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Chapter 1

Three ways to think about a matrix

Matrices are ubiquitous in mathematics and arise centrally in many areas that are not necessarily
closely related in an obvious way. Matrices are naturally equipped with lots of algebraic structure
(for example the set of n×nmatrices over a ring R or field F is itself a ring with lots of interesting
properties). Which aspects of this extensive algebraic structure are of interest can depend a lot on
the context. There are many ways of thinking about what a matrix is, and it is often helpful, even
necessary, to have access to more than one of them. We discuss three different viewpoints (and
the algebraic considerations that accompany them) in this chapter.

1.1 Linear transformations

For a field F and positive integer n, we will write Fn for the vector space consisting of all column
vectors of length nwith entries in F, andMn(F) for the set of all n×nmatrices with entries in F.

1.1.1 Interpreting a matrix as a linear transformation

If A ∈Mn(F) and v ∈ Fn, we can “multiply” A by v to get another element of Fn.

Example 1.1.1. InM3(Q), write A =

 −1 1 2
−12 8 6

12 −7 −3

. In Q3, write v =

 1
2
3

. Then

Av =

 −1 1 2
−12 8 6

12 −7 −3

 1
2
3

 =

 −1(1) + 1(2) + 2(3)
−12(1) + 8(2) + 6(3)
12(1) − 7(2) − 3(3)

 =

 7
22

−11

 .

Example 1.1.1 demonstrates the process of matrix-vector multiplication. Although this is al-
ready familiar it is worthwhile to consider what is going on in slightly more detail. For a matrix
A and column vector v, you can calculate the product Av only if the number of columns of A is
the same as the number of entries in v. What we are doing when we calculate Av is taking the
linear combination of the columns of A that is determined by the entries of v. This means that if

v =

 a1
...
an

 and A has n columns, then the column vector Av is given by

a1

 Col 1
of
A

+ a2

 Col 2
of
A

+ · · ·+ an

 Col n
of
A

 .

Exercise 1.1.2. If in doubt, confirm this from Example 1.1.1.
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Thus every matrix A ∈Mn×n(F) defines a function TA : Fn → Fn by

TA(v) = Av.

This function is a linear transformation, which means that

• For all u, v ∈ Fn, TA(u+ v) = TA(u) + TA(v) (since A(u+ v) = Au+Av), and

• For all v ∈ Fn and α ∈ F, TA(αu) = αTA(u). (The field element α is referred to as a scalar in
this context).

In general a linear transformation is a function that respects addition and scalar multiplication (in
a context where that makes sense).

NOTES

1. More generally, a p × n matrix A (p rows, n columns) may be thought of as a linear trans-
formation TA from Fn to Fp, via matrix-vector multiplication. If v ∈ Fn, then TA(v) = Av
is the linear combination of the columns of A in which the coefficient of Column i is the ith
entry of v.

2. If A ∈ Mp×n(F) then Column i of A is the image under TA of the vector ei, which has
entry 1 in the ith position and zero in all other positions. So different matrices correspond
to different linear transformations.

3. If T : Fn → Fp is any linear transformation, let A be the matrix in Mp×n(F) whose ith
column is T(ei). Then T(v) = Av for all vectors v ∈ Fn.

Exercise 1.1.3. Prove the statement in Item 3 above.

So we can think of the matrix spaceMp×n(F) as being the set of linear transformations from Fn
to Fp. The presentation given here involves a choice to discuss matrices multiplied (on the right)
by column vectors. It could equally well be presented as in terms of matrices being multiplied on
the left by row vectors.

We let (Fp)T denote the transpose of Fp, i.e. the space of row vectors of length p with entries in
F. Then a p× nmatrix A describes a linear transformation from (Fp)T to (Fn)T via

v→ vA.

Note that vA, which belongs to Fn, is the linear combination of the rows of A in which the coeffi-
cient of Row i is entry i of v. So a (row-)vector-matrix product gives a linear combination of the
rows of the matrix, with coefficients given by the vector entries.

1.1.2 Interpreting a linear transformation as a matrix

Suppose now that V and W are vector spaces of finite dimensions n and p respectively over F,
and let f : V → W be a linear transformation. Let B = {b1, . . . ,bn} and C = {c1, . . . , ck} be bases
for V and W respectively. Write Mf,B,C for the p × n matrix whose ith column contains the C-
coordinates of the element f(bi) ofW.

Theorem 1.1.4. If v ∈ V , then the C-coordinates of f(v) are the entries of the matrix-vector product
Mf,B,C[v], where [v] is the vector in Fn whose entries are the B-coordinates of v.

Proof. Write v = a1b1 + · · ·+ anbn, so [v] =

 a1
...

an

. Then

f(v) = a1f(b1) + a2f(b2) + · · ·+ anf(bn).
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Since the C-coordinates of f(bi) are written into Column i ofMf,B,C, it follows that the C-coordinates
of f(v) are the entries of

a1

 Col 1
of

Mf,B,C

+ a2

 Col 2
of

Mf,B,C

+ · · ·+ an

 Col n
of

Mf,B,C

 =Mf,B,C[v].

Example 1.1.5. Let V = Q4[x], the space of polynomials in x of degree at most 4 over Q, with basis
B = {1, x, x2, x3, x4}. Let W = Q3[x], the space of polynomials of degree at most 3 over Q, with basis
C = 1, x, x2, x3. Let D : V → W be the differential operator, which maps a polynomial to its derivative.
Then D is a linear transformation and

MD,B,C =


0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4

 .

If we want to use this to calculate the derivative of x4 − 3x3 + 2x2 − x, we can calculate the matrix-vector
product 

0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4




0
−1

2
−3

1

 =


−1

4
−9

4

 .

So D(x4 − 3x3 + 2x2 − x) = 4x3 − 9x2 + 4x− 1.

Exercise 1.1.6. In the above example, suppose we used the basis C ′ = {1, 1+x, 1+x+x2, 1+x+x2 +x3}

forW instead of C. How would the matrix change?

The point here is that given a linear transformation f between two vector spaces of finite
dimension, the choice of a basis for each space allows us consider f as a matrix. It is not exactly
true to say that every transformation f corresponds to a matrix in some objective way, because it
is not only f but also the choice of two bases that determine the matrix.

Question 1.1.7. Suppose that f : V →W is a linear transformation between different vector spaces. How
do the matrices that represent f with respect to different bases resemble each other?

In order to answer this question we need some matrix machinery.

1.1.3 Change of Basis

Let V be a F-vector space of dimension n and suppose that B = {b1, . . . ,bn} and B ′ = {v1, . . . , vn}
are bases of V . Then each bi can be written in a unique way as a linear combination of v1, . . . , vn.
For j = 1, . . . ,nwrite

bj =

n∑
i=1

aijvi, aij ∈ F.

Let P denote the n × n matrix whose entry in the (i, j) position is aij. Possibly a better way to
think about the matrix P is that Column j of P is the vector whose entries are the B ′-coordinates
of bj. So the columns of P express the elements of the basis B in terms of their B ′-coordinates.

Lemma 1.1.8. Let x ∈ V , and suppose that x =
∑n
i=1 cibi, so that the B-coordinates of x are c1, . . . , cn.

Then the B ′-coordinates of x are given by the entries of the matrix-vector product P

 c1
...

cn

 .
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Proof. The matrix-vector product is

c1

 Col 1
of
P

+ c2

 Col 2
of
P

+ · · ·+ cn

 Col n
of
P

 .

Since Column j of P expresses bj in terms of its B ′-coordinates, the entries of this product are the
coordinates of c1b1 + · · ·+ cnbn = x in terms of B ′.

Definition 1.1.9. In view of Lemma 1.1.8, we refer to P as the change of basis matrix from B to B ′. Its
columns are the elements of B expressed in terms of B ′.

Remark In the context of Section 1.1.2, you can consider P to be the matrix Mid,B,B ′, where
id : V → V is the identity mapping. (Thanks to Ben for this nice observation).

Now let Q be the change of basis matrix from B ′ to B, defined equivalently - the columns of
Q are the B-column representations of the elements v1, . . . , vn of B ′. As above, we can pass from
the B ′-column representation of any element of V to its B-column representation by multiplying
on the left by Q.

Now let c be any vector in Fn. Then c is the B-column representation of some element v of V ,
and the B ′ column representation of v is Pc. But then the B-column representation of v is given
by Q(Pc) = QPc. However this must be equal to c Thus

QPc = c for all c ∈ Fn.

Hence QP = In, the n × n identity matrix. Similarly PQ = In, so P and Q are inverses of each
other. In particular, every change of basis matrix is invertible, and its inverse is the reverse change
of basis matrix.

On the other hand, every invertible n × n matrix determines a change of basis in Fn. To see
this let P ∈Mn(F) be invertible and let Q be its inverse. This means that PQ = QP = In.

We focus on the product QP = In. This means that e1, the first column of In, is the linear
combination of the columns of Q whose coefficients are the entries of Column 1 of P. Similarly
e2, . . . , en are linear combinations of the columns of Q with coefficients given by the entries of
Columns 2, . . . ,n of P. Then in particular all of the standard basis vectors of Fn belong to the
span of the Columns of Q, and so the columns of Q form a spanning set of Fn. Since Fn has
dimension n it cannot be spanned by fewer than n columns, and so the columns of Q form a
minimal spanning set of Fn, hence they must be linearly independent. Thus the columns of the
invertible matrix Q form a basis BQ of Fn.

Moreover, for j = 1, . . . ,n, the entries of Column 1 of P are the coordinates of ei with respect
to the basis BQ. If v is any vector in Fn, then the coordinates of v with respect to BQ are given
by the entries of Pv (or equivalently Q−1v). So P or Q−1 is the change of basis matrix from the
standard basis of Fn to BQ.

Remarks

1. As above, we could use the fact that PQ = In to show that the columns of P form a basis for
Fn, and by thinking of the rows of PQ (or QP) as linear combinations of the rows of Q (or
P), we can show that the rows of Q (or P) form a basis for (Fn)T .

2. The above argument shows that if A ∈ Mn(F) has a right inverse (i.e. there exists B ∈
Mn(F) with AB = In, then the columns of A form a basis of Fn. It is true that if A has
a right inverse then it also has a left inverse and these coincide, but we are not quite in a
position to prove that yet. We will soon.

We are now in a position to answer Question 1.1.7.
Suppose that V andW are F-vector spaces of dimensions p and n respectively and that f : V →

W is a linear transformation. Let B and B ′ be two bases of V and let C and C ′ be two bases of W.
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Let the change of basis matrices from B ′ to B and from C to C ′ be denoted by P andQ respectively
(so P is a nonsingular n× nmatrix and Q is a nonsingular p× pmatrix). Then

Mf,B′,C′ = QMf,B,C P.

Explanation: Suppose that c is the B ′-column representation of some element v of V . We want to
know what matrix should multiply c on the left in order to give the C ′-column representation of
f(v). Multiplying c by P gives us the B-column representation of v, multiplying that by the p× n
matrix Mf,B,C gives us the C-column representation of f(v), and multiplying that by Q gives us
the C ′-column representation of f(v). Thus, overall we have

[f(v)]C′ = QMf,B,C P [v]B′ .

This motivates the following definition.

Definition 1.1.10. LetA and B be matrices inMp×n(F). ThenA and B are said to be equivalent if there
exist nonsingular matrices P ∈Mn(F) and Q ∈Mp(F) for which

B = QAP.

If two p× n matrices are equivalent, if means that they represent the same linear transforma-
tion from Fn to Fp, possibly with respect to different bases for both spaces.

1.1.4 Similarity

We now specialize the discussion to the case where V = W. Our set up now is that we have a
single vector space V of dimension n, and a linear transformation f : V → V . If B is a basis of
V , we write Mf,B for the matrix that was called Mf,B,B in Section ??. Suppose that B ′ is another
basis of V , and let P be the change of basis matrix from B ′ to B (so the columns of P are the B-
representations of the elements of B ′. Then P−1 is the change of basis matrix from B to B ′ (and
its columns are the B ′-representations of the elements of B). Then

Mf,B′ = P−1Mf,BP.

Definition 1.1.11. Suppose that A and B are matrices in Mn(F). Then A and B are said to be similar if
there exists an invertible matrix P ∈Mn(F) for which

B = P−1AP.

If two matrices are similar, it means that they describe the same linear transformation, with
respect to different bases.

Given a linear transformation f : V → V , it is reasonable to ask whether there is some basis of
V with respect to which its matrix has a particulary nice form. The nicest form that you can hope
for is a diagonal form, in which all entries away from the main diagonal (from upper left to lower
right) are zeros. If there is a basis B = {b1, . . . ,bn} of V for which

Mf,B = diag(λ1, . . . , λn) =


λ1 0 . . . 0
0 λ2 . . . 0
...

. . .
...

0 0 . . . λn

 ,

it means that f(bi) = λi(bi) for i = 1, . . . ,n. This means exactly that each bi is an eigenvector of f.

Definition 1.1.12. Let V be a F-vector space and let f : V → V be a linear transformation. A non-zero
element v of V is called an eigenvector of f if f(v) = λv for some λ ∈ F. In this case λ is called the
eigenvalue of f to which v corresponds.
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So if v is an eigenvector of f, it means that f(v) is just a scalar multiple of v. The mapping
f : V → V is called diagonalizable (or diagonable) if there exists a basis of V with respect to
which the matrix of f is diagonal. This means that there exists a basis of V consisting entirely of
eigenvalues of f.

The “matrix” versions of (some of) these definitions are given below. There are many concepts
and statements in linear algebra that can be expressed either in terms of matrices or in terms of
linear transformations.

Definition 1.1.13. Let A ∈ Mn(F). A non-zero column vector v ∈ Fn is a right eigenvector of A if
Av = λv for some λ ∈ F. A non-zero row vector w ∈ Fn is a left eigenvector of A if wA = λw for sme
λ in F. In each case the scalar λ is the corresponding eigenvalue of A.

If is not always true for a linear transformation f : V → V or for a square matrix A ∈ Mn(F)

that there exists a basis of V (or Fn) consisting of eigenvectors. For example let A =

(
1 1
0 1

)
and investigate right eigenvectors of A. Suppose that(

1 1
0 1

)(
x
y

)
= λ

(
x
y

)
=⇒ x+ y = λx

y = λy.

For an eigenvector x and y cannot both be zero. From the second equation, either y = 0 or λ = 1.
However if y = 0 then λ = 1 anyway from the first equation, so we must have λ = 1, and 1 is the
only eigenvalue of A. Now

x+ y = x =⇒ y = 0,

and any vector of the form
(
x
0

)
is an eigenvector of A corresponding to the eigenvalue 1. These

are the only eigenvectors of A and they are all scalar multiples of
(1

0

)
, they form a 1-dimensional

subspace of F2. So F2 does not have a basis consisting of eigenvectors of A, and A is not similar
to a diagonal matrix.

We do have the following theorem, but its converse is not true (since we can obviously easily
write down examples of diagonal matrices that have repeated eigenvalues).

Theorem 1.1.14. Suppose that A ∈Mn(F) has n distinct eigenvalues λ1, . . . , λn, and that v1, . . . , vn are
respective eigenvectors of A. Then B = {v1, . . . , vn} is a basis of Fn.

Proof. We show that the set B is linearly independent. Suppose it’s not, and seek a contradiction.
Then k be the least index for which {v1, v2, . . . , vk} is linearly dependent. Then k 6 n since B

is linearly dependent, and k > 2 since v1 is not the zero vector. Then v1, . . . , vk−1 are linearly
independent and vk is a linear combination of these, so there exist a1, . . . ,ak−1 ∈ F, not all zero,
with

vk = a1v1 + · · ·+ ak−1vk−1. (1.1)

Multiplying 1.1 on the left by A gives

λkvk = a1λ1v1 + a2λ2v2 + · · ·+ ak−1λk−1vk−1,

and multiplying 1.1 by the scalar λk gives

λkvk = a1λkv1 + a2λkv2 + · · ·+ ak−1λk−1vk−1.

Equating the right hand sides of these two expressions for λkvk gives

a1(λk − λ1) + a2(λk − λ2) + · · ·+ ak−1(λk − λk−1)vk−1. (1.2)

Since the eigenvalues λ1, . . . , λk are distinct, the field elements λk − λi in 1.2 above are all non-
zero. Furthermore the ai in this expression are not all zero, so 1.2 is a linear dependence relation
among v1, . . . , vk−1. This contradicts the choice of k as the least index for which {v1, . . . , vk} has
such a relation.
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A matrix A ∈ Mn(F) is diagonalizable (over F) if there exists a basis B of Fn consisting of
eigenvectors of A. In this case P−1AP is diagonal, where P is matrix whose columns are the
elements of B (this is the change of basis matrix from B to the standard basis). So a matrix is
diagonalizable if it is similar to a diagonal matrix.

There is an issue here that might not be immediately obvious. We demonstrate it with an
example.

Example 1.1.15. Let A =

(
0 −1
1 0

)
inM2(R). To investigate eigenvectors of A we can write

(
0 −1
1 0

)(
x
y

)
= λ

(
x
y

)
=⇒ −y = λx

x = λy

Now substituting the second equation into the first gives −y = λx = λ(λy) = λ2y. Taking
y = 0 is not an option as this would force x = 0 also, and the zero vector cannot be an eigenvector.
So from −y = λ2y we must conclude λ2 = −1. There is no real number λ with this property,
so A has no eigenvalues in R and has no eigenvectors with real entries. However, if we allow
ourselves to consider complex eigenvalues, we can try λ1 = i and λ2 = −i. An eigenvector

(
x
y

)
corresponding to λ1 must satisfy x = iy, for example

(
i
1

)
, and an eigenvector corresponding to λ2

must satisfy x = −iy, for example
(
−i
1

)
. Now

(
i
1

)
and

(
−i
1

)
form a basis of C2, soA is diagonalizable

if we consider it as an element ofM2(C), and in this case

P−1AP =

(
i 0
0 −i

)
, where P =

(
i −i
1 1

)
. (Check this!)

However, A is not diagonalizable withinM2(R).
Given a matrix A ∈Mn(F) (or a linear transformation f : V → V of a n-dimensional F-vector

space V) we can ask about the existence of “nice” bases for describing A, or of “nice” matrices
that are similar to A. The eigenvalues of Amay or may not belong to the field F. We can consider
two cases:

• If we only want to consider similarity within Mn(F), we can try to identify the “nicest”
matrix of the form P−1AP, where P ∈ GL(n,F). This leads to the theory of the rational
canonical form.

• If F̄ is a field that has F has a subfield and contains all the eigenvalues of F, then we can
consider A to be an element of Mn(F̄) and consider similarity over F̄. Then we would
be looking for the “nicest” matrix of the form P−1AP where the entries of the invertible
matrix P (and of P−1AP) belong to F̄ but not necessarily to F. This leads to the theory of the
Jordan canonical form. The Jordan canonical form of the matrix in Example 1.1.15 above is the

diagonal matrix
(
i 0
0 −i

)
.

We will revisit the concept of similarity later in the course.

1.1.5 Rank

Let f : V →W be a linear transformation of F-vector spaces. The kernel and image of f are defined
by

ker f = {x ∈ V : f(x) = 0}; =f = f(x) : x ∈ V .

Lemma 1.1.16. The kernel and image of f are subspaces of V andW respectively.

The proof is left as an exercise.

Definition 1.1.17. The dimension of =f is called the rank of f.
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Let A ∈Mp×n(F). The column space of A is the subspace of Fp that is spanned by the columns
of A. The dimension of this space is called the column rank of A. Since linear combinations of
the columns of A are precisely equal to matrix-vector products of the form Av with v ∈ Fn, the
column space of A is the set of all such vectors. This is also the image of the linear transformation
TA : Fn → Fp defined as left-multiplication by A, and its dimension is the rank of TA. Thus

The column rank of A is the rank of the linear transformation TA.

Analagously, we can define the row rank of A to be the dimension of the subspace of (Fn)T
spanned by the rows of A. This space is called the row space of A and it is the image of the
linear transformation from LA : (Fp)T → (Fn)

T defined for a row vector w ∈ (Fp)T by

LA(w) = wA.

What precisely is the connection between TA and LA is not a particularly easy question to answer
but we will come back to it in Section 1.2. For now we can prove the surprising and non-obvious
fact that they have the same rank. Many different proofs of this theorem can be found in books,
not all of them offer a lot of insight into why the statement is true - many rely on row and column
operations that reduce the matrix to an echelon form.

Theorem 1.1.18. Let A ∈Mp×n(F). Then the row rank and column rank of A are equal.

Proof. Write r for the row rank of A and c for the column rank. We want to show that r = c. Let
v1, . . . , vc be column vectors in Fn that form a basis for the column space of A, and let CA be the
p × c matrix that has v1, . . . , vc as its columns. Then every column of A can be expressed as a
linear combination of v1, . . . , vc in a unique way, and it follows that there exists a c × n matrix R
for which

CA︸︷︷︸
p×c

R︸︷︷︸
c×n

= A.

The first column in R contains the coordinates of Column 1 of A in terms of v1, . . . , vc, and so
on. Looking at the same product the other way round, we see that Row 1 of A is the linear
combination of the rows of R whose coefficients are the entries of Row 1 of CA and so on; each
row of A is a linear combination of the c rows of R. Thus the c rows of R span the rowspace of A,
and the row rank of A is at most c, so r 6 c.

We use essentially the same argument to show that c 6 r and hence that r = c. The row
rank of A is r, hence there exists a spanning set w1, . . . ,wr for the row space of A. Let RA be the
r× nmatrix whose rows are w1, . . . ,wr. Then every row of A has a unique expression as a linear
combination of the rows of RA, so there exists a p× rmatrix C for which

C︸︷︷︸
p×r

RA︸︷︷︸
r×n

= A.

The entries in Row i of C are the coefficients in the expression for Row i of A as a linear combina-
tion of the rows of RA. But now every column of A is a linear combination of the r columns of C,
and hence the dimension of the column space of A is at most r, so c 6 r.

Since c 6 r and r 6 c, we conclude that c = r and that the row rank and column rank of A are
equal.

In view of Theorem 1.1.18, we do not need to distinguish between the row rank and column
rank of a matrix, and we can just refer to its rank. If A is a p×nmatrix, then rank(A) is an integer
between 0 and min(p,n). Here are a few remarks about rank.

1. A matrix has rank 0 if and only if it is the zero matrix.

2. A matrix has rank 1 if and only if it is not the zero matrix and all of its non-zero rows are
scalar multiples of each other (same for columns).
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3. Suppose thatA ∈Mn(F) (soA is square). ThenA has rank n if and only if its columns form
a basis of Fn. By Theorem 1.1.18, this happens if and only if its rows form a basis of (Fn)T .
From the discussion on page 5 we can now say that A has rank n if and only if it has both
a right and a left inverse. Finally if A has both a right inverse B and a left inverse C these
must coincide, since if AB and CA are equal to the identity matrix, then

C = CIn = C(AB) = (CA)B = InB = B.

So A has rank n if and only if A is invertible.

4. It is interesting to consider how rank behaves under matrix addition and matrix multiplica-
tion. There is not that much that can be said about how the ranks of the sum and product of
a pair of matrices depend on their individual rank. We have the following statements.

• Suppose that A and B are matrices of the same size p× n. Then

|rank(A) − rank(B)| 6 rank(A+ B) 6 rank(A) + rank(B).

• Suppose thatA is a p×qmatrix and B is a q×nmatrix. Then the rank of the productAB
is at least equal to rank(A) + rank(B) − q and at most equal to min{rank(A), rank(B)}.

These statements will feature in Assignment 2.

We finish this section now with a discussion of the Rank-Nullity Theorem.

Theorem 1.1.19. Suppose that f : V →W is a linear transformation of finite-dimensional F-vector spaces.
Then

dim(ker f) + dim(Imf) = dimV .

Proof. Write n for the dimension of V and k for the dimension of the kernel of f. Let {b1, . . . ,bk}
be a basis for ker f. This can be extended to a basis B = {b1, . . . ,bk, vk+1, . . . , vn} of V . We show
now that B ′ = {f(vk+1), . . . , f(vn)} is a basis of Imf.

• Letw ∈ Imf. Thenw = f(v) for some v ∈ V , and v = a1b1+· · ·+akbk+ck+1vk+1+· · ·+cnvn,
for a1, . . . ,ak and ck+1, . . . , cn in F. Applying f to this description of v, we obtain

w = f(v)v = a1f(b1) + · · ·+ akf(bk) + ck+1f(vk+1) + · · ·+ cnf(vn)
= ck+1f(vk+1) + · · ·+ cnf(vn),

since f(bi) = 0 for i = 1, . . . ,k. Thus w belongs to the linear span of the elements of B ′ and
B ′ is a spanning set for Imf.

• To see that B ′ is linearly independent, note that a linear dependence relation amongst the el-
ements of B ′would imply that some linear combination of vk+1, . . . , vn, with coefficients not
all zero, belongs to the kernel of f. This is impossible since B is a basis of V and {b1, . . . ,bk}
is a basis of ker f - this means that ker f intersects the span of {vk+1, . . . , vn} only in the zero
element. However the only way to express zero as a linear combination of {vk+1, . . . , vn} is
by taking all the coefficients to be zero.

Thus n − k is the dimension of Imf, which means exactly that dim(ker f) + dim(Imf) = n =
dimV .

A way of thinking informally about Theorem 1.1.19 is that if f : V →W is a linear transforma-
tion, then f carries the space V into the space W. The full dimension of V must be accounted for
in this transformation - the elements of the kernel get “lost” under f and this accounts for some
of the dimension, the rest must survive in the image.

Like most theorems about linear transformations, Theorem 1.1.19 has a “matrix version”,
stated below. If A is p × n matrix, the right nullspace of A is the subspace of Fn consisting of
all those vectors v for which Av = 0. It is the kernel of the linear transformation from Fn to Fp
defined as left multiplication by A. The left nullspace of A consists of those vectors w ∈ (Fp)T for
which wA = 0. It is the kernel of the linear transformation from (Fp)T to (Fn)T defined as right
multiplication by A.
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Theorem 1.1.20. (Rank-nullity theorem, matrix version) Let A be a p× n matrix. Then

1. The sum of the dimension of the right nullspace ofA and the rank ofA is n (the number of columns).

2. The sum of the dimension of the left nullspace of A and the rank of A is p (the number of rows).

1.2 Bilinear Forms

Think about the ordinary scalar product on Fn, defined by
x1
x2

...
xn

 ·


y1
y2

...
yn

 = x1y1 + x2y2 + · · ·+ xnyn ∈ F.

This product can be considered to be a function from V×V to F. It is an example of a bilinear form.

Definition 1.2.1. A bilinear form on a F-vector space V is a function τ : V × V → F that satisfies the
following conditions.

1. τ(u+ v,w) = τ(u,w) + τ(v,w) ∀ u, v,w ∈ V .

2. τ(λu, v) = λτ(u, v) ∀ u, v ∈ V , λ ∈ F.

3. τ(u, v+w) = τ(u, v) + τ(u,w) ∀ u, v,w ∈ V .

4. τ(u, λv) = λτ(u, v) ∀ u, v ∈ V , λ ∈ F.

Suppose that V has dimension n and that B = {b1, . . . ,bn} is a basis of V . If τ is a bilinear form
on V , let AB denote the n × n matrix whose (i, j) entry is τ(bi,bj). Then AB is called the Gram
matrix of τwith respect to the basis B.

Lemma 1.2.2. Let u, v ∈ V and let [u]B and [v]B denote their respective B-column representations. Then

τ(u, v) = [u]TBAB[v]B.

Proof. Write u =
∑n
i=1 pibi and v =

∑n
i=1 qibi where the pi and qp belong to F. Then

τ(u, v) = τ(p1b1 + · · ·+ pnbn,q1b1 + · · ·+ pnbn)

=

n∑
i=1

piτ(bi,q1b1 + · · ·+ pnbn)

=

n∑
i=1

pi

n∑
j=1

qjτ(bi,bj)

=

n∑
i=1

pi

n∑
j=1

aijqj

=
(
p1 . . . pn

)
An×n

 q1
...
qn


= [u]TBAB[v]B.
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On the other hand, if A ∈Mn(F), we can use A to define a bilinear form τ on Fn by

τ(u, v) = uTAv, for u, v ∈ Fn.

The set of all bilinear forms on a F-vector space V is itself a F-vector space, with addition given
by (τ1 +τ2)(u, v) = τ1(u, v)+τ2(u, v) and scalar multiplication given by (λτ)(u, v) = λτ(u, v). If V
is finite-dimensional, then we can choose a basis for V and as above associate every bilinear form
to its Gram matrix, and every matrix to a different bilinear form. This correspondence respects
addition and scalar multiplication, so we can say that the choice of a basis for V determines an
explicit isomorphism between the vector space B(V) of all F-bilinear forms on V and the space
Mn(F) of all n× nmatrices over F. In particular the dimension of B(V) is n2.

Now that we have a matrix description of bilinear forms, we can play the same game as in
Section 1.1 and ask how the matrices that describe the form with respect to different bases are
related. The answer is a bit different.

Theorem 1.2.3. Let f be a bilinear form on the F-vector space V . Let B and B ′ be bases of V , and let P
be the change of basis matrix from B ′ to B. Let AB and AB′ be the Gram matrices of τ with respect to the
two bases. Then

AB′ = PTABP.

Proof. Let u, v ∈ V . Then, by definition of AB,

τ(u, v) = ([u]B)
TAB[v]B.

However, [v]B = P[v]B′ , and [u]B = P[u]B′ . So

τ(u, v) = (P[u]B′)TABP[v]B′

= ([u]B′)TPTABP[v]B′

Thus for all column vectors u and v in Fn we have

uTPTABPv = u
TAB′v.

For each i and j, choosing u = ei and v = ej confirms that PTABP and AB′ have the same entry
in the (i, j) position, and hence that these matrices are equal.

Note on the transpose of a matrix product: The transpose of a p × n matrix A is the matrix n × p
matrix AT (read “A transpose”) defined by (AT )ij = Aji. The rows of AT are the columns of A.
Suppose now that A is p × n and B is n × q, so AB is p × n. We can ask how (AB)T depends on
the transposes of A and B.

(AB)Tij = (AB)ji

=

q∑
k=1

AjkBki

=

q∑
k=1

ATkjB
T
ik

=

q∑
k=1

BTikA
T
kj

= (BTAT )ij.

So (AB)T = BTAT : the transpose of the product of two matrices is the product of their transposes,
in the opposite order. This fact is used in the proof of Theorem 1.2.3 above.

Theorem 1.2.3 motivates the following definition.
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Definition 1.2.4. Two square matrices A and B in Mn(F) are congruent to each other if there exists an
invertible matrix P ∈ GL(n,F) with

B = PTAP.

Congruence is an equivalence relation on Mn(F), and two matrices are congruent if and only
if they describe the same bilinear form on Fn, with respect to different bases.

Now we consider the meaning of the rank of the Gram matrix.

Definition 1.2.5. Let τ be a bilinear form on a F-vector space V of dimension n.

• The left radical L of τ is the subset of V consisting of all those elements v with the property that
τ(v, x) = 0 for all x ∈ V .

• The right radical R of τ is the subset of V consisting of all those elements w with the property that
τ(x,w) = 0 for all x ∈ V .

It is straightforward to verify from the definition of bilinear form that both L and R are sub-
spaces of V .

Example 1.2.6. Let τ be the bilinear form on Q2 with Gram matrix
(

1 −2
−3 6

)
(with respect to the

standard basis).

The left radical of τ is given by

L =

{(
a
b

)
:
(
a b

)( 1 −2
−3 6

)(
x
y

)
= 0 ∀ x,y ∈ Q

}
=

{(
a
b

)
:
(
a− 3b −2a+ 6b

)( x
y

)
= 0 ∀ x,y ∈ Q

}
.

Now
(
a− 3b −2a+ 6b

)
is a row vector - the only way that it can have zero product with every

column vector in Q2 is if it is the zero vector. Thus

L =

{(
a
b

)
: a− 3b = −2a+ 6b = 0

}
=

{
λ

(
3
1

)
: λ ∈ Q

}
.

In particular L is the left nullspace of the Gram matrix, and similarly R is the right nullspace.
Since the Gram matrix is square, its left and right nullspaces have the same dimension by Theorem
1.1.20, and so the left and right radicals of τ have the same dimension. This example demonstrates
the general principle - for any bilinear form τ, the left and right radicals of τ correspond (with
respect to particular basis) to the left and right nullspaces of the Gram matrix of τwith respect to
that basis. A bilinear form is called nondegenerate if its left and right radicals consist only of the
zero element. The following is an alternative version of that definition.

Definition 1.2.7. Let τ be a bilinear form on a vector space V . Then τ is nondegenerate if for every
non-zero element x of V , there exist y, z ∈ V such that τ(x,y) = 0 and τ(z, x) = 0.

The rank of a bilinear form is defined to be the rank of its Gram matrix (with respect to any
basis, they all have the same rank).

1.2.1 Symmetric and alternating forms

Throughout this section we assume that the characteristic of our field F is different from 2. This
essentially means that the element 2(= 1 + 1) is not equal to the zero element of our field and so
2 has an inverse for multiplication.

Definition 1.2.8. A bilinear form τ on V is symmetric if and only if τ(u, v) = τ(v,u) for all u, v ∈ V .
A bilinear form τ on V is skew-symmetric or alternating if and only if τ(u, v) = −τ(v,u) for all
u, v ∈ V .
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It is a straightforward consequence of this definition that a bilinear form is symmetric if and
only if its Gram matrices with respect to all bases are symmetric, and that a bilinear form is
skew-symmetric if and only if its Gram matrices are all skew-symmetric. A square matrix A is
symmetric if AT = A and skew-symmetric if AT = −A. Thus we can observe that the properties
of symmetry and skew symmetry must be preserved under congruence. This is something that
is easily observed at the matrix level anyway, for suppose that A is a symmetric matrix, C is
skew-symmetric, and P is non-singular. Then

(PTAP)T = PTAT (PT )T = PTAP and (PTCP)T = PTCT (PT )T = PT (−C)P = −(PTCP).

So any matrix that is congruent to A is symmetric and any matrix that is congruent to C is skew-
symmetric.

Example 1.2.9. (A symmetric form) For p× q matrices A and B, define τ(A,B) by

τ(A,B) = traceATB.

Then τ is a non-degenerate symmetric bilinear form onMp×n(F).

The proof of the assertion in Example 1.2.9 is an exercise. The symmetry of τ means that
ATB and BTA always have the same trace, even though they may not have the same size. The
nondegeneracy of τ says that if A is a non-zero p×qmatrix, then there exists a q×pmatrix B for
which AB has non-zero trace.

Example 1.2.10. (An alternating form) Define a form d on F2 by

d

((
a

b

)
,
(
c

d

))
= det

(
a c
b d

)
.

Then d is an alternating bilinear form.

Elements of F2 are column vectors of length 2 with entries in F. The form d takes a pair of such
vectors and returns the determinant of the 2× 2 matrix with these columns.

IF τ is an alternating or symmetric bilinear form, it is easily checked that the left and right
radicals of τ coincide, so we can just talk about the radical, denoted radτ. The radical correp-
sonds to the left and right nullspaces of a Gram matrix that represents the form; the left and right
nullspaces coincide for symmetric and skew-symmetric matrices. Two elements u and v of V are
said to be orthogonal with respect to τ (written u ⊥ v or u ⊥τ v) if τ(u, v) = 0.

Definition 1.2.11. Let τ be a symmetric or alternating bilinear form on V , and let S be a subset of V . The
orthogonal complement of S with respect to τ, denoted by S⊥ or S⊥τ is the subset of V consisting of all
elements that are τ-orthogonal to every element of S.

S⊥ = {x ∈ V : τ(x,u) = 0 ∀ u ∈ U}.

NOTES

1. Any element of S⊥ is orthogonal to all linear combinations of elements of S as well as to
elements of S themselves. So S⊥ = 〈S〉⊥, where 〈S〉 is the subspace of V spanned by S. It
is probably more usual to define the orthogonal complement for subspaces instead of for
subsets.

2. If u ∈ V , we write u⊥ for the orthogonal complement of the set {u} (or the 1-dimensional
subspace 〈u〉).

3. If S is a subset or subspace of U, then S⊥ is a subspace of U (not just a subset). This follows
in a straightforward way from the bilinearity of τ.

4. We could define orthogonal complements for forms that are not symmetric or alternating,
but we would have to distinguish between left and right complements.
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5. S⊥ ⊇ radτ for all S ⊆ V .

6. If U1 and U2 are subspaces of V with U1 ⊆ U2, then U⊥2 ⊇ U⊥1 (complementation is inclusion
reversing).

Example 1.2.12. Define a bilinear form τ ofM3(F) by

τ(A,B) = trace(AB).

Let S3(F) be the subspace of M3(F) consisting of all symmetric matrices. Then S3(F) has dimen-
sion 6 and has the set

{E11,E22,E33,E12 + E21,E13 + E31,E23 + E32}

as a basis. Here Eij denotes the matrix that has entry 1 in the (i, j) position and zeros in all other
positions. We can use the definition of τ to confirm that

E⊥11 = {A ∈M3(F) : A11 = 0}
E⊥22 = {A ∈M3(F) : A22 = 0}
E⊥33 = {A ∈M3(F) : A33 = 0}

(E12 + E21)
⊥ = {A ∈M3(F) : A12 = −A21}

(E13 + E31)
⊥ = {A ∈M3(F) : A13 = −A31}

(E23 + E32)
⊥ = {A ∈M3(F) : A23 = −A32}

Thus a matrixA is orthogonal to each of our basis elements of S3(F) and hence to every symmetric
matrix, if and only if A has zero entries on the diagonal and Aij = −Aji for i 6= j. This can be
summarized by saying that A = −AT . Thus the orthogonal complement of S3(F) is the space
A3(F) of skew-symmetric matrices inM3(F).

Note that dimS3(F) = 6 and dimA3(F) = 3, these dimensions are complementary in the sense
that their sum is dimM3(F). In this particular example S3(F) and its orthogonal complement have
trivial intersection, but that does not always happen.

Lemma 1.2.13. Let τ be a nondegenerate symmetric or alternating form on a vector space V of dimension
n over F. Let v ∈ V , v 6= 0. Then v⊥ has dimension n− 1 in V .

Proof. The function fv : V → F defined for x ∈ V by

fv(x) = τ(v, x)

is a linear mapping. It does not map every element of V to zero, since τ is nondegenerate. Thus the
image of fv is at least one-dimensional, and since it is contained in the one-dimensional space F,
it is equal to F. The kernel of fv is exactly v⊥, and by the rank-nullity theorem this has dimension
n− 1.

Our next theorem states that for a nondegenerate symmetric or alternating form on V , the
dimensions of any subspace of V and its orthogonal complement add up to dimV . The idea
of the proof is similar to that of Lemma 1.2.13, which is the special case of a one-dimensional
subspace. We need a preliminary lemma.

Lemma 1.2.14. Suppose that τ is a symmetric or alternating bilinear form on a vector space V of dimension
n, and that U is a subspace of V of dimension k. Then U⊥ has dimension at least n− k in V .

Proof. Let {b1, . . . ,bk} be a basis ofU. For each i define fbi as in the proof of Lemma 1.2.13. Define
a function f : V → Fk by

f(x) =


fb1(x)
fb2(x)

...
fbk(x)

 =


τ(b1, x)
τ(b2, x)

...
τ(bk, x)

 .

15



Then f is a linear mapping from a n-dimensional space to a k-dimensional space. Its kernel isU⊥.
Since the image of f has dimension at most k, it is immediate from the rank-nullity theorem that
U⊥ = ker f has dimension at least n− k.

In particular it follows from Lemma 1.2.14 that if U is a proper subspace of V , then U⊥ is not
the zero subspace.

Theorem 1.2.15. Let τ be a nondegenerate symmetric or alternating form on a vector space V of dimension
n over F. Let U be a subspace of V of dimension k. Then U⊥ has dimension n− k in V .

Proof. Let {b1, . . . ,bk} be a basis ofU. For each i define fbi as in the proof of Lemma 1.2.13. Define
a function f : V → Fk by

f(x) =


fb1(x)
fb2(x)

...
fbk(x)

 =


τ(b1, x)
τ(b2, x)

...
τ(bk, x)

 .

Then f is a linear mapping and its kernel is U⊥. The dimension of U⊥ is n − dim(ImV) by the
rank-nullity theorem. Since Imf is a subspace of Fk its dimension is at most k. What we need to
do to complete the proof is show that it is exactly k.

Now suppose that Imf is not equal to Fk. Then it is a proper subspace of Fk, and we can
consider its orthogonal complement with respect to the ordinary scalar product on Fk, which is a
symmetric bilinear form. By Lemma 1.2.14 and the comment following it, there exists a nonzero
element of Fk which is orthogonal to every element of Imf with respect to the ordinary scalar
product. This means there exist a1, . . . ,ak in F, not all zero, for which

a1τ(b1, x) + a2τ(b2, x) + · · ·+ akτ(bk, x) = 0 for all x ∈ V .

Then τ(a1b1 +a2b2 + · · ·+akbk, x) = 0 for all x ∈ V , which means that a1b1 +a2b2 + · · ·+akbk ∈
radτ. This contradicts the hypothesis that τ is nondegenerate, since a1b1 + a2b2 + · · ·+ akbk is a
nonzero element of V .

We conclude that the image of f is equal to Fk and hence thatU⊥, the kernel of f, has dimension
n− k.

We show now that every symmetric bilinear form can be represented by a Gram matrix that is
diagonal, or equivalently that every symmetric matrix (over any field) is congruent to a diagonal
matrix. A basis {b1, . . . ,bn} that satisfies τ(bi,bj) = 0 for i 6= j is said to be τ-orthogonal - this
usage of the word “orthogonal” arises from the fact that different basis elements are orthogonal
to each other. A τ-orthogonal basis of V is one with respect to which the Gram matrix of τ is
diagonal.

Theorem 1.2.16. Let τ be a symmetric bilinear form defined on a vector space V of dimension n over a
field F. Then there exists a basis of V with respect to which the Gram matrix of τ is diagonal.

Proof. First we assume that τ is nondegenerate. Choose x,y ∈ V for which τ(x,y) 6= 0. Then

τ(x+ y, x+ y) = τ(x, x) + 2τ(x,y) + τ(y,y).

Since τ(x,y) 6= 0, it follows that at least one of τ(x, x), τ(y,y) and τ(x+ y, x+ y) 6= 0. The point of
this is that it shows that there exists an element b1 of V for which τ(b1,b1) = d1 6= 0.
Now write V1 for the τ-orthogonal complement of 〈b1〉 in V . Then V1 has dimension n − 1 by
Lemma 1.2.13 and b1 6∈ V1 (since b1 is not self-orthogonal under τ). It follows that V = 〈b1〉 ⊕ V1.
Now τ restricts to a nondegenerate bilinear form on V1, for let x ∈ V1 be a non-zero element. Then
there exists y ∈ V with τ(x,y) 6= 0, and since τ(x,b1) = 0, such a y exists in V1.
Now the same argument as above says that there exists an element b2 of V1 with τ(b2,b2) = d2 6=
0. The set {b1,b2} is linearly independent since τ(b2,b1) = 0 but τ(b2,b2) 6= 0. Repeating this
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argument leads to a list b1,b2, . . . ,bn of linearly independent elements of V with the following
properties.

τ(bi,bi) = di 6= 0, τ(bi,bj) = 0 for i 6= j.

Note that by the time we get to the introduction of bn, the orthogonal complement of 〈b1, . . . ,bn−1〉
is one-dimensional, so there is no choice about bn and we cannot use the argument above to show
that bn is not self-orthogonal. However, we know that bn is orthogonal to all of b1, . . . ,bn−1 but
is not in the radical of τ (because τ is nondegenerate). Thus it must be that τ(bn,bn) 6= 0.

Now B is a linearly independent set of n elements and is therefore a basis of V , with respect
to which the Gram matrix of τ is diag(d1,d2, . . . ,dn).

If τ is degenerate, let W be a subspace of V for which V = radτ ⊕ W. Then τ restricts to
a nondegenerate symmetric form on W, and so W has a τ-orthogonal basis. Extending this by
elements of radτ leads to a basis of V that is τ-orthogonal.

Note: The statement V = radτ⊕W above says that V is the direct sum of radτ andW. This means
that radτ and W are subspaces of V that span V together and have trivial intersection. Thus the
union of a basis of radτ and a basis ofW is a basis of V .

Whether much more can be said about diagonal matrices that represent a particular bilinear
form often depends on properties of the field F. The number of zeros on the main diagonal of
a diagonal matrix representing a symmetric bilinear form τ is the dimension of the radical of τ -
this is the same for different τ-orthogonal bases.

Suppose that F has the property that every element of F arise as a square in F - that is, for
every x ∈ F there exists a ∈ F with a2 = x. Such fields are called quadratically closed; examples
include the field C of complex numbers. Over a quadratically closed field, if the elements bi of a
τ-orthogonal basis satisfy τ(bi,bi) = di, then for those i with di 6= 0, we can let

√
di be a square

root of di, and replace bi with 1√
di
bi to obtain a basis with respect to which the Gram matrix

is diagonal with only 1s and zeros on the diagonal. In particular every nonsingular symmetric
matrix over a quadratically closed field F is congruent to the identity matrix.

The field R of real numbers is not quadratically closed, but it has the property that every
nonzero element is either a square or the negative of a square. Using the same idea as above,
any orthogonal basis for a symmetric bilinear form on a R-vector space can be adapted to one in
which the entries on the diagonal of the Gram matrix are all equal to 1, −1 or 0.

In the case of alternating forms, we can again show the existence of special bases.

Theorem 1.2.17. Let τ : V × V → F be a nondegenerate alternating form on a vector space V over a field
F, where dimV = n. Then n = 2k for some integer k, and there exists a basis B = {b1, . . . ,bk, c1, . . . , ck}
of V for which

• τ(bi, ci) = 1 for i = 1, . . . ,k, and

• τ(bi,bj) = 0 = τ(ci, cj) for all i, j.

• τ(bi, cj) = 0 for i 6= j.

Proof Outline: This is Problem 7 in Problem Sheet 2 so a full proof is not included here. The basic
idea is similar to that of the proof of Theorem 1.2.16. Start with a non-zero element b1 of V . Then,
by the nondegeneracy of τ, there exists c ′1 with τ(b1, c ′1) 6= 0, and c ′1 can be adjusted by a scalar to
obtain an element c1 with τ(b1, c1) = 1. Now move to the τ-orthogonal complement of 〈b1, c1〉,
show that it has trivial intersection with 〈b1, c1〉, and repeat the process there.

A basis of the type described in Theorem 1.2.17 is referred to as a symplectic basis for the form
τ. Note that it follows from Theorem 1.2.17 that a nondegenerate alternating form can be defined
only on a vector space of even dimension, and also that every skew-symmetric matrix has even
rank.
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1.2.2 Duality

Definition 1.2.18. Let V be a vector space of dimension n over a field F. The dual space of V , denoted V̂ ,
is the space of all linear mappings from V to F.

Note that V̂ is itself a vector space over F, with addition and scalar multiplication defined in
the obvious way. If B = {b1, . . . ,bn} is a basis of V , then for i from 1 to nwe can define an element
b̂i of V̂ by

b̂i(bj) =

{
1 if i = j
0 if i 6= j

Once b̂i has been defined on the basis elements, it extends by linearity to all of V . Since every
element of V̂ is defined by the images of b1, . . . ,bn, every element of V̂ can be expressed in a
unique way as a F-linear combination of b̂1, . . . , b̂n, and hence {b̂1, . . . , b̂n} is a basis of V̂ , referred
to as the dual basis of B and denoted B̂. In particular V̂ has dimesion n also, and V and V̂ are
isomorphic as vector spaces.

A bilinear form τ on V defines a linear mapping θτ : V → V̂ as follows. For x ∈ V , θτ(x) is the
function from V to F defined by

θτ(x)(y) = τ(x,y).

On the other hand, suppose that we start with a linear mapping θ : V → V̂ . We can associate to
this a bilinear form τθ on V defined for x,y ∈ V by

τθ(x,y) = θ(x)(y).

Recall that θ(x) is a function from V to F, so this makes sense.
With this interpretation, we can think of a bilinear form as a linear mapping from V to V̂ . This
mapping is a bijection if and only if the bilinear form is nondegenerate.

So far we have two ways of thinking about a matrix - as a linear transformation and as a
bilinear form. If we think of a square matrix A as the Gram matrix of some bilinear form τ, then
it is fairly easy to interpret the meaning of the transpose of A - it represents the bilinear form τ ′

defined by
τ ′(x,y) = τ(y, x).

The forms τ and τ ′ coincide if and only if τ is a symmetric form, which means exactly that A is
a symmetric matrix. If we are thinking of matrices as linear transformations though, it is a bit
harder to interpret the meaning of the transpose.

Suppose that T : V → V is a linear transformation. Associated with T is a linear transformation
T̂ of V̂ , defined for f ∈ V̂ by

T̂(f) = f ◦ T .

Question: What is the connection between the matrix of T with respect to B and the matrix of T̂
with respect to B̂?

Let A be the matrix of T with respect to B. This means that T(bj) =
∑n
i=1 aijbi. We need to

figure out how to express T̂(b̂j) as a linear combination of the b̂i. Let x ∈ V and write x =
∑
i cibi.

Then

T̂(b̂j)(x) = b̂j(T(x))

= b̂j(T(
∑
i

cibi))

= b̂j(
∑
i

ciT(bi))

= b̂j(
∑
i

ci
∑
k

akibk)

=
∑
i

ajici

=
∑
i

ajib̂i(x).
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Thus
T̂(b̂j) =

∑
i

ajib̂i,

and the matrix of T̂ with respect to B̂ is AT , the transpose of the matrix of T with respect to B.

Remark: Natural isomorphism between V and its double dual ˆ̂V .
We have seen above that every finite dimensional vector space V has the same dimension as its
dual V̂ , and hence they are isomorphic as vector spaces. Once we choose a basis for V we also
define a dual basis for V̂ and the correspondence between the two bases gives us an explicit
isomorphism between V and V̂ . However this isomorphism is not intrinsic to the space V , in the
sense that it depends upon a choice of basis and cannot be described independently of a choice of
basis.

The dual space of V̂ is denoted ˆ̂V ; it is the space of all linear mappings from V̂ to F. By all
of the above discussion it has the same dimension as V̂ and V . The reason for mentioning this
however is that there is a “natural” isomorphism θ from V to ˆ̂V . It is defined in the following way,
for x ∈ V and f ∈ V̂ - note that θ(x) belongs to ˆ̂V , so θ(x)(f) should be an element of F.

θ(x)(f) = f(x).

To see that θ is an isomorphism, suppose that x1, . . . , xk are independent elements of V . Then
θ(x1), . . . , θ(xk) are independent elements of ˆ̂V . To see this let a1, . . . ,ak be element of F for which
a1θ(x1) + · · ·+ akθ(xk) = 0. This means that f(a1x1 + · · ·+ akxk) = 0 for all f ∈ V̂ , which means
that a1x1 + · · ·+ akxk = 0, which means that each ai = 0.

1.3 Matrices and Graphs

A directed graph (or digraph) G consists of a non-empty set V of vertices and a set E of ordered
pairs of these vertices, called edges. Each edge is directed from one vertex of G to another. An
undirected graph is similar, except that the edges are not considered to have a direction.

A number of square matrices are typcially associated to a graph, the most elementary of which
is the adjacency matrix.

Definition 1.3.1. Let G be a (directed) graph with n vertices labelled v1, . . . , vn. The adjacency matrix
A of G is the n× n matrix whose entries are given by

Aij =

{
1 there is an edge directed from vi to vj in G
0 otherwise

Example 1.3.2. A directed graph and its adjacency matrix.
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v3 v4

v5
v6

v1 v2

A =


0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 0 1 0
1 0 0 0 0 0
0 0 1 1 0 1
1 0 0 0 0 0



If u and v are vertices in a directed graph, a (directed) walk from u to v is a sequence of ver-
tices that starts at u and finishes at v, with the property that every pair of consecutive entries
is a directed edge. The length of a path is the number of edges in it. In the example above,
v5, v6, v1, v2, v1, v2, v3 is a directed walk of length 6 from v5 to v3. The adjacency matrix has the
interesting property that its powers count directed walks.

Theorem 1.3.3. LetG be a directed graph with adjacency matrixA (with respect to the ordering v1, v2, . . . , vn
of the vertices). For every positive integer k, the (i, j) entry of Ak is the number of walks of length k from
vi to vj in G.

Proof. By induction on k. The case k = 1 is just the definition of the adjacency matrix.
So assume that the theorem is true for k = m− 1 and consider k = m. Then

(Am)ij =
∑
l

AilA
m−1
lj .

Every path of length m from vi to vj must start with an edge from vi to some vl and follow that
with a path of length m − 1 from vl to vj. For each l, the entry Ail is 1 if (vi, vl) is an edge and
0 otherwise. By the induction hypothesis Am−1

lj is the number of directed walks of length m − 1
from vl to vj in G. Thus for each vertex l, the integer AilAm−1

lj is the number of walks of length
m from vi to vj that have vl as their second vertex. The sum over l of these is the total number of
walks of lengthm from vi to vj in G. This completes the induction proof.

An undirected graph resembles a directed graph except that the edges are unordered pairs of
vertices. The adjacency matrix of an undirected graph is symmetric.

Note that the adjacency matrix of a (directed or undirected) graph G depends not only on the
graph itself but also on the choice of an ordering of the vertices. Suppose that σ is a permutation
of the set {1, . . . ,n}. Let A be the adjacency matrix of Gwith respect to the ordering v1,dots, vn of
the vertices, and let A ′ be the adjacency matrix with respect to the ordering vσ(1), . . . , vσ(n). Then
A ′ is obtained from A by

• first reordering the columns by replacing Column 1 with Column σ(1), Column 2 with Col-
umn σ(2), and so on. This means multiplying on the right by the matrix Pσ, in which each
Column j (for each j) has a 1 as its σ(j)-th entry and is otherwise full of zeros.
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• then reordering the rows by replacing Row 1 with Row σ(1), Row 2 with Row σ(2), etc. This
means multiplying A on the left by the matrix (Pσ)

T , which is also equal to P−1
σ .

• A permutation matrix is a matrix that has exactly one 1 in each row and column and is oth-
erwise full of zeros. Every permutation matrix has the property that its inverse is equal to
its transpose. We have shown that adjacency matrices A and A ′ represent the same graph if
and only if

A ′ = PTAP,

for some permutation matrix P. This relation is known as permutation equivalence; it is a
special case of both similarity and congruence.

The adjacency matrix is one of a number of matrices often associated with a graph. We men-
tion a few more.

Definition 1.3.4. Let G be an undirected graph with n vertices v1, . . . , vn andm edges e1, . . . , em.

• The incidence matrix of G is the n × n matrix C that has a 1 in position (i, j) if the vertex vi is
incident with the edge ej, and zeros elsewhere.

• An oriented incidence matrix of G is the n×m matrix B defined by first assigning a direction to
every edge of G and then setting

Bij =

 1 if vi is the start vertex of ej
−1 if vi is the end vertex of ej

0 otherwise

The oriented incidence matrix depends on a choice of ordering of both the vertices and edges,
and on a choice of orientation of the edges.

Given matrices that are associated with graphs, a general philosophy is to consider how the
properties of the matrix and the graph are related to each other. In the case of an oriented inci-
dence matrix, the rank of the matrix tells us about the number of connected components in the
graph.

Theorem 1.3.5. Let G be a simple graph with n vertices and m edges, and let B be an oriented incidence
matrix of G. Then the rank of B is n− t, where t is the number of connected components of G.

Proof. First suppose that G is connected. This means that for any pair of vertices vi and vj in G,
there exists a walk in G from vi to vj. We consider the left nullspace N of the matrix B. Note that
every column of B has one entry equal to 1, one equal to −1, and is otherwise full of zeros. This
means that the vector (1 1 . . . 1) belongs to the left nullspace of V , so this nullspace is at least
1-dimensional.

Suppose that (a1 a2 . . .an) is a non-zero element of N, and choose k for which ak 6= 0, write
ak = α. Then (a1 a2 . . .an) must satisfy (a1 a2 . . .an)v = 0 for every column v of B, and in
particular for those columns corresponding to edges that are incident with the vertex vk. It follows
that ai = ak = α whenever vi is adjacent to vk. Now by the same reasoning applied to the
neighbours of vk, we must have aj = α whenever vj is adjacent to a neighbour of vk. Since G is
connected, repetition of this step reaches all vertices of G and we conclude that ai = α for all i
and that N is a 1-dimensional space. Thus n = 1 + rank(B) and rank(B) = n− 1.

Now suppose thatG has t connected components and let their numbers of vertices ben1,n2, . . . ,nt,
with m1,m2, . . . ,mt edges respectively. By ordering the vertices component by component, we
can arrange that B has a rectangular block diagonal structure with a n1 × n1 block in the upper
left, etc. Each block is an oriented incidence matrix of a connected component ofG, and so a block
with ni vertices has rank ni − 1. It follows that the total rank is

(n1 − 1) + (n2 − 1) + · · ·+ (nt − 1) = n− t.
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Theorem 1.3.6. Let B be an oriented incidence matrix of an undirected simple graph G. Then

BBT = D−A,

where D is the diagonal matrix whose diagonal entries are the total degrees of the vertices, and A is the
adjacency matrix of A.

Proof. For i = 1, . . . ,n, the entry in the (i, i)-position of BBT is just the ordinary scalar product
of Row i of B with itself. Since every entry of this row is 1 or −1 or 0, this scalar product is the
number of non-zero entries in Row i, which is the total degree of the vertex vi.

Note that each Column of B has exactly two non-zero entries, which are equal to 1 and −1. For
i 6= j, the entry in the (i, j) position of BBT is the scalar product of Row i and Row j of B. If this
is not zero it means that there is a Column whose only two non-zero entries occur in positions i
and j, which means exactly that vivj is an edge in G. There can be at most one such column since
there are no multiple edges in G. So the (i, j) entry of BBT is −1 if vi and vj are adjacent in G and
by 0 otherwise. We conclude that BBT = D−A.

Note that a consequence of Theorem 1.3.6 is that the matrix BBT does not depend on the choice
of orientation of the edges.

Definition 1.3.7. Let G be an undirected graph with adjacency matrixA. The matrix L = D−A is called
the Laplacian matrix of G. Its entries on the main diagonal are the degrees of the vertices of G. Away from
the main diagonal, the entry in position (i, j) is −1 or 0 according to whether vi and vj are adjacent or not.

Properties of the Laplacian matrix of a graph G carry extensive information about properties
ofG itself. Moreover, as a real symmetric matrix it enjoys various special properties. For instance,
it is a consequence of the following lemma that the rank of L tells us the number of connected
components of G.

Lemma 1.3.8. Suppose that A ∈Mn×p(R). Then the rank of the n× n matrix AAT is equal to the rank
of A.

Proof. That rank(AAT ) 6 rank(A) is clear, since every columnn of AAT is a real linear com-
bination of the columns of A. We show now that in this special case, the right nullspace of
AAT is equal to the right nullspace of AT . Suppose that ATv 6= 0 for some v ∈ Rn Then ATv
belongs to the columnspace of AT , and since ATv is a non-zero vector in Rp, it follows that
(ATv)TATv = vTAATv 6= 0. Thus AATv 6= 0, and v does not belong to the right nullspace of
AAT . Then the right nullspaces of AT and AAT coincide and have the same dimension d, and the
ranks of AAT and AT (and A) are all equal to n− d.

As a real symmetric matrix, L has the property that its eigenvalues are all real.

Lemma 1.3.9. Let A be a complex Hermitian n× n matrix and let λ be a complex eigenvalue of A. Then
λ ∈ R.

Note That A is Hermitian means that A = A∗, where A∗ denotes the Hermitian conjugate of A,
whose entries are the complex conjugates of the entries of AT . A real symmetric matrix is a
special case of a complex Hermitian matrix.

Proof. Since A is Hermitian we have for any vector v ∈ Cn that v∗Av ∈ R, since

(v∗Av)∗ = v∗A∗v = v∗Av.

Thus v∗Av is a complex number that is equal to its own complex conjugate, hence it is real.
Now let u ∈ Cn be an eigenvector corresponding to λ. Then

u∗Au ∈ R =⇒ u∗λu ∈ R =⇒ λu∗u ∈ R.

Since v∗v ∈ R (since it is the sum of the entries of u each multiplied by its own complex conjugate)
it follows that λ ∈ R also.
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If G is a graph, it is a consequence of Lemma 1.3.9 that the eigenvalues of the Laplacian ma-
trix L of G are real numbers. In fact they are all non-negative, for let v be an eigenvector of L
corresponding to the eigenvalue λ, and let B be an oriented incidence matrix of G. Then

vTLv = vTλv = λvTv.

On the other hand
vTLv = vTBBTv = (vTB)(BTv) = (BTv)T (BTv).

Since vTv is a positive real number and (BTv)T (BTv) is a non-negative real number, it follows that
λ > 0.

How the eigenvalues of L are related to properties of G is one of the themes of spectral graph
theory. We will be able to prove the following statements.

1. We know that 0 occurs at least once as an eigenvalue of L. We will show that it occurs exactly
once if and only if G is connected.

2. If G is connected, let µ be the least positive eigenvalue of L. This number is called the
algebraic connectivity of G. We will show that it can be considered as a measure of how
robustly connected the graph is. It is bounded above by the vertex connectivity, which is the
least number of vertices whose removal disconects G.

3. The determinant of any (n − 1) × (n − 1) submatrix of L is the number of spanning trees in
G. A subgraph of G is a spanning tree if it involves all the vertices of G, is connected, and
has no cycles.

We will return to these statements later after some investigations of determinants and eigenval-
ues, in general and for the special case of symmetric matrices.

23



Chapter 2

Spectral Properties

2.1 The determinant

Definition 2.1.1. LetA be a n×nmatrix with entries in a field F. The determinant ofA, written det(A)
or |A|, is the element of F given by

det(A) =
∑
σ∈Sn

sign(σ)A1σ(1)A2σ(2) . . .Anσ(n),

where Sn is the group of all permutations of the set {1, 2, . . . ,n}.

The sign of a permutation σ is defined by its parity; the sign is 1 if σ is even and −1 if σ is odd.
A permutation is even if it can be written as the product of an even number of transpositions and
odd if it can be written as the product of an odd number of transpositions; no permutation is both
even and odd. We will write An for the subgroup of Sn consisting of all even permutations.

An way of thinking about the content of Definition 2.1.1 is by looking at all possible ways of
taking the product of one entry from each row and column of A. The number of such products
is n!, and each one of them determines a permutation of σ of {1, . . . ,n}, where σ(i) is the index of
the column from which the contributing entry from Row i is taken. The determinant is obtained
by subtracting the sum of the products corresponding to odd permutations from the sum of those
corresponding to even permutations.

Example 2.1.2. 1. n = 2
In this case there are two permutations, the identity which is even and the transposition (1 2), which
is odd. Thus

det(A) = a11a22 − a12a21.

2. n = 3
In this case there are six permutations, three even and three odd. The even permutations are the
identity and the two 3-cycles (1 2 3) and (1 3 2). The odd permutations are the three transpositions
(1 2), (1 3) and (2 3). The determinant is given by

det(A) = a11a22a33 + a12a23a31 + a13a32a21 − a11a23a32 − a13a22a31 − a12a21a33.

OBSERVATIONS ON THE DEFINITION

1. Suppose that Rows i and j of the square matrix A are identical. Then det(A) = 0.
To see this, let τ denote the transposition that switches i and j and leaves all other points
fixed. If σ is an even permutation, then στ (which means σ ◦ τ) is odd, and every odd
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permutation in Sn has the form στ for some σ ∈ An. Now

det(A) =
∑
σ∈Sn

sign(σ)A1σ(1)A2σ(2) . . .Anσ(n)

=
∑
σ∈An

A1σ(1)A2σ(2) . . .Anσ(n) −
∑
σ∈An

A1στ(1)A2στ(2) . . .Anστ(n)

=
∑
σ∈An

(A1σ(1)A2σ(2) . . .Anσ(n) −A1στ(1)A2στ(2) . . .Anστ(n)).

Now στ(i) = σ(j) and στ(j) = σ(i), and στ(k) = σ(k) for k 6= i, j. Furthermore, since Rows
i and j of A are identical, Aiστ(i) = Aiσ(j) = Ajσ(j), and Ajστ(j) = Ajσ(i) = Aiσ(i). Hence,
for each σ ∈ Sn,

A1στ(1)A2στ(2) . . .Anστ(n) = Aiσ(j)Ajσ(i)
∏
k6=i,j

Akσ(k) = Ajσ(j)Aiσ(i)
∏
k6=i,j

Akσ(k) = A1σ(1)A2σ(2) . . .Anσ(n).

Thus each term in the last sum above is zero, and det(A) = 0.

2. If the matrix A ′ is obtained from A by multiplying a single row by the scalar λ, then
det(A ′) = λdet(A). This follows from Definition 2.1.1, since the effect is to multiply each
term in the sum once by λ. In particular, it follows from 1 that det(A) = 0 if one row of A is
a scalar multiple of another.

3. Suppose that u and v are row vectors of length n. Let A(u), A(v) and A(u + v) be square
matrices that respectively have u, v and u + v as their ith rows and are otherwise identical.
Then

detA(u+ v) = detA(u) + detA(v).

This observation is a straightforward deduction from Definition 2.1.1 but it has important
consequences. Because of 1 above, it means that the act of adding a scalar multiple of one
row to another row in a square matrix does not change the determinant. Applying this
observation repeatedly means that adding any linear combination of Rws k (with k 6= i) to
Row i in a square matrix does not change the determinant. Thus if a matrix has the property
that one of its rows is a linear combination of the other n − 1 rows, then its determinant is
zero.

Our first main theorem in this section is the well-known (but not obvious) fact that a matrix is
invertible if and only if its determinant is not zero.

Theorem 2.1.3. Let A ∈Mn(F). Then A has an inverse inMn(F) if and only if det(A) 6= 0.

Proof. From Item 3. on page 10 we know that A has an inverse if and only if A has rank n, which
occurs if and only if the rows of A form a basis for (Fn)T . Thus if A is not invertible, then one
of its rows is a linear combination of the others, and it follows from 3 above that detA = 0. On
the other hand, suppose that A is invertible. Then each of the standard row vectors eT1 , . . . , eTn
has a unique expression as a linear combination of the rows of A. At least one of these, say eTσ(1),
involves Row 1. This means that by adding a linear combination of Rows 2, . . . ,n to Row 1 in
A, we can obtain a new matrix A1 whose determinant is the same as that of A, and whose only
non-zero entry in Row 1 is in the (1,σ(1)) position. Furthermore A1 has rank n and is invertible,
since it has the same rowspace as A. Now there is an eTσ(2) (different from eσ(1)) whose unique
expression as a combination of the rows of A1 involves Row 2. By adding a combination of the
other rows ofA1 to Row 2, we can obtain a matrixA2 whose only non-zero entry in Row 2 is in the
(2,σ(2)) position, and which has the same determinant as A1 and A. Continuing in this manner,
after n steps we produce a matrixAn that has exactly one non-zero entry in each row and column
(such a matrix is called monomial), and has the same determinant as A. According to Definition
2.1.1, the determinant of An is the product sign(σ)A1σ(1)A2σ(2 . . .Anσ(n), which is not zero.
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Our next goal will be to establish the famous Laplace expansion formula (or cofactor expan-
sion formula) for determinants, and then use it to describe the inverse of a matrix A in terms of
its entries.

We begin with the following lemma, of which item 1 in the observations above is a special
case.

Lemma 2.1.4. Let A be a square matrix and let A ′ be obtained from A by swapping two rows (or two
columns). Then det(A ′) = −det(A).

Proof. Suppose that A ′ is obtained from A by swapping Row i and Row j. Let τ be the transposi-
tion (i j), and note that sign(στ) = −sign(σ) for every σ ∈ Sn. Then

detA ′ =
∑
σ∈Sn

sign(σ)A ′1σ(1)A
′
2σ(2) . . .A ′nσ(n)

=
∑
σ∈Sn

sign(σ)Aiσ(j)Ajσ(i)
∏
k6=i,j

Akσ(k)

=
∑
σ∈Sn

sign(σ)Aiστ(i)Ajστ(j)
∏
k6=i,j

Akστ(k)

=
∑
στ∈Sn

−sign(στ)A1στ(1)A2στ(2) . . .Anστ(n)

= −detA.

Definition 2.1.5. Let A ∈Mn(F). The minor of the entry in the (i, j) position of A, denoted Mij, is the
determinant of the (n− 1)× (n− 1) matrix that remains when Row i and Column j are deleted from A.

Note thatMij depends only on those entries of A that belong neither to Row i nor to Column j.
For A ∈Mn(F), the expression for detA in Definition 2.1.1 is a sum of n! different terms, one

for each permutation of n objects. The number of these terms that involve A11, or A12, or any
particular Aij, is (n− 1)!. We can observe that the sum of all the terms that involve A11 is A11M11.

Choose a row (or column) of A - for example choose Row i. For j from 1 to n, let A(j) denote
the matrix that has Aij in the (i, j)-position, has zeros otherwise throughout Row i, and has the
same entries as A in the other rows. By item 3. in the observations above, we have

detA =

n∑
j=1

detA(j).

So we just need to figure out what detA(j) is. It seems to be “something like”AijMij but we need
to be careful about the signs on the permutations. We can use Lemma 2.1.4. Adjust the matrix
A(j) as follows.

• Move Row i into Row 1, and move Rows 1, . . . , i−1 into Rows 2, . . . , i. This means swapping
Row iwith Row i− 1, then Row i− 1 with Row i− 2 and so on, eventually Row 2 with Row
1, to get the original Row i into the first row. This involves i− 1 swaps of pairs of rows.

• Now move Column j into Column 1, and move Columns 1, . . . , j − 1 into Columns 2, . . . , j.
As above, this involves j− 1 swaps of pairs of columns.

After all of these swaps, what we are left with is a matrix that has the original Aij in the (1, 1)
position, has zeros otherwise in Row 1, and in the lower right n × n region has the matrix that
results from deleting Row i and Column j from the original A. This has been obtained from A(j)
by a total of (i − 1) + (j − 1) swaps of pairs of rows or columns, and its determinant is AijMij.
Each row or column swap changes the sign of the determinant, so by Lemma 2.1.4 we have

detA(j) = (−1)i+j−2AijMij = (−1)i+jAijMij.
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Then we obtain the Laplace expansion formula or cofactor expansion formula for Row i:

detA =

n∑
j=1

(−1)i+jAijMij.

Definition 2.1.6. For any position (i, j) in the matrixA, the cofactorCij is defined byCij = (−1)i+jMij.

So the cofactor expansion formulae are given for rows and columns of A by

• for Row i: detA =
∑n
j=1AijCij

• for Column j: detA =
∑n
i=1AijCij

Finally we describe how to use these formulae and our other observations on determinants,
to write down the inverse of a (nonsingular) matrix A. Define the adjugate of A to be the n × n
matrix given by

(adjA)ij = Cji.

The adjugate is the transpose of the matrix of cofactors of A - its entry in the (i, j)-position is the
cofactor of the entry in the (j, i) position of A.

Theorem 2.1.7. Let A ∈Mn(F). Then

A× adjA = adjA×A = detAIn.

Proof. We will prove the theorem for A× adjA - the other part is similar.
Look at the diagonal entries first. For each i, the entry in the (i, i) position of A× adjA is

n∑
j=1

Aij(adjA)ji =
n∑
j=1

AijCij = detA,

by the Laplace expansion formula for Row i.

Now, the off-diagonal entries. Suppose that i 6= k. Then the (i,k) entry of A× adjA is

n∑
j=1

Aij(adjA)jk =

n∑
j=1

AijCkj.

By the Laplace expansion formula again,
∑n
j=1AijCkj is exactly the determinant of the matrix

that has entries Ai1,Ai2, . . . ,Ain in Row k, and otherwise coincides with A. But this matrix has
the same entries in Row i and Row k, hence its determinant is zero by Lemma 1.

From Theorem 2.1.7, we conclude that if detA 6= 0, then the inverse of A is given by

A−1 =
1

detA
adjA.

Finally, we note that the determinant is a multiplicative function from Mn(F) to F. For a proof
of this statement, refer to Problem Sheet 3.

Theorem 2.1.8. Let A,B ∈Mn(F) Then det(AB) = det(A)det(B).
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2.2 The spectrum of a matrix

Suppose that A ∈ Mn(F) and that v ∈ Fn is an eigenvector of A with corresponding eigenvalue
x. Then

Av = xv = xInv⇐⇒ xInv−Av = 0⇐⇒ (xIn −A)v = 0.

So x is an eigenvalue of A if and only if the right nullspace of the matrix xIn −A contains a non-
zero vector, i.e. if and only if this matrix is singular. By Theorem ??, this happens if and only if
det(xI−A) = 0.

Definition 2.2.1. The equation det(xIn −A) = 0 is called the characteristic equation of A.

Note that

xIn −A =


x− a11 −a12 . . . −a1n
−a21 x− a22 . . . −a2n

...
...

. . .
...

−an1 −an2 . . . x− ann

 .

From the definition of the determinant, we can observe that det(xI−A) is a polynomial of degree
n in x, whose leading term is xn, this comes from the term in the determinant that is just the
product of the entries on the main diagonal. All other terms have lower degree in x, since the do
not involve all of the entries on the main diagonal - these are the only ones in which x appears.

Definition 2.2.2. The expression det(xIn − A) is called the characteristic polynomial of A. Its roots
are the eigenvalues of A.

We can identify how the coefficients in the characteristic polynomial depend on the entries of
A.

1. The coefficient of xn is 1.

2. All terms involving xn−1 come from the product of all n entries on the main diagonal. The
coefficient of xn−1 in

(x− a11)(x− a22) . . . (x− ann)

is −(a11 + a22 + · · ·+ ann), which is −trace(A).

3. The constant term is the determinant of −A, which is (−1)n detA.

4. In general, the coefficient of xn−k is (−1)kPk, where Pk is the sum of the k × k principal
minors of A. A k × k principal minor is the determinant of a k × k submatrix of A whose
main diagonal is part of the main diagonal of A itself. Such a submatrix is called principal it
consists of the intersection of Rows i1, i2, . . . , ik with Columns i1, i2, . . . , ik, for some subset
{i1, i2, . . . , ik} of {1, . . . ,n}. The number of k× k principal submatrices is

(
n
k

)
.

The eigenvalues of A are the roots of the characteristic polynomial. These may not belong to
F but possibly to some extension of F, such as the field of complex numbers. Let p(x) denote the
characteristic polynomial of A, and let λ1, . . . , λn denote its roots. Then

p(x) = (x− λ1)(x− λ2) . . . (x− λn).

Looking at the coefficients of p(x) in terms of the λi gives

1. Constant term: (−1)nλ1λ2 . . . λn = (−1)n detA, so the determinant of A is the product of all
the eigenvalues of A (counting multiplicity).

2. Coefficient of xn−1 : −(λ1 + λ2 + · · · + λn) = −trace(A), so the trace of A (the sum of the
1× 1 principal minors) is the sum of the eigenvalues.

3. Coefficient of xn−2 :
∏
i<j λiλj is the sum of the 2× 2 principal minors of A - this is the sum

of the products in pairs of the eigenvalues.
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4. In general, the coefficient of xn−k is the sum of all products of k eigenvalues ofA, multiplied
by (−1)k. So the sum of all products of k eigenvalues (there are

(
n
k

)
of these) is the sum of

the principal k× kminors (there are
(
n
k

)
of these too).

The list of all eigenvalues of a matrixA is called the spectrum ofA, denoted specA. The number
of times that a particular eigenvalue occurs as a root of the characteristic polynomial is called its
algebraic multiplicity. If λ ∈ specA, the eigenspace of A corresponding to λ is

{v ∈ Fn : (λIn −A)v = 0}.

This is a subspace of Fn whose dimension is called the geometric multiplicity of λ as an eigenvalue
of A. The geometric multiplicity is n− rank(λI−A).

Lemma 2.2.3. Similar matrices have the same eigenvalues, and the same algebraic and geometric multi-
plicities for each one.

Proof. Suppose that A and B are similar matrices in Mn(F) and write B = P−1AP for some P ∈
GL(n,F). Then

det(xI− B) = det(xI− P−1AP)

= det(P−1(xI−A)P)

= detP−1 det(xI−A)det(P)
= det(xI−A).

Thus A and B have the same characteristic polynomial, and hence have the same eigenvalues
with the same algebraic multiplicities.

To see that they have the same geometric multiplicities also, let λ be an eigenvalue of A (and
B), and let UA and UB respectively denote the eigenspaces of A and B corresponding to λ. Let
u ∈ UA. Then

B(P−1u) = P−1APP−1u = P−1Au = P−1λu = λ(P−1u).

Thus P−1u is an eigenvector of B corresponding to λ, and P−1UA ⊆ UB. Since P−1UA has the
same dimension as UA, it follows that dimUA 6 dimUB. On the other hand A = PBP−1, and the
same argument shows that PUB ⊆ UA, hence that dimUB 6 dimUA. Thus dimUA = dimUB,
and the geometric multiplicities of λ for A and B coincide.

We now turn our attention, for a while, to real and complex matrices. The real and complex
fields are somewhat special because they are equipped with the notion of modulus or absolute
value, which allows us to say whether one field element has greater magnitude than another.
Recall that the modulus or absolute value of a complex number z = a + bi is the non-negative real
number given by

|z| = |a+ bi| =
√
a2 + b2.

The spectrum of a complex n × n matrix A is a list of n complex numbers. These may be inter-
preted as points in the complex plane.

Definition 2.2.4. The spectral radius ρ(A) of a matrix A ∈ Mn(C) is the maximum of the moduli of
the eigenvalues of A.

Thus all of the eigenvalues of A are located in the closed disc of radius ρ(A) centred at 0 in the
complex plane, and at least one of them is located on the boundary of this disc.

Example 2.2.5. Let A =

 0 1 0
0 0 1
2 −2 1

 .

The characteristic polynomial ofA is x3−x2+2x−2 = (x−1)(x2+2). The eigenvalues ofA are 1, 1+
√

2i
and 1 −

√
2i and the spectral radius is

√
3.
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For certain matrices with specified properties, we can say a bit more.

1. If A is an upper or lower triangular matrix (over any field), then its eigenvalues are just the
entries on its main diagonal.

2. The spectral radius of A is 0 if and only if A is nilpotent, i.e. An = 0.

3. If A is a complex Hermitian matrix (or a real symmetric matrix) then its eigenvalues are real
numbers - we saw this in Lemma 1.3.9.

4. IfA is a complex Hermitian positive definite matrix (this means that x∗Ax > 0 for all x ∈ Cn,
then the eigenvalues of A are positive real numbers.

5. If A ∈ Mn(R), then the spectrum of A is a list of complex numbers that contains the com-
plex conjugate of each of its entries (because it is the list of roots of a polynomial with real
coefficients). If n is odd, A has at least one real eigenvalue.

6. If A is a positive real matrix (this means that all of the entries of A) are positive, then the
spectral radius ofA is actually an eigenvalue ofA, with algebraic multiplicity 1. This is (part
of) the Frobenius-Perron Theorem, which we will discuss later.

IfA is diagonal (or triangular) its eigenvalues are its diagonal entries. For anyA, the sum of its
eigenvalues is the sum of its diagonal entries. The product of the diagonal entries is one of the n!
different terms that contributes to the determinant of A, which is the product of the eigenvalues.
So maybe there is some (loose, tenuous) connection between diagonal entries and eigenvalues.
Our next theorem, which dates back to 1931, makes this connection a bit more precise in the case
of complex matrices.

Theorem 2.2.6. (Gers̆gorin’s Circle Theorem, part 1) Let A ∈Mn(C). For i = 1, . . .n, let ri be the sum
of the moduli of the off-diagonal entries of Row i of A. Let Di be the closed disc in the complex plane that
has centre Aii (the diagonal entry in Row i of A) and radius ri. Then every eigenvalue of A belongs to
some Di.

Example 2.2.7. In M2(C), let A =

(
0 2
3 −1

)
. The eigenvalues of A are −3 and 2. The Gers̆gorin

Circle Theorem says that each of these numbers lies either in the disc of radius 2 centred at 0 or the disc of
radius 3 centred at −1. In fact they both lie in the latter of these discs in this particular example (one lies
in the intersection of both discs).

Proof. (of Theorem 2.2.6) Let λ ∈ C be an eigenvalue ofA and let v ∈ Cn be a corresponding eigen-
vector, with entries v1, . . . , vn. Choose some i for which the modulus of vi is maximal amongst
the entries of v. Then looking at entry i of Av gives

n∑
j=1

Aijvj = λvi, and
∑
j6=i

Aijvj = (λ−Aii)vi.

Since vi 6= 0 (as v 6= 0 and vi is an entry of greatest modulus in v), we may rearrange this to get

λ−Aii =
1
vi

∑
j6=i

Aijvj.

Taking moduli and using the triangle inequality, we get

|λ−Aii| =

∣∣∣∣∣∣ 1
vi

∑
j6=i

Aijvj

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
j6=i

Aij
vj

vi

∣∣∣∣∣∣
6
∑
j6=i

|Aij|
|vj|

|vi|
.
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From the choice of i it follows that |vj|

|vi|
6 1 for for all j 6= i, hence

|λ−Aii| 6
∑
j6=i

|Aij|,

which is saying exactly that λ is an element of the disc Di.

Note: The discs Di are referred to as Gers̆gorin discs.

Example 2.2.8. Let A =

(
2 −5
1 −2

)
. The eigenvalues of A are i and −i (since detA = 1 and traceA =

0). The Gers̆gorin discs for A are

• D1: centre 2, radius 5

• D2: centre −2, radius 1.

In this example, neither of the eigenvalues belongs to D2, they both belong only to D1.

So it is not necessarily true that each Gers̆gorin disc contains an eigenvalue. The following
extension to the theorem gives some more detail about the connection between the distribution
of eigenvalues and the geometry of the union of discs.

Theorem 2.2.9. LetA ∈Mn(C), with Gers̆gorin discsD1, . . . ,Dn, centred atA11,A22, . . . ,Ann respec-
tively. Suppose that the union R1 of k of these discs is disjoint from the union R2 of the other n − k. Then
R1 contains k eigenvalues of A and R2 contains n− k.

Proof. Let D be the diagonal matrix whose diagonal entries are the same as those of A, and let t
be a continuous real variable. Define

A(t) = (1 − t)D+ t(A),

so A(t) is the matrix whose main diagonal is the same as that of A, and whopse entries otherwise
coincide with those of tA. In particular A(0) = D and A(1) = A Let the Gers̆gorin disc of A(t)
correpsonding to Row i be Di(t). Then Di(t) has centre Aii for all t, and the radius of Di(t) is
t× radius(Di).

The eigenvalues of the diagonal matrix A(0) are just the diagonal entries of A, and the discs
Di(0) all have radius 0. In particular k of these eigenvalues are in R1 and the other k are in R2. As
t increases from 0 to 1, the discs Di(t) expand but their centres do not move. The union of discs
corresponding to the k values of i that contribute to R1 reamins in R1 as t increases from 0 to 1, and
the same is true of the values of i contributing to R2. The eigenvalues of A(t) vary continuously
with t, and so k of them must remain in R1 and n− k in R2 throughout this process.

2.3 Positive matrices - the Frobenius-Perron Theorem

In this section we are considering matrices whose entries belong to the field R of real numbers.
In R (but not in other fields such as C for example), non-zero elements are either positive or
negative, in fact R is an example of an ordered field. This is a very familiar property but actually
it is quite special. It allows us to define the notion of a positive matrix and to investigate what
special properties positive matrices might have.

Definition 2.3.1. A matrix inMp×q(R) is positive if all of its entries are positive (and non-negative if
all of its entries are non-negative). We write A > 0 and A > 0 to indicate that a matrix A is positive or
non-negative. The difference is that some entries of a non-negative matrix may be zero.

Positive square matrices (and certain classes of non-negative matrices) have some special spec-
tral properties that are often collected together into the statement of the Frobenius-Perron Theo-
rem.
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Theorem 2.3.2. Let A be a n× n positive matrix with spectral radius ρ. Then ρ > 0 and

1. ρ is an eigenvalue of A.

2. ρ has algebraic multiplicity 1 as an eigenvalue of A.

3. There is an eigenvector v of A corresponding to ρ that has all of its entries positive.

4. If λ is an eigenvalue of A and λ 6= ρ, then |λ| < ρ.

5. If u is an eigenvector of A (corresponding to any eigenvalue) whose entries are all positive, then u is
a scalar multiple of v (from 3. above).

The key point of Theorem 2.3.2 is Item 1, which is more significant than it might look at first
glance. In general, for a matrix A in Mn(R) or Mn(C), the spectral radius is just the maximum
of the moduli of the eigenvalues. In general there is no reason to expect that the spectral radius
is itself an eigenvalue, since the eigenvalue of greatest modulus need not be real, and if it is
real it need not be positive. So the situation for positive matrices is really special - there is an
eigenvalue of greatest modulus that is a positive real number (this is sometimes called the Perron
root. Not only that but every other eigenvalue has modulus strictly less than that of the Perron
root, there is only one eigenvalue on the circle of radius ρ. Not only that, but this eigenvalue has
a corresponding eigenvector in which all entries are positive, and no other eigenvalue has this
property.

Example 2.3.3. Let A =

(
1 3
4 5

)
.

The characteristic polynomial of A is x2 − 6x − 7 or (x − 7)(x + 1); the eigenvalues are 7 and −1. The

spectral radius is 7. Eigenvectors corresponding to λ = 7 and λ = 1 respectively are
(

1
2

)
and

(
3

−2

)
.

Before proving this theorem in general, we consider what it says about the 2 × 2 case. Let

A =

(
a b
c d

)
be a 2 × 2 matrix with positive real entries. Let the eigenvalues of A be λ and µ.

Then

• µ+ λ = a+ d.

• µλ = ad− bc

Either µ and λ are both real or they are complex numbers that are complex conjugates of each
other. We first show that they must be real.

Lemma 2.3.4. µ ∈ R and λ ∈ R.

Proof. Suppose not, and write µ = x + yi, λ = x − iy. Then 2x = a + d and x2 + y2 = ad − bc.
Now

x2 + y2 =
1
4
(a2 + d2 + 2ad) + y2 = ad− bc

=⇒ 1
4
(a− d)2 + y2 = −bc

Since −bc is negative, this is impossible.

Thus the eigenvalues of A are both real, and since their sum is positive at least one of them
is positive. If one is positive and one negative, then the positive one must have the greater ab-
solute value. Note that A cannot have a repeated real eigenvalue, thus is ruled out by the above
argument with y = 0. This proves items 1, 2 and 4 of the Theorem for the 2× 2 case.
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Now suppose that µ < λ. Then

λ+ µ = a+ d

=⇒ 2λ > a+ d

=⇒ λ >
a+ d

2
.

This means that either λ > a or λ > d (or both). Let v ∈ R2 be an eigenvector of A, with v =
(
v1
v2

)
.

Then neither v1 nor v2 can be equal to zero. To see this note that if v1 = 0 and v2 6= 0, then the first
component of Av is not zero. Thus we can choose v with v1 = 1. Then

Av = λv =⇒ a+ bv2 = λ, c+ dv2 = λv2.

If λ > a then since b is positive it follows from the first equation that v2 is positive. If λ 6> a then
λ > d and the second equation says c = (λ − d)v2. Since c and λ − d are positive, it follows that
v2 is positive. Thus both entries of v are positive, which proves part 3. of the theorem in the 2× 2
case.

Finally, let u =
(
u1
u2

)
be an eigenvector of A corresponding to µ, and as above suppose that

u1 = 1. As above we have

µ+ λ = a+ d =⇒ 2µ < a+ d =⇒ µ < a or µ 6 d

and
Au = µu =⇒ a+ bu2 = µ and c+ du2 = µu2.

If µ < a then the first equation implies that u2 < 0. If µ 6< a then µ < d and the second equation
says c = (µ − d)u2 which means that u2 is negative since c is positive. So the entries of u are of
opposite sign. This completes the proof of the Frobenius-Perron Theorem for n = 2.

We now embark on the proof of the Frobenius-Perron Theorem, starting with the following
lemma.

Lemma 2.3.5. Let A be a positive n × n matrix. Then A has a positive eigenvalue with a positive corre-
sponding eigenvector.

Proof. Let A be a positive matrix inMn(R).
Let S denote the set of vectors x in Rn that have all entries non-negative and satisfy ||x|| = 1. This
is the intersection of the sphere Sn−1 with the set of non-negative vectors in Rn. It is a compact
subset of Rn.

If x ∈ S, then all entries of Ax are positive. To see this, just think about any entry of Ax. The
non-zero entries of x all contribute positively to this, and there are no negative contributions. We
define a function L : S→ R>0 as follows. For x ∈ S,

L(x) = min
{
(Ax)i
xi

: xi 6= 0
}

.

To understand what the function L does, start with x ∈ S. Compare the vectors x and Ax entry
by entry. Look at those positions i in which x has a positive entry xi. For each of these i, the ith
entry of Ax is also positive, so it is xi multiplied by some positive scaling factor αi. The least of
these αi is what we are calling L(x). It is a positive real number.

That is how L(x) is defined for a particular x ∈ S, and L is a continuous function from S to the
set of positive real numbers. Since S is compact, this means that L has a maximum value on S.
Call this ρ, and let v ∈ S be a vector for which L(v) = ρ.

We will show that ρ is an eigenvalue of A and that v is a corresponding eigenvector, and that
v > 0. There are two steps.

1. First we show that Av = ρv. We know that Av > ρv since L(v) = ρ, this means that
(Av)i > ρvi for all i. Thus Av − ρv > 0. This means that A(Av − ρv) is a positive vector
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and so we can choose ε > 0 small enough that A(Av − ρv) > εAv. The vector Av may not
belong to S, but there is a positive real number c for which cAv ∈ S.

A(Av) > (ρ+ ε)Av =⇒ A(cAv) > (ρ+ ε)cAv =⇒ L(cAv) > (ρ+ ε).

This contradicts the choice of ρ as the maximum value of L on S, and we conclude that
Av = ρv.

2. Secondly, we know that v > 0 since v ∈ S. It follows that Av > 0 - no entry of Av can be
equal to zero since v is a non-negative non-zero vector andA is positive. Hence ρv is strictly
positive and so v is strictly positive also.

Lemma 2.3.6. The spectral radius of A is ρ.

Proof. Let µ be any eigenvalue of A, and let y be a corresponding eigenvector, with ||y|| = 1. Bear
in mind that µ, and the entries of y, need not be real numbers. Now look at entry i of Ay and µy.

µy = Ay

=⇒ µyi =

n∑
j=1

Aijyj

=⇒ |µyi| 6
n∑
j=1

|Aijyj|

=⇒ |µ| |yi| 6
n∑
j=1

Aij|yj|.

Let |y| denote the vector whose entries are the moduli of the entries of y. Then |y| ∈ S, and the
last statement above says that each entry of the vectorA|y| is at least equal to |µ| multiplied by the
corresponding element of |y|. This means exactly that L(|y|) > |µ|. Since ρ is the maximum value
of L on S, it follows that |µ| 6 ρ. Thus ρ is the spectral radius of A.

We have now proved parts 1. and 3. of Theorem 2.3.2, but we have not yet fully proved any
of the other parts.

Lemma 2.3.7. ρ has geometric multiplicity 1 as an eigenvalue of A.

Proof. We know that v is a positive eigenvector of A corresponding to ρ. Suppose, anticipating
contradiction, that u is an eigenvector of A corresponding to ρ, and that u is independent of v
over C.

We may assume that the entries of u are real, since ρ is real. If u has entries that are non-real
complex numbers, then the real and imaginary part of u would separately be eigenvectors of A
and at least one of them would be independent of v.

Now, according to this hypothesis, every element of the 2-dimensional space spanned by u
and v (over C or R) is an eigenvector of A corresponding to ρ. Since v > 0, there is a real number
εwith the property that u ′ = v+εu is a non-negative vector with at least one entry equal to zero.
However u ′ 6= 0 since u and v are independent.

This is the required contradiction, since Au ′ would be positive in this case and could not be a
scalar multiple of u ′.

Lemma 2.3.8. The algebraic multiplicity of ρ as an eigenvalue of A is 1.

Proof. The key to this step is to show that A is similar to a (real) matrix A ′ that has the entry ρ in
the (1, 1) position and zeros throughout the rest of Row 1 and Column 1.

Since A and its transpose have the same characteristic polynomial and hence the same spec-
trum, the spectral radius of AT is ρ. Our proof of Lemma 2.3.5 shows that there is a positive
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column vector w that is an eigenvector of AT corresponding to ρ. Thus ATw = ρw and the row
vector wT satisifies

wTA = ρwT .

Now let U be the (n − 1)-dimensional orthogonal complement of w with respect to the ordinary
scalar product on Rn:

U = {u ∈ Rn : wTu = 0}.

Let u ∈ U, and consider the vector Au ∈ Rn. Note that

wTAu = ρwTu = 0,

so Au ∈ U whenever u ∈ U. This means that the subspace U of Rn is A-invariant. This is because
U is the orthogonal complement in Rn of a left eigenvector of A, it has nothing to do with the
positivity of A or the special properties of ρ and w. However these special properties give us an
important extra piece of information.

Let v be the positive eigenvector of A corresponding to ρ, whose existence was shown in
Lemma 2.3.5. Then v 6∈ U since w · v = wTv > 0, because w and v are both positive. Let
{b1, . . . ,bn−1} be a basis of U. Then B = {v,b1, . . . ,bn−1} is a basis of Rn.

Now the matrix A ′ that describes the linear transformation of Rn determined by left multipli-
cation by A, with respect to the basis B, has the following form:

A ′ =


ρ 0 . . . 0
0
... B(n−1)×(n−1)
0


Here B is n × n matrix with real entries. Since A and A ′ are similar, ρ occurs as an eigenvalue
of both, with the same algebraic multiplicity and with geometric multiplicity 1 in each case (by
Lemmas 2.2.3 and 2.3.7). The characteristic polynomial of A ′ is (x − ρ)pB(x), where pB(x) is the
characteristic polynomial of B. If the algebraic multiplicity of ρ as an eigenvalue of A ′ exceeds
1, then ρ is an eigenvalue of B with a corresponding eigenvector vB ∈ Rn−1. This means that
the vector in Rn obtained by preceding v with a zero entry is an eigenvector of A ′ corresponding
to ρ. Since e1 is also an eigenvector of A ′ corresponding to ρ, this means that ρ has geometric
multiplicity at least 2 as an eigenvector of A ′, and hence also as an eigenvector of A. This contra-
diction to Lemma 2.3.7 completes the proof, and we conclude that ρ occurs once as a root of the
characteristic polynomial of A.

Now we come to part 5., which is easy at this stage.

Lemma 2.3.9. Let u be a positive eigenvector of A. Then u is a real positive scalar multiple of v.

Proof. Let µ be the eigenvalue ofA to which u corresponds. Then, µ is real and µ > 0, sinceA and
u are positive and Au = µu. Thus 0 < µ 6 ρ. Choose ε small enough that u ′ = v− εu is positive.
For each iwe have

(Au ′)i = ρvi − µεui > ρ(vi − εui) = ρu
′
i.

Thus Au ′ > ρu ′, which means that Au ′ = ρu ′ by the maximality of ρ as a value of the function L.
This means that u ′ is a ρ-eigenvector of A, which means that u ′, hence u, is a scalar multiple of v
and µ = ρ.

The only item remaining is Item 4.

Lemma 2.3.10. Suppose that µ is an eigenvalue of A, µ 6= ρ. Then |µ| < ρ.
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Proof. Suppose, anticipating contradiction, that |µ| = ρ, and let y be an eigenvector of A corre-
sponding to µ, with ||y|| = 1. Let |y| denote the vector in Cn whose entries are the moduli of the
entries of y. Then |y| ∈ S and for each iwe have

(A|y|)i =
∑
j

Aij|yj| =
∑

|Aijyj| >

∣∣∣∣∣∣
∑
j

Aijyj

∣∣∣∣∣∣ = |µyi| = ρ|yi|.

Thus A|y| > ρ|y| and by Lemmas 2.3.5 and 2.3.7 this means that |y| is a ρ-eigenvector of A and
|y| = v. Then equality holds in the triangle inequality above and we have for each i that

∑
j

|Aijyj| =

∣∣∣∣∣∣
∑
j

Aijyj

∣∣∣∣∣∣ .
So Ai1y1, Ai2y2, . . . ,Ainyn are complex numbers with the property that the sum of their moduli
is the modulus of their sum. This means that they all lie on the same ray in the complex plane (a
ray is a half-line with its endpoint at 0). Since the numbersAij are all real and positive, this means
that y1, . . . ,yn all lie on the same ray. Hence there is some θ for which eiθy is a positive vector.
Thus y is a (complex) scalar multiple of a positive vector, and since ρ is the only eigenvalue of
A to have a positive corresponding eigenvector, it follows that µ = ρ. Thus the only eigenvalue
of A to have modulus ρ is ρ itself, and every other eigenvalue has modulus strictly less than the
spectral radius.

This completes the proof of the Frobenius-Perron theorem.
The theorem was proved by Perron for positive matrices in 1907, and extended to a slightly

broader class of non-negative matrices by Frobenius in 1912. The proof in our lecture notes is
mostly due to Wielandt (1950).

We conclude with some slight extensions of the theorem. A non-negative square matrix is one
whose entries are all non-negative real numbers (they can be zero).

Definition 2.3.11. A non-negative square matrix A is called primitive if Ak is positive for some positive
integer k. The Frobenius-Perron theorem as we have stated it holds for primitive non-negative matrices as
well as positive matrices.

A slightly weaker version of the Perron-Frobenius Theorem holds for irreducible non-negative
matrices. The concept of irreducibility is most easily explained by reference to a graph. Associated
to a non-negative n×nmatrixA is the directed graphG on n vertices in which there is an arc from
vertex i to vertex j if and only if the entry Aij is non-zero (i.e. positive). The graph G is strongly
connected if every vertex can be reached from every other by a path that follows the direction of

the arcs. An example of a non-negative matrix that is not irreducible is
(

1 1
0 1

)
.

An example of a non-negative matrix that is irreducible but not primitive is 0 1 0
0 0 1
1 0 0

 .

The corresponding directed graph has arcs 1 → 2, 2 → 3 and 3 → 1, but no power of the matrix
is positive.

We have the following version of the Frobenius Perron theorem for irreducible matrices.

Theorem 2.3.12. Let A ∈Mn(R),A > 0. If A is irreducible, then

1. The spectral radiusρ of A is an eigenvalue, with a corresponding positive eigenvector v.

2. ρ has algebraic (and geometric) multiplicity 1 as an eigenvalue of A.

3. Every positive eigenvector of A is a scalar multiple of ρ.
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4. It is not necessarily true that ρ is the only eigenvalue whose modulus is equal to ρ. The number of
such eigenvalues is the greatest common divisor of the lengths of all closed paths in the directed graph
of A, and they are evenly spaced around the circle r = ρ.
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2.4 Supplement to Chapter 2: even and odd permutations

Definition 2.4.1. The group consisting of all permutations of a set of n elements is called the symmetric
group of degree n and denoted Sn.

REMARKS

1. The order of Sn is n!, the number of permutations of n objects (read this as “n factorial”).

2. We often think of the n elements being permuted as the first n positive integers 1, 2, . . . ,n,
but this is not intrinsic to the definition of Sn. It doesn’t really matter what these elements
are called as long as they have distinct labels.

3. Although the terminology is potentially problematic, it is important not to confuse the term
“symmetric group” with groups of symmetries of (for example) regular polygons.

This section is mostly about how to represent permutations and how to do calculations with
them. Later in the chapter we will use this information to deduce some nice properties of the
symmetric groups.

An element of S4 is a permutation of the set {1, 2, 3, 4}; this means a function from that set to
itself that sends each element to a different image, and hence shuffles the four elements. In S4, a
basic way to represent the permutation 1→ 1, 2→ 4, 3→ 2, 4→ 3 is by the array(

1 2 3 4
1 4 2 3

)
.

Representing permutations like this we can practise multiplying (or composing) them. In these
notes we will use the convention that for permutations σ and τ, the product στ means “σ after τ
or σ ◦ τ, i.e. that the factor that is written on the right is applied first. This is not a universally
agreed convention and people use both possible interpretations. For this course it is probably a
good idea that we all share the same interpretation to avoid confusion, but in general all that is
important is that you state in which order you are considering the composition to take place and
that you are consistent.

Example 2.4.2. In S5, suppose that

σ =

(
1 2 3 4 5
2 3 5 4 1

)
, τ =

(
1 2 3 4 5
4 2 3 5 1

)
.

Calculate the products στ and τσ.

Solution: To calculate στ, we apply τ first and then σ. Remember that this is just a composition
of functions.

• τ sends 1 to 4, then σ sends 4 to 4. So στ sends 1 to 4.

• τ sends 2 to 2, then σ sends 2 to 3. So στ sends 2 to 3.

• τ sends 3 to 3, then σ sends 3 to 5. So στ sends 3 to 5.

• τ sends 4 to 5, then σ sends 5 to 1. So στ sends 4 to 1.

• τ sends 5 to 1, then σ sends 1 to 2. So στ sends 5 to 2.

We conclude that

στ =

(
1 2 3 4 5
2 3 5 4 1

)(
1 2 3 4 5
4 2 3 5 1

)
=

(
1 2 3 4 5
4 3 5 1 2

)

τσ =

(
1 2 3 4 5
4 2 3 5 1

)(
1 2 3 4 5
2 3 5 4 1

)
=

(
1 2 3 4 5
2 3 1 5 4

)
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This array format is not the only way of representing a permutation and not always the most
useful way. Another way of thinking about a permutation π is by thinking about how it moves
the elements of the set around, by starting with a single element and looking at the sequence of
images when you repeatedly apply π to it. Eventually you will have to get back to the original
element. Consider the following example in S14.

π =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14

11 9 8 2 5 1 12 14 6 7 3 13 10 4

)
Start with the element 1 and look at what happens to it when you repeatedly apply π.

• First you get 1→ 11;

• Then 11→ 3;

• Then 3→ 8;

• Then 8→ 14;

• Then 14→ 4;

• Then 4→ 2;

• Then 2→ 9;

• Then 9→ 6;

• Then 6→ 1.

After nine applications of πwe arrive back at 1 and this is the first time we have a repetition in the
list. This will happen every time: the list can’t continue indefinitely without repetition because
there are only finitely many elements being permuted. Suppose that after starting at 1 the first
repetition occurs at Step k, after k applications of π. Then we have

1→ a1 → a2 → · · · → ak−1 →

where 1,a1, . . . ,ak−1 are distinct. The next element (ak) is a repeat of one of these. However it
can’t be a repeat of a1, because 1 is the only element whose image under π is a1, and ak−1 6= 1.
The same applies to a2, . . . ,ak−1. So it must be that 1 (the element where we started) is the first
element to be repeated, and that we close the circle that started with 1. In our example above
there were nine distinct elements in the sequence that started at 1. So the permutation π produces
the following cycle:

1→ 11→ 3→ 8→ 14→ 4→ 2→ 9→ 6→ 1

This cycle is often written using the following notation:

(1 11 3 8 14 4 2 9 6).

Note that 1 is not written at the end here. The above notation means the permutation (of 14
elements in this case) that sends 1 to 11, 11 to 3, etc, and sends 6 back to 1. There is nothing in
the notation to indicate that we are talking about an element of S14 - this has to be clear from the
context. Also, it is understood that elements that are not mentioned in the above notation are
fixed by the permutation that it denotes. The permutation (1 11 3 8 14 4 2 9 6) is an example of
a cycle of length 9 in S14. It is not the same as the permutation π that we started with, but it does
coincide with π on the set of nine elements that can be obtained by starting at 1 and repeatedly
applying π. This set is called the orbit of 1 under π.

The point of this discussion is that π can be written as a product (or composition) of disjoint
cycles in S14. The next step towards doing so is to look for the first element (in the natural order)
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of our set that is not involved in the first cycle. This is 5. Go back to π and see what happens to 5
under repeated application of π. We find that

5→ 5,

so 5 is fixed by π. We could think of this as a cycle of length 1.
There are still some elements unaccounted for. The first one is 7. Looking at the orbit of 7

under π, we find
7→ 12→ 13→ 10→ 7

so we get the cycle (7 12 13 10) of length 4. Note that this has no intersection with the previous
cycles.

Our conclusion is that π can be written as the product of these disjoint cycles:

π = (1 11 3 8 14 4 2 9 6)(7 12 13 10).

If you like you can explicitly include (5) as a third factor, but the usual convention is not to bother
including elements that are fixed in expressions of this nature, if an element does not appear it is
understood to be fixed.

Notes

1. The representation of π in “array” format can easily be read from its representation as a
product of disjoint cycles. For example if you want to know the image of 8 under π, just
look at the cycle where 8 appears - its image under π is the next element that appears after
it in that cycle, 14 in this example. If your element is written at the end of a cycle, like 10 in
this example, then its image under π is the number that is written in the first position of that
same cycle (so 10 → 7 here). An element that does not appear in any of the cycles is fixed
by the permutation.

2. The statement above says that π can be effected by first applying the cycle (7 12 13 10)
(which only moves the elements 7, 12, 13, 10) and then applying the cycle (1 11 3 8 14 4 2 9 6)
(which only moves the elements 1, 11, 3, 8, 14, 4, 2, 9, 6). Since these two cycles operate on dis-
joint sets of elements and do not interfere with each other, they commute with each other
under composition - it does not matter which is written first in the expression for π as a
product of the two of them. So we could equally well write

π = (7 12 13 10)(1 11 3 8 14 4 2 9 6).

3. The expression for a permutation as a product of disjoint cycles is unique up to the order
in which the cycles are written. This means that the same cycles must appear in any such
expression for a given permutation, but they can be written in different orders.

It might also be worth mentioning that a given cycle can be written in slightly different
ways, since it doesn’t matter which element is taken as the “starting point”. For example
(7 12 13 10) and (13 10 7 12) represent the same cycle.

Definition 2.4.3. The expression of an element of Sn as a product of disjoint cycles partitions the set
{1, 2, . . . ,n} into disjoint orbits. In the above example there are three orbits:

{1, 2, 3, 4, 6, 8, 9, 11, 14}, {5}, {7, 10, 12, 13}.

If two elements belong to the same orbit for a permutation π, it means that some power of π
takes one of those elements to the other. Note that fixed points do count as orbits. So the identity
element of Sn has n orbits each consisting of a single element. A permutation in Sn has just one
orbit if it is a single cycle involving all n elements.

It is good idea to practise moving between the “array representation” and “disjoint cycle repre-
sentation” of a permutation. There is another way of representing permutations that is sometimes
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useful. We could think of the “simplest” type of non-identity permutation as being one that just
swaps two elements and leaves the rest fixed. Such a permutation is called a transposition. The
transposition that (for example) interchanges 1 and 2 and leaves all the other elements fixed is
denoted, in typical cycle notation, as (1 2).

Theorem 2.4.4. Every element of Sn can be expressed as a product of transpositions.

Rather than giving a formal general proof of Theorem 2.4.4, we will look at a way of expressing
a given permutation as a product of transpositions. This contains all that would be required for a
fully detailed proof, without having to worry about setting up cumbersome general notation.

Example 2.4.5. In S8 (for example), the cycle (2 4 7 6 8) can be written as the product

(2 8)(2 6)(2 7)(2 4)

of four transpositions.
To see this, just look at what happens to each element under the proposed composition of transpositions.
Start with 2. We have:

2→ 4.

Move on to 4:
4→ 2→ 7.

Then 7:
7→ 2→ 6.

Then 6:
6→ 2→ 8.

Finally 8:
8→ 2.

So overall our composition of transpositions amounts to the cycle

2→ 4→ 7→ 6→ 8→ 2,

as we wanted.

Note: The expression for a given cycle (or permutation) as a product of transpositions is not
unique. For example we could write the 4-cycle above equally well as (4 7 6 8 2), then using the
same technique to write it as a product of transpositions would result in

(4 2)(4 8)(4 6)(4 7),

which does not involve the same transpositions as our example above, although it is the same
permutation.

Example 2.4.6. In S12, write the element(
1 2 3 4 5 6 7 8 9 10 11 12

11 4 6 1 10 7 8 12 9 3 2 5

)
as a product of transpositions.

Solution: First write it as a product of disjoint cycles.

(1 11 2 4)(3 6 7 8 12 5 10).

Then as a product of transpositions:

(1 4)(1 2)(1 11)(3 10)(3 5)(3 12)(3 8)(3 7)(3 6).

This expression involves nine transpositions.
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Exercise 2.4.7. How many of the n! elements of Sn are transpositions?
How many are 3-cycles? (i.e. cycles of length 3, like (1 2 3)).

The number of transpositions involved in an expression for a permutation as a product of
transpositions is not uniquely determined either, since for example (2 3) and (1 3)(2 3)(1 2) are
the same permutation (check this). However, it is true that no permutation can be written both as
the product of an even number and an odd number of permutations. To prove this is not difficult
but involves a bit of fussing. This is our next task.

Theorem 2.4.8. A permutation in Sn cannot be expressed both as the product of an even number and an
odd number of transpositions.

Proof. Let π ∈ Sn, and suppose that π can be written as a product of s transpositions, i.e.

π = τsτs−1 . . . τ2τ1,

where each τi is a transposition. Let r be the number of orbits of π (i.e. the number of cycles in the
expression for π as a product of disjoint cycles, including fixed points). Then r is fully determined
by π and so is n− r (this means that the numbers r and n− r do not depend on any choice about
how π is represented). We will show that the numbers s and n − r are either both even or both
odd.

We will do this by induction on s, the starting point being s = 0. If s = 0 then π is the identity
permutation, r = n and n− r = 0. So in this case s and n− r are both zero, they are both even.

The case s = 1 is also manageable. If s = 1, then π is a single transposition, so it has one cycle
of length 2 and n − 2 fixed points. In this case r = n − 1 and n − r = 1, so s and n − r are both
equal to 1, they are both odd.

Now suppose that s and n−r have the same parity for all values of s up to s = k, and consider
the case s = k+ 1. This means

π = τk+1τk . . . τ2τ1,

where each τi is a transposition. Let τk+1 = (1 2) (there is no loss of generality here since we can
relabel the elements that are being permuted if necessary), let π ′ be the element of Sn given by

π ′ = τk . . . τ2τ1,

and let r ′ be the number of orbits of π ′. We will show that the number r of orbits of π differs from
r ′ by 1.
Case 1: Suppose first that 1 and 2 belong to the same orbit in π ′, and write the cycle corresponding
to this orbit as (1 a2 . . .al 2 al+m . . .am). Then we have (check this)

(1 2)(1 a1 . . . al 2 al+1 . . .am) = (1 a1 . . .a1)(2 al+1 . . .am).

So the orbit of π ′ that contained the elements 1 and 2 is split into two separate orbits by the
multiplication by τk+1. Other orbits of π ′ are unaffected since they do not involve 1 or 2. So in
the case where 1 and 2 belong to the same orbit of π ′, we have r = r ′ + 1.
Case 2: Suppose that 1 and 2 belong to different orbits of π ′, and write the cycles corresponding
to these orbits as

(1 a1 . . .al), (2 b1 . . .bm)

where none of the ai is equal to any of the bj. Then (check that)

(1 2)(1 a1 . . .al)(2 b1 . . .bm) = (1 a1 . . .al 2 b1 . . .bm),

so the effect of the multiplication by (1 2) is to combine these two orbits into one. As in Case 1
there is no effect on the other orbits of π ′. So in the case where 1 and 2 belong to different orbits
of π ′, we have r = r ′ − 1.

By our induction hypothesis, n−r ′ has the same parity as k. The above argument above shows
that n − r differs from n − r ′ by 1, and hence it must have the same parity as k + 1 which is the
number of transpositions in π.
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We have proved that the parity (oddness or evenness) of the number of transpositions in any
expression for π as a product of transpositions is the same as the parity of n− r. In particular, for
a given π, this number of transpositions is always even or always odd.

Definition 2.4.9. An element of Sn is called even if it can be written as the product of an even number
of transpositions, and odd if it can be written as the product of an odd number of transpositions. Every
element of Sn is either even or odd (not both).

Note that the inverse of an even permutation is again even (it involves the same transpositions
listed in the opposite order), and that the product of two even permutations is even. Moreover, the
identity permutation is even, since it can be written as the “product of zero transpositions” or as
the square of any transposition. Thus the set of even permutations of n objects is a subgroup of Sn.
This is known as the alternating group of degree n and denoted by An. Directly counting the even
permutations of a set of n elements is a more difficult task than counting all the permutations.
However, by showing that the even permutations can be put in one-to-one correspondence with
the odd permutations, we can show that exactly half of all the elements of Sn are even.

Theorem 2.4.10. The order of the alternating group An is
n!
2

.

Proof. Let the numbers of even and odd permutations in Sn be k1 and k2 respectively, and let
τ denote the transposition (1 2). For every even permutation π, we have a corresponding odd
permutation πτ. Thus there are at least as many odd permutations as even permutations, k1 6 k2.

On the other hand, for every odd permutation σ we have the corresponding even permutation
στ. So there are at least as many even permutations as odd permutations, k2 6 k1.

It follows that k1 = k2 and hence that the even permutations and odd permutations each
account for half of all permutations. Thus

|An| =
n!
2

.
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