Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

August 22nd, 2011

School of Mathematics, Statistics and Applied Mathematics National University of Ireland, Galway rachel.quinlan@nuigalway.ie ILAS Conference, Braunschweig

Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

A property of matrix spaces

A dual property

Trace bilinear form Dual Property Proof Summary

Plan

A property of matrix spaces

A dual property

Trace bilinear form

Dual Property

Proof Summary

Generalizations and Extensions

Partial Matrices

Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

A property of matrix spaces

A dual property

Trace bilinear form Dual Property Proof Summary

Generalizations and Extensions

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

A Dimension Bound

Theorem (Quinlan 2011, de Seguins Pazzis 2011)

For any field \mathbb{F} and any $n \ge 1$, if S is a linear subspace of $M_n(\mathbb{F})$ with the property that no element of S has a non-zero eigenvalue in \mathbb{F} , then

$$\dim S \leq \frac{n(n-1)}{2}.$$

Examples

- S = SUT_n(F), the space of strictly upper triangular matrices, for any field F.
- S = A_n(ℝ), the space of skew-symmetric n × n matrices over ℝ.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

A property of matrix spaces

A dual property

Trace bilinear form Dual Property Proof Summary

A Dimension Bound

Theorem (Quinlan 2011, de Seguins Pazzis 2011)

For any field \mathbb{F} and any $n \ge 1$, if S is a linear subspace of $M_n(\mathbb{F})$ with the property that no element of S has a non-zero eigenvalue in \mathbb{F} , then

$$\dim S \leq \frac{n(n-1)}{2}.$$

Examples

- 1. $S = SUT_n(\mathbb{F})$, the space of strictly upper triangular matrices, for any field \mathbb{F} .
- S = A_n(ℝ), the space of skew-symmetric n × n matrices over ℝ.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

A property of matrix spaces

A dual property

Frace bilinear form Dual Property Proof Summary

A Dimension Bound

Theorem (Quinlan 2011, de Seguins Pazzis 2011)

For any field \mathbb{F} and any $n \ge 1$, if S is a linear subspace of $M_n(\mathbb{F})$ with the property that no element of S has a non-zero eigenvalue in \mathbb{F} , then

$$\dim S \leq \frac{n(n-1)}{2}.$$

Examples

- 1. $S = SUT_n(\mathbb{F})$, the space of strictly upper triangular matrices, for any field \mathbb{F} .
- S = A_n(ℝ), the space of skew-symmetric n × n matrices over ℝ.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

A property of matrix spaces

A dual property

Trace bilinear form Dual Property Proof Summary

A Symmetric Bilinear Form on $M_n(\mathbb{F})$

Define $\tau: M_n(\mathbb{F}) \times M_n(\mathbb{F}) \longrightarrow \mathbb{F}$ by

 $\tau(A, B) = \operatorname{trace}(AB), \text{ for } A, B \in M_n(\mathbb{F}).$

 τ is a non-degenerate symmetric bilinear form on $M_n(\mathbb{F})$. For a subspace W of $M_n(\mathbb{F})$, define the orthogonal complement of W by

 $W^{\perp} = \{ X \in M_n(\mathbb{F}) : \operatorname{trace}(XY) = 0 \,\,\forall \,\, Y \in W \}.$

Then W^{\perp} is a subspace of $M_n(\mathbb{F})$ and

• dim
$$W$$
 + dim $W^{\perp} = n^2$

$$\blacktriangleright W_1 \subseteq W_2 \Longleftrightarrow W_1^{\perp} \supseteq W_2^{\perp}$$

Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

A property of matrix spaces

A dual property

Trace bilinear form Dual Property Proof Summary

Generalizations and Extensions Partial Matrices

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

A Dual Property

Notation

- T: the space of matrices of trace zero in $M_n(\mathbb{F})$
- ▶ Fⁿ: the space of row vectors with n entries in F. A column vector is the transpose of an element of Fⁿ.

Theorem (Quinlan, 2011)

Let S be a subspace of $M_n(\mathbb{F})$. The following are equivalent

- ▶ No element of S has a non-zero eigenvalue in \mathbb{F}
- Every one-dimensional subspace of ℝⁿ occurs as the rowspace of some element of S[⊥]\S[⊥] ∩ T.

Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

A property of matrix spaces

Trace bilinear form Dual Property Proof Summary

A Dual Property

Notation

- T: the space of matrices of trace zero in $M_n(\mathbb{F})$
- ► Fⁿ: the space of row vectors with n entries in F. A column vector is the transpose of an element of Fⁿ.

Theorem (Quinlan, 2011)

Let S be a subspace of $M_n(\mathbb{F})$. The following are equivalent

- ▶ No element of S has a non-zero eigenvalue in \mathbb{F}
- Every one-dimensional subspace of 𝔽ⁿ occurs as the rowspace of some element of S[⊥]\S[⊥] ∩ T.

Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

A property of matrix spaces

Trace bilinear form Dual Property Proof Summary

Back to the Examples

No element of S	Every non-zero vector in \mathbb{F}^n
has a non-zero	\iff spans the rowspace of some
eigenvalue in ${\mathbb F}$	element of rank 1 of $S^{\perp}ackslash S^{\perp}\cap T$

- If S = SUT_n(ℝ), then S[⊥] = UT_n(ℝ), the space of all upper triangular matrices in M_n(ℝ). Every non-zero v ∈ ℝⁿ occurs as the only non-zero row of an upper triangular matrix of non-zero trace.
- If S = A_n(ℝ), then S[⊥] = S_n(ℝ), the space of symmetric matrices in M_n(ℙ).
 If v ∈ ℙⁿ, v ≠ 0, then v^Tv is an element of S_n(ℝ) that has rowspace ⟨v⟩ and has non-zero trace.

Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

A property of matrix spaces

Trace bilinear form Dual Property Proof Summary

Back to the Examples

No element of S	Every non-zero vector in \mathbb{F}^n
has a non-zero	\iff spans the rowspace of some
eigenvalue in ${\mathbb F}$	element of rank 1 of $\mathcal{S}^{\perp}ackslash\mathcal{S}^{\perp}\cap\mathcal{T}$

- If S = SUT_n(𝔅), then S[⊥] = UT_n(𝔅), the space of all upper triangular matrices in M_n(𝔅).
 Every non-zero v ∈ 𝔅ⁿ occurs as the only non-zero row of an upper triangular matrix of non-zero trace.
- If S = A_n(ℝ), then S[⊥] = S_n(ℝ), the space of symmetric matrices in M_n(𝔅).
 If v ∈ 𝔅ⁿ, v ≠ 0, then v^Tv is an element of S_n(ℝ) that has rowspace ⟨v⟩ and has non-zero trace.

Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

A property of matrix spaces

Trace bilinear form Dual Property Proof Summary

Back to the Examples

No element of S	Every non-zero vector in \mathbb{F}^n
has a non-zero	\iff spans the rowspace of some
eigenvalue in ${\mathbb F}$	element of rank 1 of $\mathcal{S}^{\perp}ackslash\mathcal{S}^{\perp}\cap\mathcal{T}$

- If S = SUT_n(𝔅), then S[⊥] = UT_n(𝔅), the space of all upper triangular matrices in M_n(𝔅).
 Every non-zero v ∈ 𝔅ⁿ occurs as the only non-zero row of an upper triangular matrix of non-zero trace.
- If S = A_n(ℝ), then S[⊥] = S_n(ℝ), the space of symmetric matrices in M_n(𝔅).
 If v ∈ 𝔅ⁿ, v ≠ 0, then v^Tv is an element of S_n(ℝ) that has rowspace ⟨v⟩ and has non-zero trace.

Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

A property of matrix spaces

Trace bilinear form Dual Property Proof Summary

Generalizations and Extensions

No element of <i>S</i>		Every non-zero vector in \mathbb{F}^n
has a non-zero	\iff	spans the rowspace of some
eigenvalue in ${\mathbb F}$		element of rank 1 of $S^{\perp}ackslash S^{\perp}\cap T$

Proof (<=)

- Suppose λ ∈ 𝔽 is an eigenvalue of some X ∈ S.
 We want to show λ = 0.
- Then $vX = \lambda v$ for some non-zero $v \in \mathbb{F}^n$.
- Let M_v be an element of $S^{\perp} \setminus S^{\perp} \cap T$ with rowspace $\langle v \rangle$.

Then

 $M_{\nu}X = \lambda M_{\nu} \Longrightarrow \operatorname{trace}(M_{\nu}X) = \lambda \operatorname{trace}(M_{\nu}).$

Since trace $(M_v X) = 0$ (as $M_v \in S^{\perp}$), and trace $(M_v) \neq 0$ (as $M_v \notin T$), we must have $\lambda = 0$. Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

A property of matrix spaces

A dual property Trace bilinear form Dual Property Proof Summary

No element of <i>S</i>		Every non-zero vector in \mathbb{F}^n
has a non-zero	\iff	spans the rowspace of some
eigenvalue in ${\mathbb F}$		element of rank 1 of $S^{\perp}ackslash S^{\perp}\cap T$

Proof (<=)

- Suppose λ ∈ 𝔽 is an eigenvalue of some X ∈ S.
 We want to show λ = 0.
- Then $vX = \lambda v$ for some non-zero $v \in \mathbb{F}^n$.
- Let M_v be an element of $S^{\perp} \setminus S^{\perp} \cap T$ with rowspace $\langle v \rangle$.

Then

 $M_{\nu}X = \lambda M_{\nu} \Longrightarrow \operatorname{trace}(M_{\nu}X) = \lambda \operatorname{trace}(M_{\nu}).$

Since trace $(M_v X) = 0$ (as $M_v \in S^{\perp}$), and trace $(M_v) \neq 0$ (as $M_v \notin T$), we must have $\lambda = 0$.

Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

A property of matrix spaces

A dual property Trace bilinear form Dual Property Proof Summary

No element of <i>S</i>		Every non-zero vector in \mathbb{F}^n
has a non-zero	\iff	spans the rowspace of some
eigenvalue in ${\mathbb F}$		element of rank 1 of $S^{\perp}ackslash S^{\perp}\cap T$

Proof (<=)

- Suppose λ ∈ 𝔽 is an eigenvalue of some X ∈ S.
 We want to show λ = 0.
- Then $vX = \lambda v$ for some non-zero $v \in \mathbb{F}^n$.
- Let M_v be an element of S[⊥]\S[⊥] ∩ T with rowspace ⟨v⟩.
 Then

 $M_{\nu}X = \lambda M_{\nu} \Longrightarrow \operatorname{trace}(M_{\nu}X) = \lambda \operatorname{trace}(M_{\nu}).$

Since trace $(M_v X) = 0$ (as $M_v \in S^{\perp}$), and trace $(M_v) \neq 0$ (as $M_v \notin T$), we must have $\lambda = 0$. Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

A property of matrix spaces

Trace bilinear form Dual Property Proof Summary

No element of <i>S</i>		Every non-zero vector in \mathbb{F}^n
has a non-zero	\iff	spans the rowspace of some
eigenvalue in ${\mathbb F}$		element of rank 1 of $S^{\perp}ackslash S^{\perp}\cap T$

Proof (<=)

- Suppose λ ∈ 𝔽 is an eigenvalue of some X ∈ S.
 We want to show λ = 0.
- Then $vX = \lambda v$ for some non-zero $v \in \mathbb{F}^n$.
- Let M_v be an element of $S^{\perp} \setminus S^{\perp} \cap T$ with rowspace $\langle v \rangle$.

Then

$$M_v X = \lambda M_v \Longrightarrow \operatorname{trace}(M_v X) = \lambda \operatorname{trace}(M_v).$$

Since trace $(M_v X) = 0$ (as $M_v \in S^{\perp}$), and trace $(M_v) \neq 0$ (as $M_v \notin T$), we must have $\lambda = 0$.

・ロト・西ト・ヨー うへぐ

Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

A property of matrix spaces

A dual property Trace bilinear form Dual Property Proof Summary

No element of <i>S</i>		Every non-zero vector in \mathbb{F}^n
has a non-zero	\iff	spans the rowspace of some
eigenvalue in ${\mathbb F}$		element of rank 1 of $S^{\perp}ackslash S^{\perp}\cap T$

Proof (\Longrightarrow)

- Let v ∈ ℝⁿ, v ≠ 0. We want to show that some element of S[⊥] of non-zero trace has rowspace ⟨v⟩.
- The subspace $\{vX : X \in S\}$ of \mathbb{F}^n does not contain v.
- So $\exists u \in \mathbb{F}^n$ with $(vX)u^T = 0 \ \forall \ X \in S$ and $vu^T \neq 0$.
- ▶ But $(vX)u^T$ = trace $(u^T(vX))$ = trace $((u^Tv)X)$ and vu^T = trace (u^Tv) .
- ▶ So $u^T v$ has rowspace $\langle v \rangle$, has non-zero trace, and trace $(u^T v X) = 0 \ \forall X \in S \implies u^T v \in S^{\perp}$.
- So $u^T v$ is the thing we want!

Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

A property of matrix spaces

A dual property Trace bilinear form Dual Property Proof Summary

Generalizations and Extensions Partial Matrices

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

No element of <i>S</i>		Every non-zero vector in \mathbb{F}^n
has a non-zero	\iff	spans the rowspace of some
eigenvalue in ${\mathbb F}$		element of rank 1 of $S^{\perp}ackslash S^{\perp}\cap T$

Proof (\Longrightarrow)

- Let v ∈ ℝⁿ, v ≠ 0. We want to show that some element of S[⊥] of non-zero trace has rowspace ⟨v⟩.
- The subspace $\{vX : X \in S\}$ of \mathbb{F}^n does not contain v.
- So $\exists u \in \mathbb{F}^n$ with $(vX)u^T = 0 \ \forall \ X \in S$ and $vu^T \neq 0$.
- ▶ But $(vX)u^T$ = trace $(u^T(vX))$ = trace $((u^Tv)X)$ and vu^T = trace (u^Tv) .
- ▶ So $u^T v$ has rowspace $\langle v \rangle$, has non-zero trace, and trace $(u^T v X) = 0 \ \forall X \in S \implies u^T v \in S^{\perp}$.
- So $u^T v$ is the thing we want!

Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

A property of matrix spaces

A dual property Trace bilinear form Dual Property Proof Summary

No element of <i>S</i>		Every non-zero vector in \mathbb{F}^n
has a non-zero	\iff	spans the rowspace of some
eigenvalue in ${\mathbb F}$		element of rank 1 of $S^{\perp}ackslash S^{\perp}\cap T$

Proof (\Longrightarrow)

- Let v ∈ ℝⁿ, v ≠ 0. We want to show that some element of S[⊥] of non-zero trace has rowspace ⟨v⟩.
- The subspace $\{vX : X \in S\}$ of \mathbb{F}^n does not contain v.
- So $\exists u \in \mathbb{F}^n$ with $(vX)u^T = 0 \ \forall \ X \in S$ and $vu^T \neq 0$.
- ▶ But $(vX)u^T$ = trace $(u^T(vX))$ = trace $((u^Tv)X)$ and vu^T = trace (u^Tv) .
- ▶ So $u^T v$ has rowspace $\langle v \rangle$, has non-zero trace, and trace $(u^T v X) = 0 \ \forall X \in S \implies u^T v \in S^{\perp}$.
- So $u^T v$ is the thing we want!

Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

A property of matrix spaces

A dual property Trace bilinear form Dual Property Proof Summary

No element of <i>S</i>		Every non-zero vector in \mathbb{F}^n
has a non-zero	\iff	spans the rowspace of some
eigenvalue in ${\mathbb F}$		element of rank 1 of $S^{\perp}ackslash S^{\perp}\cap T$

Proof (\Longrightarrow)

- Let v ∈ ℝⁿ, v ≠ 0. We want to show that some element of S[⊥] of non-zero trace has rowspace ⟨v⟩.
- The subspace $\{vX : X \in S\}$ of \mathbb{F}^n does not contain v.
- So $\exists u \in \mathbb{F}^n$ with $(vX)u^T = 0 \ \forall \ X \in S$ and $vu^T \neq 0$.
- ► But $(vX)u^T$ = trace $(u^T(vX))$ = trace $((u^Tv)X)$ and vu^T = trace (u^Tv) .
- ▶ So $u^T v$ has rowspace $\langle v \rangle$, has non-zero trace, and trace $(u^T v X) = 0 \ \forall X \in S \Longrightarrow u^T v \in S^{\perp}$.
- So $u^T v$ is the thing we want!

Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

A property of matrix spaces

A dual property Trace bilinear form Dual Property Proof Summary

No element of <i>S</i>		Every non-zero vector in \mathbb{F}^n
has a non-zero	\iff	spans the rowspace of some
eigenvalue in ${\mathbb F}$		element of rank 1 of $S^{\perp}ackslash S^{\perp}\cap T$

Proof (\Longrightarrow)

- Let v ∈ ℝⁿ, v ≠ 0. We want to show that some element of S[⊥] of non-zero trace has rowspace ⟨v⟩.
- The subspace $\{vX : X \in S\}$ of \mathbb{F}^n does not contain v.
- So $\exists u \in \mathbb{F}^n$ with $(vX)u^T = 0 \ \forall \ X \in S$ and $vu^T \neq 0$.
- ► But $(vX)u^T$ = trace $(u^T(vX))$ = trace $((u^Tv)X)$ and vu^T = trace (u^Tv) .
- ► So $u^T v$ has rowspace $\langle v \rangle$, has non-zero trace, and trace $(u^T v X) = 0 \ \forall X \in S \implies u^T v \in S^{\perp}$.

• So $u^T v$ is the thing we want!

Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

A property of matrix spaces

A dual property Trace bilinear form Dual Property Proof Summary

Generalizations and Extensions Partial Matrices

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

No element of <i>S</i>		Every non-zero vector in \mathbb{F}^n
has a non-zero	\iff	spans the rowspace of some
eigenvalue in ${\mathbb F}$		element of rank 1 of $S^{\perp}ackslash S^{\perp}\cap T$

Proof (\Longrightarrow)

- Let v ∈ ℝⁿ, v ≠ 0. We want to show that some element of S[⊥] of non-zero trace has rowspace ⟨v⟩.
- The subspace $\{vX : X \in S\}$ of \mathbb{F}^n does not contain v.
- ► So $\exists u \in \mathbb{F}^n$ with $(vX)u^T = 0 \forall X \in S$ and $vu^T \neq 0$.
- ► But $(vX)u^T$ = trace $(u^T(vX))$ = trace $((u^Tv)X)$ and vu^T = trace (u^Tv) .
- ► So $u^T v$ has rowspace $\langle v \rangle$, has non-zero trace, and trace $(u^T v X) = 0 \ \forall X \in S \implies u^T v \in S^{\perp}$.
- So u^T v is the thing we want!

Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

A property of matrix spaces

A dual property Trace bilinear form Dual Property Proof Summary

Other versions of the duality theorem

Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

property of atrix spaces

A dual property

Trace bilinear form Dual Property Proof Summary

Generalizations and Extensions

Partial Matrices

$S^{\perp} \setminus S^{\perp} \cap T$ "all 1-d rowspaces" $\iff S$ "no non-zero eigenvalues"

A subspace S of $M_n(\mathbb{F})$ has the property that no element possesses a non-zero eigenvalue in \mathbb{F} if and only if every element of the affine subspace $I_n + S$ is non-singular.

Theorem (Duality Theorem, Version 1)

Every element of the affine space $I_n + S$ is non-singular if and only if every non-zero vector in \mathbb{F}^n occurs as the rowspace of some element of $S^{\perp} \setminus S^{\perp} \cap T$.

Other versions of the duality theorem

Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

A property of natrix spaces

A dual property

Trace bilinear form Dual Property Proof Summary

Generalizations and Extensions

Partial Matrices

A subspace *S* of $M_n(\mathbb{F})$ has the property that no element possesses a non-zero eigenvalue in \mathbb{F} if and only if every element of the affine subspace $I_n + S$ is non-singular.

 $S^{\perp} \setminus S^{\perp} \cap T$ "all 1-d rowspaces" $\iff S$ "no non-zero eigenvalues"

Theorem (Duality Theorem, Version 2)

Let $C \in GL_n(\mathbb{F})$. Every element of the affine space C + S is non-singular (or has rank n) if and only if every one-dimensional subspace of \mathbb{F}^n occurs as the rowspace of some element of $S^{\perp} \setminus S^{\perp} \cap C^{\perp}$.

Other versions of the duality theorem

Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

A property of natrix spaces

A dual property

Trace bilinear form Dual Property Proof Summary

Generalizations and Extensions

Partial Matrices

A subspace S of $M_n(\mathbb{F})$ has the property that no element possesses a non-zero eigenvalue in \mathbb{F} if and only if every element of the affine subspace $I_n + S$ is non-singular.

 $S^{\perp} \setminus S^{\perp} \cap T$ "all 1-d rowspaces" $\iff S$ "no non-zero eigenvalues"

Theorem (Duality Theorem, Version 3)

Let $C \in M_n(\mathbb{F})$ and let $k \leq n$. Every element of the affine space C + S has has rank at least k if and only if every (n - k + 1)-dimensional subspace of \mathbb{F}^n contains the rowspace of some element of $S^{\perp} \setminus S^{\perp} \cap C^{\perp}$. Other versions of the duality theorem $S^{\perp} \setminus S^{\perp} \cap T$ "all 1-d rowspaces" $\iff S$ "no non-zero eigenvalues" If S is a subspace of $M_{m \times n}(\mathbb{F})$, we define $S^{\perp} = \{X \in M_{n \times m}(\mathbb{F}) : \operatorname{trace}(XY) = 0 \ \forall Y \in S\}.$ Theorem (Duality Theorem, Version 4) Let S be a subspace of $M_{m \times n}(\mathbb{F})$ and let $C \in M_{m \times n}(\mathbb{F})$. Let $k \leq \min(m, n)$. Then every element of the affine space C + S has rank at least k if and only if every subspace of dimension m - k + 1 of \mathbb{F}^m contains the rowspace of some element of $S^{\perp} \setminus S^{\perp} \cap C^{\perp}$.

Affine spaces of

matrices with lower rank bounds, and a dual property

Rachel Quinlan

Generalizations and Extensions

Example

All ranks in the affine space $C + S \subseteq M_{m \times n}(\mathbb{F})$ are at least $k \iff$ every subspace of dimension m - k + 1 of \mathbb{F}^m contains the rowspace of some element of $S^{\perp} \setminus S^{\perp} \cap C^{\perp}$

$$m = 4$$
, $n = 5$, $C = diag(1, 1, 1)$, $k = 3$, $m - k + 1 = 2$
 $S = \{A : A_{ij} = 0 \text{ for } j \le i \le 3\}.$

S

$$\begin{pmatrix} * & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & 0 & * & * \\ * & * & * & * & * \end{pmatrix} \qquad \qquad \begin{pmatrix} * & * & * & 0 \\ 0 & * & * & 0 \\ 0 & 0 & * & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

A property of matrix spaces

A dual property

Trace bilinear form Dual Property Proof Summary

Generalizations and Extensions

Partial Matrices

 S^{\perp}

Example

All ranks in the affine space $C + S \subseteq M_{m \times n}(\mathbb{F})$ are at least $k \iff$ every subspace of dimension m - k + 1 of \mathbb{F}^m contains the rowspace of some element of $S^{\perp} \setminus S^{\perp} \cap C^{\perp}$

$$m = 4, n = 5, C = diag(1, 1, 1), k = 3, m - k + 1 = 2$$

 $S = \{A : A_{ij} = 0 \text{ for } j \le i \le 3\}.$

 $S^{\perp} \setminus S^{\perp} \cap C^{\perp}$

 $\begin{array}{c}
C+S \\
1 & * & * & * \\
0 & 1 & * & * \\
0 & 0 & 1 & * & * \\
* & * & * & * & *
\end{array}$

$$\begin{pmatrix} a_1 & * & * & 0 \\ 0 & a_2 & * & 0 \\ 0 & 0 & a_3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$a_1 + a_2 + a_3 \neq 0 = a_3 = a_3$$

Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

A property of matrix spaces

A dual property

Trace bilinear form Dual Property Proof Summary

Generalizations and Extensions

Dimension Bounds

Theorem

Suppose that C + X is an affine subspace of $M_{m \times n}(\mathbb{F})$ in which every element has rank at least r. Then

$$\dim X \leq mn - \frac{r(r+1)}{2}$$

Theorem

Suppose that Y is a subspace of $M_{n\times m}(\mathbb{F})$ with the following property : for some $C \in M_{m\times n}(\mathbb{F})$, every subspace of \mathbb{F}^m of dimension m - r + 1 contains the rowspace of some element of $Y \setminus Y \cap C^{\perp}$. Then

$$\dim Y \geq \frac{r(r+1)}{2}.$$

Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

A property of matrix spaces

A dual property

Trace bilinear form Dual Property Proof Summary

Generalizations and Extensions

Partial Matrices

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Partial Matrices

A partial $m \times n$ matrix A (over \mathbb{F}) is a matrix in which some entries are specified elements of \mathbb{F} and the rest are independent indeterminates.

A completion of A is the matrix resulting from an assignment of specific values in \mathbb{F} to each indeterminate.

Theorem (Brualdi, Huang & Zhan, 2010)

Let \mathbb{F} be a field with at least n + 1 elements. A partial $n \times n$ matrix A over \mathbb{F} whose completions all have rank n can have at most $\frac{n(n-1)}{2}$ indeterminates. If this bound is attained, there exist permutation matrices P and Q for which PAQ is upper triangular with

- non-zero constants on the main diagonal
- independent indeterminates above the main diagonal

zeroes below the main diagonal.

Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

A property of matrix spaces

A dual property

Trace bilinear form Dual Property Proof Summary

Generalizations and Extensions

Partial Matrices

A partial $m \times n$ matrix A (over \mathbb{F}) is a matrix in which some entries are specified elements of \mathbb{F} and the rest are independent indeterminates.

A completion of A is the matrix resulting from an assignment of specific values in \mathbb{F} to each indeterminate.

Theorem (Brualdi, Huang & Zhan, 2010)

Let \mathbb{F} be a field with at least n + 1 elements. A partial $n \times n$ matrix A over \mathbb{F} whose completions all have rank n can have at most $\frac{n(n-1)}{2}$ indeterminates. If this bound is attained, there exist permutation matrices P and Q for which PAQ is upper triangular with

- non-zero constants on the main diagonal
- independent indeterminates above the main diagonal

zeroes below the main diagonal.

Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

A property of matrix spaces

A dual property

Trace bilinear form Dual Property Proof Summary

Generalizations and Extensions

An extension of this theorem

Theorem (McTigue & Quinlan, 2011)

Let \mathbb{F} be any field. Let r, m, n be positive integers with $r \leq \min(m, n)$. A partial $m \times n$ matrix A over \mathbb{F} whose completions all have rank at least r can have at most $mn - \frac{r(r+1)}{2}$ indeterminates.

If this bound is attained, then there exist permutation matrices P and Q for which PAQ has the following form :

- All entries outside the upper left r × r region are indeterminates
- In the upper left r × r region, the entries on the main diagonal are non-zero constants, the entries above the main diagonal are indeterminates, and the entries below the main diagonal are zeroes.

Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

A property of matrix spaces

A dual property

Trace bilinear form Dual Property Proof Summary

Generalizations and Extensions

A	siglance at a	proof (for $r = m = n$)	
	Every element	Every non-zero vector in \mathbb{F}^n spans	
	of $C + X$ has	\iff the rowspace of some element of	
	rank <i>n</i>	rank 1 of $X^{\perp}ackslash X^{\perp}\cap C^{\perp}$	

A : a partial $n \times n$ matrix whose completions all have rank n. Write A = C + X

- ► C : "constant part" of A
- ▶ X : "indeterminate part" ~ a linear subspace of $M_n(\mathbb{F})$.

Lemma

Then X^{\perp} is described by the partial matrix Y that has indeterminates where X^{T} has zeroes, and zeroes where X^{T} has indeterminates.

As many indeterminates as possible in A (or X) means as few as possible in Y.

Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

A property of matrix spaces

Trace bilinear form Dual Property Proof Summary

Generalizations and Extensions

A	glance at a	proof (for $r = m = n$)
	Every element	Every non-zero vector in \mathbb{F}^n spans
	of $C + X$ has	$\iff the\ rowspace\ of\ some\ element\ of$
	rank <i>n</i>	rank 1 of $X^{\perp}ackslash X^{\perp}\cap C^{\perp}$

- Some row of Y has n indeterminates (say Row 1)
- Row 1 of Y ~ 𝔽ⁿ. Vectors that are orthogonal to Column 1 of C[⊥] form a hyperplane H.
- Every $v \in H$ must appear again in another row of Y.
- So Row 2 of Y must contain at least n − 1 indeterminates (and this is enough only if Column 1 of C has only one non-zero entry).
- Y has at least n + (n − 1) + ··· + 1 = n(n+1)/2 indeterminates, and this bound is attained only if C is diagonal.

Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

A property of matrix spaces

A dual property

Trace bilinear form Dual Property Proof Summary

Generalizations and Extensions

A	glance at a	proof (for $r = m = n$)	la
	Every element	Every non-zero vector in \mathbb{F}^n spans	
	of $C + X$ has	\iff the rowspace of some element of	
	rank <i>n</i>	rank 1 of $X^{\perp}ackslash X^{\perp}\cap C^{\perp}$	

- Some row of Y has n indeterminates (say Row 1)
- Row 1 of Y ~ 𝔽ⁿ. Vectors that are orthogonal to Column 1 of C[⊥] form a hyperplane H.
- Every $v \in H$ must appear again in another row of Y.
- So Row 2 of Y must contain at least n − 1 indeterminates (and this is enough only if Column 1 of C has only one non-zero entry).
- Y has at least n + (n − 1) + ··· + 1 = n(n+1)/2 indeterminates, and this bound is attained only if C is diagonal.

Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

A property of matrix spaces

A dual property

Trace bilinear form Dual Property Proof Summary

Generalizations and Extensions

A	glance at a	proof (for $r = m = n$)	le
	Every element	Every non-zero vector in \mathbb{F}^n spans	
	of $C + X$ has	\iff the rowspace of some element of	
	rank <i>n</i>	rank 1 of $X^{\perp}ackslash X^{\perp}\cap C^{\perp}$	

- Some row of Y has n indeterminates (say Row 1)
- Row 1 of Y ~ Fⁿ. Vectors that are orthogonal to Column 1 of C[⊥] form a hyperplane H.
- Every $v \in H$ must appear again in another row of Y.
- So Row 2 of Y must contain at least n − 1 indeterminates (and this is enough only if Column 1 of C has only one non-zero entry).
- Y has at least n + (n − 1) + ··· + 1 = n(n+1)/2 indeterminates, and this bound is attained only if C is diagonal.

Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

A property of matrix spaces

A dual property

Frace bilinear form Dual Property Proof Summary

Generalizations and Extensions

A	glance at a	proof (for $r = m = n$)	
	Every element	Every non-zero vector in \mathbb{F}^n spans	
	of $C + X$ has	\iff the rowspace of some element of	
	rank <i>n</i>	rank 1 of $X^{\perp}ackslash X^{\perp}\cap C^{\perp}$	

- Some row of Y has n indeterminates (say Row 1)
- Row 1 of Y ~ Fⁿ. Vectors that are orthogonal to Column 1 of C[⊥] form a hyperplane H.
- Every $v \in H$ must appear again in another row of Y.
- So Row 2 of Y must contain at least n − 1 indeterminates (and this is enough only if Column 1 of C has only one non-zero entry).
- Y has at least n + (n − 1) + ··· + 1 = n(n+1)/2 indeterminates, and this bound is attained only if C is diagonal.

Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

A property of matrix spaces

A dual property

Frace bilinear form Dual Property Proof Summary

Generalizations and Extensions

A	siglance at a	proof (for $r = m = n$)	
	Every element	Every non-zero vector in \mathbb{F}^n spans	
	of $C + X$ has	\iff the rowspace of some element of	
	rank <i>n</i>	rank 1 of $X^{\perp}ackslash X^{\perp}\cap C^{\perp}$	

- Some row of Y has n indeterminates (say Row 1)
- Row 1 of Y ~ Fⁿ. Vectors that are orthogonal to Column 1 of C[⊥] form a hyperplane H.
- Every $v \in H$ must appear again in another row of Y.
- So Row 2 of Y must contain at least n − 1 indeterminates (and this is enough only if Column 1 of C has only one non-zero entry).
- Y has at least n + (n − 1) + ··· + 1 = n(n+1)/2 indeterminates, and this bound is attained only if C is diagonal.

Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

A property of matrix spaces

A dual property

Frace bilinear form Dual Property Proof Summary

Generalizations and Extensions

Thank You

- Danke schön!
- Go raibh maith agaibh!

Affine spaces of matrices with lower rank bounds, and a dual property

Rachel Quinlan

A property of matrix spaces

A dual property

Trace bilinear form Dual Property Proof Summary

Generalizations and Extensions

Partial Matrices

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ