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The setup

A partial matrix over a field F is a matrix whose entries are either

specified entries of F or independent indeterminates. A completion

of a partial matrix is a matrix obtained by assigning a value from F
to each indeterminate entry.
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The setup

A partial matrix over a field F is a matrix whose entries are either

specified entries of F or independent indeterminates. A completion

of a partial matrix is a matrix obtained by assigning a value from F
to each indeterminate entry.

Problems about Rank

Given a partial matrix, what is the range of ranks of its

completions?

Characterize (all, or extremal examples of) partial matrices

whose completions satisfy specified rank bounds, e.g. have

constant rank.
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The setup

A partial matrix over a field F is a matrix whose entries are either

specified entries of F or independent indeterminates. A completion

of a partial matrix is a matrix obtained by assigning a value from F
to each indeterminate entry.

Theorem (adapted from Huang and Zhan (2011))

Let A be a m × n partial matrix of constant rank r over a field F.

If |F| ≥ max(m, n) then A possesses a r × r sub(partial)matrix

whose completions all have rank r .
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An Example

The following 3× 4 partial matrix over F2 has all completions of

rank 3, but possesses no 3× 3 submatrix of constant rank 3.

 1 X 0 1

1 1 Y 0

1 0 1 Z


So some condition on the field order is necessary for the theorem

to hold.
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Some Observations

Question

A is a m × n partial matrix of constant rank r over a field F, with

m ≤ n. If A is exceptional (i.e. has no r × r submatrix of constant

rank r), what can be said about F, m and n?

A possesses constant columns (assumed linearly independent).

Let C be the subspace of Fm spanned by the constant

columns. Then 1 ≤ dim C ≤ r − 2 and every element of C⊥

includes at least one zero entry.

If |F| ≥ r , then dim C ≤ |F| − 2, and C includes an element

with exactly one non-zero entry. An induction argument

produces an r × r submatrix of A of constant rank r .
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Exceptional cases occur only if |F| < r

The following theorem can be proved by induction on r .

Theorem

There exist exceptional m × n (with m ≤ n) partial matrices of

constant rank r over Fq if and only if r > q and n ≥ r + q − 1.

The base case: r = q + 1, n ≥ 2q

An example with q = 3 : (q + 1)× (2q), exceptional of constant

rank 4. 
1 1 X 1 1 1

1 2 1 Y 1 1

2 0 1 1 Z 1

0 2 2 1 1 W
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The case r = q + 1: need at least 2q columns

Let A be a partial m × n matrix over Fq (m ≤ n) of constant rank

q + 1, and let C ⊂ Fm
q be the span of the constant columns of A.

If dim C ≥ q, then A is not exceptional.

If C contains an element with exactly one non-zero entry,

then A has a (m − 1)× (n − 1) submatrix of constant rank q,

and A is not exceptional.

Otherwise C⊥ has the “distributed zero property”: every

element of C⊥ has at least one zero entry, but there is no

position that is always zero in C⊥.

This means dim C ≥ q − 1, so if A is exceptional,

dim C = q − 1 and A has (exactly) q − 1 constant columns.
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The case r = q + 1: at least q + 1 indeterminate columns

A is a partial m × n matrix over Fq (m ≤ n) of constant rank

q + 1, and C⊥ has the distributed zero property.

Form A′ by assigning a value to all but one indeterminate in

each indeterminate column of A.

Given any q positions in Fm
q , there is an element v of C⊥ that

has non-zero entries in all of them (this is because a vector

space over Fq cannot be the union of q hyperplanes).

The indeterminates of A′ must collectively occupy at least

q + 1 rows, otherwise A′ would have completions of different

ranks.

So A′ has at least q + 1 indeterminate columns, hence at least

2q columns in all.
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The End

THANK YOU!

Advertisement If you are interested in this, see the talk by James

McTigue on Thursday.
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