Partial matrices of constant rank over finite fields

ILAS Meeting 2013
 Providence

Rachel Quinlan
 rachel.quinlan@nuigalway.ie joint work with James McTigue

National University of Ireland, Galway

```
June 3, }201
```


The setup

A partial matrix over a field \mathbb{F} is a matrix whose entries are either specified entries of \mathbb{F} or independent indeterminates. A completion of a partial matrix is a matrix obtained by assigning a value from \mathbb{F} to each indeterminate entry.

The setup

A partial matrix over a field \mathbb{F} is a matrix whose entries are either specified entries of \mathbb{F} or independent indeterminates. A completion of a partial matrix is a matrix obtained by assigning a value from \mathbb{F} to each indeterminate entry.

Problems about Rank

■ Given a partial matrix, what is the range of ranks of its completions?

- Characterize (all, or extremal examples of) partial matrices whose completions satisfy specified rank bounds, e.g. have constant rank.

The setup

A partial matrix over a field \mathbb{F} is a matrix whose entries are either specified entries of \mathbb{F} or independent indeterminates. A completion of a partial matrix is a matrix obtained by assigning a value from \mathbb{F} to each indeterminate entry.

Theorem (adapted from Huang and Zhan (2011))

Let A be a $m \times n$ partial matrix of constant rank r over a field \mathbb{F}. If $|\mathbb{F}| \geq \max (m, n)$ then A possesses a $r \times r \operatorname{sub}($ partial)matrix whose completions all have rank r.

An Example

The following 3×4 partial matrix over \mathbb{F}_{2} has all completions of rank 3 , but possesses no 3×3 submatrix of constant rank 3 .

$$
\left(\begin{array}{cccc}
1 & X & 0 & 1 \\
1 & 1 & Y & 0 \\
1 & 0 & 1 & Z
\end{array}\right)
$$

So some condition on the field order is necessary for the theorem to hold.

An Example

The following 3×4 partial matrix over \mathbb{F}_{2} has all completions of rank 3 , but possesses no 3×3 submatrix of constant rank 3 .

$$
\left(\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1
\end{array}\right)
$$

So some condition on the field order is necessary for the theorem to hold.

An Example

The following 3×4 partial matrix over \mathbb{F}_{2} has all completions of rank 3 , but possesses no 3×3 submatrix of constant rank 3 .

$$
\left(\begin{array}{llll}
1 & X & 0 & 1 \\
1 & 1 & 1 & 0 \\
1 & 0 & 1 & 0
\end{array}\right)
$$

So some condition on the field order is necessary for the theorem to hold.

An Example

The following 3×4 partial matrix over \mathbb{F}_{2} has all completions of rank 3 , but possesses no 3×3 submatrix of constant rank 3 .

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
1 & 1 & Y & 0 \\
1 & 0 & 1 & 1
\end{array}\right)
$$

So some condition on the field order is necessary for the theorem to hold.

An Example

The following 3×4 partial matrix over \mathbb{F}_{2} has all completions of rank 3 , but possesses no 3×3 submatrix of constant rank 3 .

$$
\left(\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & Z
\end{array}\right)
$$

So some condition on the field order is necessary for the theorem to hold.

Some Observations

Question

A is a $m \times n$ partial matrix of constant rank r over a field \mathbb{F}, with $m \leq n$. If A is exceptional (i.e. has no $r \times r$ submatrix of constant rank r), what can be said about \mathbb{F}, m and n ?

Some Observations

Question

A is a $m \times n$ partial matrix of constant rank r over a field \mathbb{F}, with $m \leq n$. If A is exceptional (i.e. has no $r \times r$ submatrix of constant rank r), what can be said about \mathbb{F}, m and n ?

- A possesses constant columns (assumed linearly independent).
- Let C be the subspace of \mathbb{F}^{m} spanned by the constant columns. Then $1 \leq \operatorname{dim} C \leq r-2$ and every element of C^{\perp} includes at least one zero entry.
- If $|\mathbb{F}| \geq r$, then $\operatorname{dim} C \leq|\mathbb{F}|-2$, and C includes an element with exactly one non-zero entry. An induction argument produces an $r \times r$ submatrix of A of constant rank r.

Some Observations

Question

A is a $m \times n$ partial matrix of constant rank r over a field \mathbb{F}, with $m \leq n$. If A is exceptional (i.e. has no $r \times r$ submatrix of constant rank r), what can be said about \mathbb{F}, m and n ?

- A possesses constant columns (assumed linearly independent).
- Let C be the subspace of \mathbb{F}^{m} spanned by the constant columns. Then $1 \leq \operatorname{dim} C \leq r-2$ and every element of C^{\perp} includes at least one zero entry.
- If $|\mathbb{F}| \geq r$, then $\operatorname{dim} C \leq|\mathbb{F}|-2$, and C includes an element with exactly one non-zero entry. An induction argument produces an $r \times r$ submatrix of A of constant rank r

Some Observations

Question

A is a $m \times n$ partial matrix of constant rank r over a field \mathbb{F}, with $m \leq n$. If A is exceptional (i.e. has no $r \times r$ submatrix of constant rank r), what can be said about \mathbb{F}, m and n ?

- A possesses constant columns (assumed linearly independent).
- Let C be the subspace of \mathbb{F}^{m} spanned by the constant columns. Then $1 \leq \operatorname{dim} C \leq r-2$ and every element of C^{\perp} includes at least one zero entry.
■ If $|\mathbb{F}| \geq r$, then $\operatorname{dim} C \leq|\mathbb{F}|-2$, and C includes an element with exactly one non-zero entry. An induction argument produces an $r \times r$ submatrix of A of constant rank r.

Exceptional cases occur only if $|\mathbb{F}|<r$

The following theorem can be proved by induction on r.

Theorem

There exist exceptional $m \times n$ (with $m \leq n$) partial matrices of constant rank r over \mathbb{F}_{q} if and only if $r>q$ and $n \geq r+q-1$.

The base case: $r=q+1, n \geq 2 q$
An example with $q=3:(q+1) \times(2 q)$, exceptional of constant rank 4.

$$
\left(\begin{array}{rrrrrr}
1 & 1 & X & 1 & 1 & 1 \\
1 & 2 & 1 & Y & 1 & 1 \\
2 & 0 & 1 & 1 & Z & 1 \\
0 & 2 & 2 & 1 & 1 & W
\end{array}\right)
$$

The case $r=q+1$: need at least $2 q$ columns

Let A be a partial $m \times n$ matrix over $\mathbb{F}_{q}(m \leq n)$ of constant rank $q+1$, and let $C \subset \mathbb{F}_{q}^{m}$ be the span of the constant columns of A.

- If $\operatorname{dim} C \geq q$, then A is not exceptional.
- If Contains an element with exactly one non-zero entry, then A has a $(m-1) \times(n-1)$ submatrix of constant rank q, and A is not exceptional
- Otherwise C^{\perp} has the "distributed zero property": every element of C^{\perp} has at least one zero entry, but there is no position that is always zero in C^{\perp}
- This means $\operatorname{dim} C \geq q-1$, so if A is exceptional, $\operatorname{dim} C=q-1$ and A has (exactly) $q-1$ constant columns.

The case $r=q+1$: need at least $2 q$ columns

Let A be a partial $m \times n$ matrix over $\mathbb{F}_{q}(m \leq n)$ of constant rank $q+1$, and let $C \subset \mathbb{F}_{q}^{m}$ be the span of the constant columns of A.

- If $\operatorname{dim} C \geq q$, then A is not exceptional.
- If C contains an element with exactly one non-zero entry, then A has a $(m-1) \times(n-1)$ submatrix of constant rank q, and A is not exceptional.
- Otherwise C^{-}has the "distributed zero property": every element of C^{\perp} has at least one zero entry, but there is no position that is always zero in C^{\perp}
- This means $\operatorname{dim} C \geq q-1$, so if A is exceptional, $\operatorname{dim} C=q-1$ and A has (exactly) $q-1$ constant columns.

The case $r=q+1$: need at least $2 q$ columns

Let A be a partial $m \times n$ matrix over $\mathbb{F}_{q}(m \leq n)$ of constant rank $q+1$, and let $C \subset \mathbb{F}_{q}^{m}$ be the span of the constant columns of A.

- If $\operatorname{dim} C \geq q$, then A is not exceptional.
- If C contains an element with exactly one non-zero entry, then A has a $(m-1) \times(n-1)$ submatrix of constant rank q, and A is not exceptional.
- Otherwise C^{\perp} has the "distributed zero property": every element of C^{\perp} has at least one zero entry, but there is no position that is always zero in C^{\perp}.
- This means $\operatorname{dim} C \geq q-1$, so if A is exceptional,
$\operatorname{dim} C=q-1$ and A has (exactly) $q-1$ constant columns.

The case $r=q+1$: need at least $2 q$ columns

Let A be a partial $m \times n$ matrix over $\mathbb{F}_{q}(m \leq n)$ of constant rank $q+1$, and let $C \subset \mathbb{F}_{q}^{m}$ be the span of the constant columns of A.

- If $\operatorname{dim} C \geq q$, then A is not exceptional.
- If C contains an element with exactly one non-zero entry, then A has a $(m-1) \times(n-1)$ submatrix of constant rank q, and A is not exceptional.
- Otherwise C^{\perp} has the "distributed zero property": every element of C^{\perp} has at least one zero entry, but there is no position that is always zero in C^{\perp}.
- This means $\operatorname{dim} C \geq q-1$, so if A is exceptional, $\operatorname{dim} C=q-1$ and A has (exactly) $q-1$ constant columns.

The case $r=q+1$: at least $q+1$ indeterminate columns

A is a partial $m \times n$ matrix over $\mathbb{F}_{q}(m \leq n)$ of constant rank $q+1$, and C^{\perp} has the distributed zero property.

- Form A^{\prime} by assigning a value to all but one indeterminate in each indeterminate column of A.
- Given any q positions in \mathbb{F}_{q}^{m}, there is an element v of C^{\perp} that has non-zero entries in all of them

The case $r=q+1$: at least $q+1$ indeterminate columns

A is a partial $m \times n$ matrix over $\mathbb{F}_{q}(m \leq n)$ of constant rank $q+1$, and C^{\perp} has the distributed zero property.

- Form A^{\prime} by assigning a value to all but one indeterminate in each indeterminate column of A.
- Given any q positions in \mathbb{F}_{q}^{m}, there is an element v of C^{\perp} that has non-zero entries in all of them (this is because a vector
space over \mathbb{F}_{q} cannot be the union of q hyperplanes)

The case $r=q+1$: at least $q+1$ indeterminate columns

A is a partial $m \times n$ matrix over $\mathbb{F}_{q}(m \leq n)$ of constant rank $q+1$, and C^{\perp} has the distributed zero property.

- Form A^{\prime} by assigning a value to all but one indeterminate in each indeterminate column of A.
- Given any q positions in \mathbb{F}_{q}^{m}, there is an element v of C^{\perp} that has non-zero entries in all of them (this is because a vector
space over \mathbb{F}_{q} cannot be the union of q hyperplanes)

The case $r=q+1$: at least $q+1$ indeterminate columns

A is a partial $m \times n$ matrix over $\mathbb{F}_{q}(m \leq n)$ of constant rank $q+1$, and C^{\perp} has the distributed zero property.

- Form A^{\prime} by assigning a value to all but one indeterminate in each indeterminate column of A.
- Given any q positions in \mathbb{F}_{q}^{m}, there is an element v of C^{\perp} that has non-zero entries in all of them (this is because a vector space over \mathbb{F}_{q} cannot be the union of q hyperplanes).

The case $r=q+1$: at least $q+1$ indeterminate columns

A is a partial $m \times n$ matrix over $\mathbb{F}_{q}(m \leq n)$ of constant rank $q+1$, and C^{\perp} has the distributed zero property.

- Form A^{\prime} by assigning a value to all but one indeterminate in each indeterminate column of A.
- Given any q positions in \mathbb{F}_{q}^{m}, there is an element v of C^{\perp} that has non-zero entries in all of them (this is because a vector space over \mathbb{F}_{q} cannot be the union of q hyperplanes).
■ The indeterminates of A^{\prime} must collectively occupy at least $q+1$ rows, otherwise A^{\prime} would have completions of different ranks.
- So A^{\prime} has at least $q+1$ indeterminate columns, hence at least $2 q$ columns in all.

The case $r=q+1$: at least $q+1$ indeterminate columns

A is a partial $m \times n$ matrix over $\mathbb{F}_{q}(m \leq n)$ of constant rank $q+1$, and C^{\perp} has the distributed zero property.

- Form A^{\prime} by assigning a value to all but one indeterminate in each indeterminate column of A.
- Given any q positions in \mathbb{F}_{q}^{m}, there is an element v of C^{\perp} that has non-zero entries in all of them (this is because a vector space over \mathbb{F}_{q} cannot be the union of q hyperplanes).
- The indeterminates of A^{\prime} must collectively occupy at least $q+1$ rows, otherwise A^{\prime} would have completions of different ranks.

■ So A^{\prime} has at least $q+1$ indeterminate columns, hence at least $2 q$ columns in all.

The End

THANK YOU!

Advertisement If you are interested in this, see the talk by James McTigue on Thursday.

