

f(x)

g(x)
=

A1

x− a1
+

A2

x− a2
+ · · ·+ Ak

x− ak
,

where A1, A2, . . . ,Ak are numbers.

Example 3.4.26. Determine
∫
x3 + 3x+ 2
x+ 1

dx.

In this example the degree of the numerator exceeds the degree of the denominator, so first
apply long division to find the quotient and remainder upon dividing x3 + 3x+ 2 by x = 1.

We find that the quotient is x2 − x+ 4 and the remainder is −2. Hence

x3 + 3x+ 2
x+ 1

= x2 − x+ 4 +
−2
x+ 1

.

Thus ∫
x3 + 3x+ 2
x+ 1

dx =

∫
x2 − x+ 4dx− 2

∫
1

x+ 1
dx =

1
3
x3 −

1
2
x2 + 4x− 2 ln |x+ 1| + C.
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NOTE: In the above example we had
f(x)

g(x)
with f(x) of greater degree than g(x). In such cases we

can always write
f(x)

g(x)
= q(x) +

r(x)

g(x)
,

where the polynomials q(x) and r(x) are the quotient and remainder respectively on dividing f(x)
by g(x), and the degree of r(x) is less than that of g(x).

Example 3.4.27. Determine
∫

x+ 1
(2x+ 1)2(x− 2)

dx.

In this case the denominator has a repeated linear factor 2x+ 1. It is necessary to include both
A

2x+ 1
and

B

(2x+ 1)2 in the partial fraction expansion. We have

x+ 1
(2x+ 1)2(x− 2)

=
A

2x+ 1
+

B

(2x+ 1)2 +
C

x− 2
.

Then
x+ 1

(2x+ 1)2(x− 2)
=
A(2x+ 1)(x− 2) + B(x− 2) + C(2x+ 1)2

(2x+ 1)2(x− 2)
.

This means that the polynomials x+ 1 and A(2x+ 1)(x− 2) +B(x− 2) +C(2x+ 1)2 are equal, and
therefore have the same value when x is replaced by any real number.

x = 2 : 3 = C(5)2 C = 3
25

x = − 1
2 : 1

2 = B
(
− 5

2

)
B = − 1

5

x = 0 : 1 = A(1)(−2) + B(−2) + C(1)2 A = − 6
25

Thus
x+ 1

(2x+ 1)2(x− 2)
=

−6/25
2x+ 1

+
−1/5

(2x+ 1)2 +
3/25
x− 2

and ∫
x+ 1

(2x+ 1)2(x− 2)
dx = −

6
25

∫
1

2x+ 1
dx−

1
5

∫
1

(2x+ 1)2 dx+
3

25

∫
1

x− 2
dx.

Call the three integrals on the right above I1, I2, I3 respectively.

• I1 : Let u = 2x+ 1, du = 2dx, dx = 1
2du.∫ 1

2x+1 dx = 1
2

∫
du
u = 1

2 ln |u|(+C1) = 1
2 ln |2x+ 1|(+C1).

• I2 : Let u = 2x+ 1, du = 2dx, dx = 1
2du.

∫ 1
(2x+1)2 dx = 1

2

∫
u−2 du = − 1

2u
−1(+C2) = − 1

2(2x+1) (+C2).

• I3 :
∫ 1
x−2 dx = ln |x− 2|(+C3).

Thus ∫
x+ 1

(2x+ 1)2(x− 2)
dx = −

3
25

ln |2x+ 1| +
1

10(2x+ 1)
+

3
25

ln |x− 2| + C.
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3.5 Improper Integrals

Suppose that f(x) is a continuous function that satifies

limx→∞f(x) = 0;

for example f(x) = e−x has this property. Then we can consider the total area between the graph
y = f(x) and the x-axis, to the right of (for example) x = 1. This area is denoted by∫∞

1
f(x)dx

and referred to as an improper integral. For a given function, it is not clear whether the area in-
volved is finite or infinite (if it is infinite, the improper integral is said to diverge or to be divergent).
One question that arises is how we can determine if the relevant area is finite or infinite, another
is how to calculate it if it is finite.

Definition 3.5.1. If the function f is continuous on the interval [a,∞), then the improper integral∫∞
a

f(x)dx is defined by ∫∞
a

f(x)dx = lim
b→∞

∫b
a

f(x)dx

provided this limit exists. In this case the improper integral is called convergent (otherwise it’s divergent).
Similarly, if f is continuous on (−∞,a), then∫a

−∞ f(x)dx := lim
b→−∞

∫a
b

f(x)dx

Remarks:

1. So to calculate an improper integral of the form
∫∞

1 f(x)dx (for example), we first calculate∫b
1
f(x)dx

for a general b. This will typically be an expression involving b. We then take the limit as
b→∞.

2. The condition that f(x) is continuous in the definition above is a bit stronger than we really
need. In order to make the definition∫∞

a

f(x)dx = lim
b→∞

∫b
a

f(x)dx

what we really need is that
∫b
a f(x)dx exists for all b with b > a.

3. If both
∫a

−∞ f(x)dx and
∫∞
a f(x)dx exist for some a, then the improper integral

∫∞
−∞ f(x)dx

is defined by ∫∞
∞ f(x)dx =

∫a
−∞ f(x)dx+

∫∞
a

f(x)dx.

Example 3.5.2. Show that the improper integral
∫∞

1

1
x
dx is divergent.

Solution: ∫b
1

1
x
dx = ln x|b1 = lnb− ln 1 = lnb.

Since lnb→∞ as b→∞, limb→∞ lnb does not exist and the integral diverges.
EXERCISE: Think about how this is related to the divergence of the harmonic series

∑ 1
n .
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Example 3.5.3. Evaluate
∫−2

−∞
1
x2 dx.

Solution: ∫−2

b

1
x2 dx = −

1
x

∣∣∣∣−2

b

=
1
2

+
1
b

Then limb→∞
(

1
2

+
1
b

)
=

1
2

, and ∫−2

−∞
1
x2 dx =

1
2

.

Example 3.5.4. Evaluate
∫∞

2
xe−x dx.

Solution: Integrating by parts gives∫b
2
xe−x dx = −xe−x

∣∣b
2 +

∫b
2
e−x dx

= −be−b + 2e−2 − e−b + e2

Taking the limit as b→∞, we obtain∫∞
2
xe−x dx =

2
e2 + e2.

ANOTHER TYPE OF IMPROPER INTEGRAL

If the graph y = f(x) has a vertical asymptote for a value of x in the interval [c,d], these needs
to be considered when computing the integral

∫d
c f(x)dx, since this integal describes the area of a

region that is infinite in the vertical direction at the asymptote.

• If the vertical asymptote is at the left endpoint c, then we define∫d
c

f(x)dx = lim
b→a+

∫d
b

f(x)dx.

• If the vertical asymptote is at the right endpoint d, then we define∫d
c

f(x)dx = lim
b→d−

∫b
c

f(x)dx.

• If the vertical asymptote is at an interior pointm of the interval [c,d], then we define∫d
c

f(x)dx =

∫m
c

f(x)dx+

∫c
m

f(x)dx,

and the two improper integrals involvingm are handled as above.

As in the case of improper integrals of the first type, these improper integrals are said to converge
if the limits in question can be evaluated and to diverge if these limits do not exist. Divergence
means that the area involved is infinite.

Example 3.5.5. Determine whether the improper integral
∫4

−2
1
x2 dx is convergent or divergent.
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SOLUTION: What makes this integral improper is the fact that the graph y = 1
x2 has a vertical

asymptote at x = 0. Thus ∫ 4

−2

1
x2 dx =

∫ 0

−2

1
x2 dx+

∫ 4

0

1
x2 dx

For the first of these two integrals we have∫ 0

−2

1
x2 dx = lim

b→0−

∫b
−2

1
x2 dx

= lim
b→0−

(
−

1
x

)∣∣∣∣b
−2

= lim
b→0−

(
−

1
b

+
1
2

)
Since limb→0−(− 1

b ) does not exist, the improper integral
∫0

−2
1
x2 dx diverges. This means that the

area enclosed between the graph y = 1
x2 and the x-axis over the interval [−2, 0] is infinite.

Now that we know that the first of the two improper integrals in our problem diverges, we
don’t need to bother with the second. The improper integral

∫4
−2

1
x2 dx is divergent.
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