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A Dimension Bound

Theorem (Quinlan 2011, de Seguins Pazzis 2011)

For any field F and any n ≥ 1, if S is a linear subspace of

Mn(F) with the property that no element of S has a

non-zero eigenvalue in F, then

dim S ≤ n(n − 1)

2
.

Examples

1. S = SUTn(F), the space of strictly upper triangular

matrices, for any field F.

2. S = An(R), the space of skew-symmetric n× n matrices

over R.



Affine spaces of

matrices with

lower rank bounds,

and a dual

property

Rachel Quinlan

A property of

matrix spaces

A dual property

Trace bilinear form

Dual Property

Proof Summary

Generalizations

and Extensions

Partial Matrices

A Dimension Bound

Theorem (Quinlan 2011, de Seguins Pazzis 2011)

For any field F and any n ≥ 1, if S is a linear subspace of

Mn(F) with the property that no element of S has a

non-zero eigenvalue in F, then

dim S ≤ n(n − 1)

2
.

Examples

1. S = SUTn(F), the space of strictly upper triangular

matrices, for any field F.

2. S = An(R), the space of skew-symmetric n× n matrices

over R.



Affine spaces of

matrices with

lower rank bounds,

and a dual

property

Rachel Quinlan

A property of

matrix spaces

A dual property

Trace bilinear form

Dual Property

Proof Summary

Generalizations

and Extensions

Partial Matrices

A Dimension Bound

Theorem (Quinlan 2011, de Seguins Pazzis 2011)

For any field F and any n ≥ 1, if S is a linear subspace of

Mn(F) with the property that no element of S has a

non-zero eigenvalue in F, then

dim S ≤ n(n − 1)

2
.

Examples

1. S = SUTn(F), the space of strictly upper triangular

matrices, for any field F.

2. S = An(R), the space of skew-symmetric n× n matrices

over R.



Affine spaces of

matrices with

lower rank bounds,

and a dual

property

Rachel Quinlan

A property of

matrix spaces

A dual property

Trace bilinear form

Dual Property

Proof Summary

Generalizations

and Extensions

Partial Matrices

A Symmetric Bilinear Form on Mn(F)

Define τ : Mn(F)×Mn(F) −→ F by

τ(A,B) = trace(AB), for A,B ∈ Mn(F).

τ is a non–degenerate symmetric bilinear form on Mn(F).

For a subspace W of Mn(F), define the orthogonal

complement of W by

W⊥ = {X ∈ Mn(F) : trace(XY ) = 0 ∀ Y ∈W }.

Then W⊥ is a subspace of Mn(F) and

I dim W + dim W⊥ = n2

I W1 ⊆W2 ⇐⇒W⊥
1 ⊇W⊥

2



Affine spaces of

matrices with

lower rank bounds,

and a dual

property

Rachel Quinlan

A property of

matrix spaces

A dual property

Trace bilinear form

Dual Property

Proof Summary

Generalizations

and Extensions

Partial Matrices

A Dual Property

Notation

I T : the space of matrices of trace zero in Mn(F)

I Fn : the space of row vectors with n entries in F.

A column vector is the transpose of an element of Fn.

Theorem (Quinlan, 2011)

Let S be a subspace of Mn(F). The following are equivalent

I No element of S has a non-zero eigenvalue in F
I Every one-dimensional subspace of Fn occurs as the

rowspace of some element of S⊥\S⊥ ∩ T .
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Back to the Examples

No element of S

has a non-zero

eigenvalue in F
⇐⇒

Every non-zero vector in Fn

spans the rowspace of some

element of rank 1 of S⊥\S⊥ ∩ T

I If S = SUTn(F), then S⊥ = UTn(F), the space of all

upper triangular matrices in Mn(F).

Every non-zero v ∈ Fn occurs as the only non-zero row

of an upper triangular matrix of non-zero trace.

I If S = An(R), then S⊥ = Sn(R), the space of

symmetric matrices in Mn(F).

If v ∈ Fn, v 6= 0, then vT v is an element of Sn(R) that

has rowspace 〈v〉 and has non-zero trace.
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Quick proof, Part 1

No element of S

has a non-zero

eigenvalue in F
⇐⇒

Every non-zero vector in Fn

spans the rowspace of some

element of rank 1 of S⊥\S⊥ ∩ T

Proof (⇐=)

I Suppose λ ∈ F is an eigenvalue of some X ∈ S .

We want to show λ = 0.

I Then vX = λv for some non-zero v ∈ Fn.

I Let Mv be an element of S⊥\S⊥∩T with rowspace 〈v〉.
I Then

Mv X = λMv =⇒ trace(Mv X ) = λ trace(Mv ).

Since trace(Mv X ) = 0 (as Mv ∈ S⊥), and

trace(Mv ) 6= 0 (as Mv 6∈ T ), we must have λ = 0.
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Quick proof, Part 2

No element of S

has a non-zero

eigenvalue in F
⇐⇒

Every non-zero vector in Fn

spans the rowspace of some

element of rank 1 of S⊥\S⊥ ∩ T

Proof (=⇒)

I Let v ∈ Fn, v 6= 0. We want to show that some

element of S⊥ of non-zero trace has rowspace 〈v〉.
I The subspace {vX : X ∈ S} of Fn does not contain v .

I So ∃u ∈ Fn with (vX )uT = 0 ∀ X ∈ S and vuT 6= 0.

I But (vX )uT = trace
(
uT (vX )

)
= trace

(
(uT v)X

)
and

vuT = trace(uT v).

I So uT v has rowspace 〈v〉, has non-zero trace, and

trace(uT v X ) = 0 ∀X ∈ S =⇒ uT v ∈ S⊥.

I So uT v is the thing we want!
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Other versions of the duality theorem

S⊥\S⊥ ∩ T “all 1-d rowspaces” ⇐⇒ S “no non-zero eigenvalues”

A subspace S of Mn(F) has the property that no element

possesses a non-zero eigenvalue in F if and only if every

element of the affine subspace In + S is non-singular.

Theorem (Duality Theorem, Version 1)

Every element of the affine space In + S is non-singular if

and only if every non-zero vector in Fn occurs as the

rowspace of some element of S⊥\S⊥ ∩ T .
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Other versions of the duality theorem

S⊥\S⊥ ∩ T “all 1-d rowspaces” ⇐⇒ S “no non-zero eigenvalues”

A subspace S of Mn(F) has the property that no element

possesses a non-zero eigenvalue in F if and only if every

element of the affine subspace In + S is non-singular.

Theorem (Duality Theorem, Version 2)

Let C ∈ GLn(F). Every element of the affine space C + S is

non-singular (or has rank n) if and only if every

one-dimensional subspace of Fn occurs as the rowspace of

some element of S⊥\S⊥ ∩ C⊥.



Affine spaces of

matrices with

lower rank bounds,

and a dual

property

Rachel Quinlan

A property of

matrix spaces

A dual property

Trace bilinear form

Dual Property

Proof Summary

Generalizations

and Extensions

Partial Matrices

Other versions of the duality theorem

S⊥\S⊥ ∩ T “all 1-d rowspaces” ⇐⇒ S “no non-zero eigenvalues”

A subspace S of Mn(F) has the property that no element

possesses a non-zero eigenvalue in F if and only if every

element of the affine subspace In + S is non-singular.

Theorem (Duality Theorem, Version 3)

Let C ∈ Mn(F) and let k ≤ n. Every element of the affine

space C + S has has rank at least k if and only if every

(n − k + 1)-dimensional subspace of Fn contains the

rowspace of some element of S⊥\S⊥ ∩ C⊥.
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Other versions of the duality theorem

S⊥\S⊥ ∩ T “all 1-d rowspaces” ⇐⇒ S “no non-zero eigenvalues”

If S is a subspace of Mm×n(F), we define

S⊥ = {X ∈ Mn×m(F) : trace(XY ) = 0 ∀Y ∈ S}.

Theorem (Duality Theorem, Version 4)

Let S be a subspace of Mm×n(F) and let C ∈ Mm×n(F). Let

k ≤ min(m, n). Then every element of the affine space

C + S has rank at least k if and only if every subspace of

dimension m − k + 1 of Fm contains the rowspace of some

element of S⊥\S⊥ ∩ C⊥.
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Example

All ranks in the affine space C + S ⊆ Mm×n(F) are at

least k ⇐⇒ every subspace of dimension m−k +1 of Fm

contains the rowspace of some element of S⊥\S⊥ ∩ C⊥

m = 4, n = 5, C = diag(1, 1, 1), k = 3, m − k + 1 = 2

S = {A : Aij = 0 for j ≤ i ≤ 3}.

S
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
∗ ∗ ∗ ∗ ∗



S⊥
∗ ∗ ∗ 0

0 ∗ ∗ 0

0 0 ∗ 0

0 0 0 0

0 0 0 0


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Example

All ranks in the affine space C + S ⊆ Mm×n(F) are at

least k ⇐⇒ every subspace of dimension m−k +1 of Fm

contains the rowspace of some element of S⊥\S⊥ ∩ C⊥

m = 4, n = 5, C = diag(1, 1, 1), k = 3, m − k + 1 = 2

S = {A : Aij = 0 for j ≤ i ≤ 3}.

C + S
1 ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗
0 0 1 ∗ ∗
∗ ∗ ∗ ∗ ∗



S⊥\S⊥ ∩ C⊥
a1 ∗ ∗ 0

0 a2 ∗ 0

0 0 a3 0

0 0 0 0

0 0 0 0


a1 + a2 + a3 6= 0
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Dimension Bounds

Theorem

Suppose that C + X is an affine subspace of Mm×n(F) in

which every element has rank at least r . Then

dim X ≤ mn − r(r + 1)

2
.

Theorem

Suppose that Y is a subspace of Mn×m(F) with the

following property : for some C ∈ Mm×n(F), every subspace

of Fm of dimension m− r + 1 contains the rowspace of some

element of Y \Y ∩ C⊥. Then

dim Y ≥ r(r + 1)

2
.
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Partial Matrices
A partial m × n matrix A (over F) is a matrix in which some

entries are specified elements of F and the rest are

independent indeterminates.

A completion of A is the matrix resulting from an

assignment of specific values in F to each indeterminate.

Theorem (Brualdi, Huang & Zhan, 2010)

Let F be a field with at least n + 1 elements. A partial n× n

matrix A over F whose completions all have rank n can have

at most n(n−1)
2 indeterminates. If this bound is attained,

there exist permutation matrices P and Q for which PAQ is

upper triangular with

I non-zero constants on the main diagonal

I independent indeterminates above the main diagonal

I zeroes below the main diagonal.
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An extension of this theorem

Theorem (McTigue & Quinlan, 2011)

Let F be any field. Let r ,m, n be positive integers with

r ≤ min(m, n). A partial m × n matrix A over F whose

completions all have rank at least r can have at most

mn − r(r+1)
2 indeterminates.

If this bound is attained, then there exist permutation

matrices P and Q for which PAQ has the following form :

I All entries outside the upper left r × r region are

indeterminates

I In the upper left r × r region, the entries on the main

diagonal are non-zero constants, the entries above the

main diagonal are indeterminates, and the entries below

the main diagonal are zeroes.
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A glance at a proof (for r = m = n)

Every element

of C + X has

rank n

⇐⇒
Every non-zero vector in Fn spans

the rowspace of some element of

rank 1 of X⊥\X⊥ ∩ C⊥

A : a partial n× n matrix whose completions all have rank n.

Write A = C + X

I C : “constant part” of A

I X : “indeterminate part” ∼ a linear subspace of Mn(F).

Lemma

Then X⊥ is described by the partial matrix Y that has

indeterminates where X T has zeroes, and zeroes where X T

has indeterminates.

As many indeterminates as possible in A (or X ) means as

few as possible in Y .
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Every element

of C + X has

rank n

⇐⇒
Every non-zero vector in Fn spans

the rowspace of some element of

rank 1 of X⊥\X⊥ ∩ C⊥

This means

I Some row of Y has n indeterminates (say Row 1)

I Row 1 of Y ∼ Fn. Vectors that are orthogonal to

Column 1 of C⊥ form a hyperplane H.

I Every v ∈ H must appear again in another row of Y .

I So Row 2 of Y must contain at least n − 1

indeterminates (and this is enough only if Column 1 of

C has only one non-zero entry).

I Y has at least n + (n − 1) + · · ·+ 1 = n(n+1)
2

indeterminates, and this bound is attained only if C is

diagonal.



Affine spaces of

matrices with

lower rank bounds,

and a dual

property

Rachel Quinlan

A property of

matrix spaces

A dual property

Trace bilinear form

Dual Property

Proof Summary

Generalizations

and Extensions

Partial Matrices

A glance at a proof (for r = m = n)

Every element

of C + X has

rank n

⇐⇒
Every non-zero vector in Fn spans

the rowspace of some element of

rank 1 of X⊥\X⊥ ∩ C⊥

This means

I Some row of Y has n indeterminates (say Row 1)

I Row 1 of Y ∼ Fn. Vectors that are orthogonal to

Column 1 of C⊥ form a hyperplane H.

I Every v ∈ H must appear again in another row of Y .

I So Row 2 of Y must contain at least n − 1

indeterminates (and this is enough only if Column 1 of

C has only one non-zero entry).

I Y has at least n + (n − 1) + · · ·+ 1 = n(n+1)
2

indeterminates, and this bound is attained only if C is

diagonal.



Affine spaces of

matrices with

lower rank bounds,

and a dual

property

Rachel Quinlan

A property of

matrix spaces

A dual property

Trace bilinear form

Dual Property

Proof Summary

Generalizations

and Extensions

Partial Matrices

A glance at a proof (for r = m = n)

Every element

of C + X has

rank n

⇐⇒
Every non-zero vector in Fn spans

the rowspace of some element of

rank 1 of X⊥\X⊥ ∩ C⊥

This means

I Some row of Y has n indeterminates (say Row 1)

I Row 1 of Y ∼ Fn. Vectors that are orthogonal to

Column 1 of C⊥ form a hyperplane H.

I Every v ∈ H must appear again in another row of Y .

I So Row 2 of Y must contain at least n − 1

indeterminates (and this is enough only if Column 1 of

C has only one non-zero entry).

I Y has at least n + (n − 1) + · · ·+ 1 = n(n+1)
2

indeterminates, and this bound is attained only if C is

diagonal.



Affine spaces of

matrices with

lower rank bounds,

and a dual

property

Rachel Quinlan

A property of

matrix spaces

A dual property

Trace bilinear form

Dual Property

Proof Summary

Generalizations

and Extensions

Partial Matrices

A glance at a proof (for r = m = n)

Every element

of C + X has

rank n

⇐⇒
Every non-zero vector in Fn spans

the rowspace of some element of

rank 1 of X⊥\X⊥ ∩ C⊥

This means

I Some row of Y has n indeterminates (say Row 1)

I Row 1 of Y ∼ Fn. Vectors that are orthogonal to

Column 1 of C⊥ form a hyperplane H.

I Every v ∈ H must appear again in another row of Y .

I So Row 2 of Y must contain at least n − 1

indeterminates (and this is enough only if Column 1 of

C has only one non-zero entry).

I Y has at least n + (n − 1) + · · ·+ 1 = n(n+1)
2

indeterminates, and this bound is attained only if C is

diagonal.



Affine spaces of

matrices with

lower rank bounds,

and a dual

property

Rachel Quinlan

A property of

matrix spaces

A dual property

Trace bilinear form

Dual Property

Proof Summary

Generalizations

and Extensions

Partial Matrices

A glance at a proof (for r = m = n)

Every element

of C + X has

rank n

⇐⇒
Every non-zero vector in Fn spans

the rowspace of some element of

rank 1 of X⊥\X⊥ ∩ C⊥

This means

I Some row of Y has n indeterminates (say Row 1)

I Row 1 of Y ∼ Fn. Vectors that are orthogonal to

Column 1 of C⊥ form a hyperplane H.

I Every v ∈ H must appear again in another row of Y .

I So Row 2 of Y must contain at least n − 1

indeterminates (and this is enough only if Column 1 of

C has only one non-zero entry).

I Y has at least n + (n − 1) + · · ·+ 1 = n(n+1)
2

indeterminates, and this bound is attained only if C is

diagonal.



Affine spaces of

matrices with

lower rank bounds,

and a dual

property

Rachel Quinlan

A property of

matrix spaces

A dual property

Trace bilinear form

Dual Property

Proof Summary

Generalizations

and Extensions

Partial Matrices

Thank You

I Danke schön!

I Go raibh maith agaibh!
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