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A Dimension Bound

Theorem (Quinlan 2011, de Seguins Pazzis 2011)

For any field F and any n ≥ 1, if S is a linear

subspace of Mn(F) with the property that no element

of S has a non-zero eigenvalue in F, then

dim S ≤ n(n − 1)

2
.

Examples

1. S = SUTn(F), the space of strictly upper

triangular matrices, for any field F.

2. S = An(R), the space of skew-symmetric n × n

matrices over R.
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Remarks on the Examples

1. Theorem The maximum possible dimension of a

subspace of Mn(F) in which every element is nilpotent

is n(n−1)
2 . Every subspace of Mn(F) that consists of

nilpotent elements and has dimension n(n−1)
2 is similar

to SUTn(F).

(Gerstenhaber 1958)

2. It is not true that every space of nilpotent matrices is

triangularizable.

3. A space of nilpotent matrices that has the additional

structure of a Lie Algebra is always triangularizable.

Example 2 shows that this is not true if “nilpotent” is

relaxed to the condition of Theorem 1.
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A Symmetric Bilinear Form on Mn(F)

Define τ : Mn(F)×Mn(F) −→ F by

τ(A,B) = trace(AB), for A,B ∈ Mn(F).

τ is a non–degenerate symmetric bilinear form on Mn(F).

For a subspace W of Mn(F), define the orthogonal

complement of W by

W⊥ = {X ∈ Mn(F) : trace(XY ) = 0 ∀ Y ∈W }.

Then W⊥ is a subspace of Mn(F) and

I dim W + dim W⊥ = n2

I W1 ⊆W2 ⇐⇒W⊥
1 ⊇W⊥

2

I 〈In×n〉⊥ = T (the kernel of the trace mapping).



A Dual Property

Notation

I T : the space of matrices of trace zero in Mn(F)

I Fn : the space of row vectors with n entries in F.

A column vector is the transpose of an element

of Fn.

Theorem
Let S be a subspace of Mn(F). Then no element of S

has a non-zero eigenvalue in F if and only if every

one-dimensional subspace of Fn occurs as the

rowspace of some element of S⊥\S⊥ ∩ T .
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Back to the Examples

No element of S

has a non-zero

eigenvalue in F
⇐⇒

Every non–zero vector in

Fn spans the rowspace of

some element of rank 1

of S⊥\S⊥ ∩ T

I If S = SUTn(F), then S⊥ = UTn(F), the space of all

upper triangular matrices in Mn(F).

Every non–zero v ∈ Fn occurs as the only non–zero row

of an upper triangular matrix of non–zero trace.

I If S = An(R), then S⊥ = Sn(R), the space of

symmetric matrices in Mn(F).

If v ∈ Fn, v 6= 0, then vT v is an element of Sn(R) that

has rowspace 〈v〉 and has non–zero trace.
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Quick proof, Part 1

No element of S

has a non-zero

eigenvalue in F
⇐⇒

Every non–zero vector in

Fn spans the rowspace of

some element of rank 1

of S⊥\S⊥ ∩ T

Proof (⇐=)

I Suppose λ ∈ F is an eigenvalue of some X ∈ S .

We want to show λ = 0.

I Then vX = λv for some non–zero v ∈ Fn.

I Let Mv be an element of S⊥\S⊥ ∩ T with rowspace 〈v〉.
I Then

Mv X = λMv =⇒ trace(Mv X ) = λ trace(Mv ).

Since trace(Mv X ) = 0 (as Mv ∈ S⊥), and trace(Mv ) 6= 0 (as

Mv 6∈ T ), we must have λ = 0.
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Quick proof, Part 2

No element of S

has a non-zero

eigenvalue in F
⇐⇒

Every non–zero vector in

Fn spans the rowspace of

some element of rank 1

of S⊥\S⊥ ∩ T

Proof (=⇒)

I Let v ∈ Fn, v 6= 0. We want to show that some

element of S⊥ of non–zero trace has rowspace 〈v〉.
I The subspace {vX : X ∈ S} of Fn does not contain v .

I So ∃u ∈ Fn with (vX )uT = 0 ∀ X ∈ S and vuT 6= 0.

I But (vX )uT = trace
(
uT (vX )

)
= trace

(
(uT v)X

)
and

vuT = trace(uT v).

I So uT v has rowspace 〈v〉, has non–zero trace, and

trace(uT v X ) = 0 ∀X ∈ S =⇒ uT v ∈ S⊥.

I So uT v is the thing we want!



Quick proof, Part 2

No element of S

has a non-zero

eigenvalue in F
⇐⇒

Every non–zero vector in

Fn spans the rowspace of

some element of rank 1

of S⊥\S⊥ ∩ T

Proof (=⇒)

I Let v ∈ Fn, v 6= 0. We want to show that some

element of S⊥ of non–zero trace has rowspace 〈v〉.
I The subspace {vX : X ∈ S} of Fn does not contain v .

I So ∃u ∈ Fn with (vX )uT = 0 ∀ X ∈ S and vuT 6= 0.

I But (vX )uT = trace
(
uT (vX )

)
= trace

(
(uT v)X

)
and

vuT = trace(uT v).

I So uT v has rowspace 〈v〉, has non–zero trace, and

trace(uT v X ) = 0 ∀X ∈ S =⇒ uT v ∈ S⊥.

I So uT v is the thing we want!



Quick proof, Part 2

No element of S

has a non-zero

eigenvalue in F
⇐⇒

Every non–zero vector in

Fn spans the rowspace of

some element of rank 1

of S⊥\S⊥ ∩ T

Proof (=⇒)

I Let v ∈ Fn, v 6= 0. We want to show that some

element of S⊥ of non–zero trace has rowspace 〈v〉.
I The subspace {vX : X ∈ S} of Fn does not contain v .

I So ∃u ∈ Fn with (vX )uT = 0 ∀ X ∈ S and vuT 6= 0.

I But (vX )uT = trace
(
uT (vX )

)
= trace

(
(uT v)X

)
and

vuT = trace(uT v).

I So uT v has rowspace 〈v〉, has non–zero trace, and

trace(uT v X ) = 0 ∀X ∈ S =⇒ uT v ∈ S⊥.

I So uT v is the thing we want!



Quick proof, Part 2

No element of S

has a non-zero

eigenvalue in F
⇐⇒

Every non–zero vector in

Fn spans the rowspace of

some element of rank 1

of S⊥\S⊥ ∩ T

Proof (=⇒)

I Let v ∈ Fn, v 6= 0. We want to show that some

element of S⊥ of non–zero trace has rowspace 〈v〉.
I The subspace {vX : X ∈ S} of Fn does not contain v .

I So ∃u ∈ Fn with (vX )uT = 0 ∀ X ∈ S and vuT 6= 0.

I But (vX )uT = trace
(
uT (vX )

)
= trace

(
(uT v)X

)
and

vuT = trace(uT v).

I So uT v has rowspace 〈v〉, has non–zero trace, and

trace(uT v X ) = 0 ∀X ∈ S =⇒ uT v ∈ S⊥.

I So uT v is the thing we want!



Quick proof, Part 2

No element of S

has a non-zero

eigenvalue in F
⇐⇒

Every non–zero vector in

Fn spans the rowspace of

some element of rank 1

of S⊥\S⊥ ∩ T

Proof (=⇒)

I Let v ∈ Fn, v 6= 0. We want to show that some

element of S⊥ of non–zero trace has rowspace 〈v〉.
I The subspace {vX : X ∈ S} of Fn does not contain v .

I So ∃u ∈ Fn with (vX )uT = 0 ∀ X ∈ S and vuT 6= 0.

I But (vX )uT = trace
(
uT (vX )

)
= trace

(
(uT v)X

)
and

vuT = trace(uT v).

I So uT v has rowspace 〈v〉, has non–zero trace, and

trace(uT v X ) = 0 ∀X ∈ S =⇒ uT v ∈ S⊥.

I So uT v is the thing we want!



Quick proof, Part 2

No element of S

has a non-zero

eigenvalue in F
⇐⇒

Every non–zero vector in

Fn spans the rowspace of

some element of rank 1

of S⊥\S⊥ ∩ T

Proof (=⇒)

I Let v ∈ Fn, v 6= 0. We want to show that some

element of S⊥ of non–zero trace has rowspace 〈v〉.
I The subspace {vX : X ∈ S} of Fn does not contain v .

I So ∃u ∈ Fn with (vX )uT = 0 ∀ X ∈ S and vuT 6= 0.

I But (vX )uT = trace
(
uT (vX )

)
= trace

(
(uT v)X

)
and

vuT = trace(uT v).

I So uT v has rowspace 〈v〉, has non–zero trace, and

trace(uT v X ) = 0 ∀X ∈ S =⇒ uT v ∈ S⊥.

I So uT v is the thing we want!



Two Consequences
R\R ∩ T “all 1-d rowspaces” ⇐⇒ R⊥ “no non–zero eigenvalues”

1. D : maximum dimension of a subspace with “no

non-zero eigenvalues in F”

d : minimum dimension of a subspace with “all 1-d

rowspaces on elements of non-zero trace”

D + d = n2.

2. For any subspace W of Mn(F), (W⊥)T = (W T )⊥.

The “no non–zero eigenvalue” property is preserved

under transposition =⇒ so is the dual property :

Every one-dimensional

rowspace occurs in

R\R ∩ T

⇐⇒
Every one-dimensional

rowspace occurs in

RT\RT ∩ T
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Another Dimension Bound

Theorem
Let R be a subspace of Mn(F) with the property that every

one-dimensional subspace of Fn is the rowspace of some

element of R of non-zero trace. Then

dim R ≥ n(n + 1)

2
.

Note The property of R is preserved under similarity.

“Basis-free” version of the property and Theorem

Let V be a F-vector space, dim V = n. Let R be a

subspace of EndF(V ) with the property that for every

hyperplane H of V , some element of R of non-zero trace

annihilates H. Then

dimR ≥ n(n + 1)

2
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Induction Machinery

R : a subspace of EndF(V ), with an element of non-zero

trace annihilating H, for each hyperplane H of V .

R : a matrix realization of R.

I R0 : space of elements of R with zero 1st column.

I P : space of 1st columns of elements of R.

Then dim R = dim R0 + dim P.

I R∗ : the subspace of Mn−1(F) obtained by deleting the

first row and column from every element of R0.

I By induction, dim R∗ ≥ n(n−1)
2 , so dim R0 ≥ n(n−1)

2

Would like to show: there is a basis of V with respect to

which every element of (Fn)T occurs as Column 1 of an

element of R.

Enough to do this for Row 1, by the “transposability”.



This bit will be over soon – don’t panic

1. ∃θ1 ∈ R with : trace θ1 = 1, rank θ1 = 1

Choose b1 to span Im θ1.

2. ∃θ2 ∈ R with :

trace θ2 = 1, rank θ2 = 1, θ2(b1) = 0

Choose x2 to span Im θ2.

Note x2 6∈ 〈b1〉 as trace θ2 6= 0

Write b2= x2 − b1. Then θ2(b2) = b2 + b1.

3. ∃θ3 ∈ R with:

trace θ3 = 1, rank θ3 = 1, θ3(b1) = θ3(b2) = 0

Choose x3 to span Im θ3. Note x3 6∈ 〈b1, b2〉.
Write b3= x3 − b1. Then θ3(b3) = b3 + b1.

Keep going . . . to get a basis B = {b1, . . . , bn} of V .

Row 1 of the matrix of θi with respect to B starts with i − 1 zeroes

followed by a 1 in position i .

So the space of “first rows” is all of Fn
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Other versions of the duality theorem

S⊥\S⊥ ∩ T “all 1-d rowspaces” ⇐⇒ S “no non-zero eigenvalues”

A subspace S of Mn(F) has the property that no element

possesses a non-zero eigenvalue in F if and only if every

element of the affine subspace In + S is non-singular.

Theorem (Duality Theorem, Version 1)

Every element of the affine space In + S is non-singular if

and only if every non-zero vector in Fn occurs as the

rowspace of some element of S⊥\S⊥ ∩ T .
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Theorem (Duality Theorem, Version 2)

Let C ∈ GLn(F). Every element of the affine space C + S is

non-singular (or has rank n) if and only if every

one-dimensional subspace of Fn occurs as the rowspace of

some element of S⊥\S⊥ ∩ C⊥.



Other versions of the duality theorem

S⊥\S⊥ ∩ T “all 1-d rowspaces” ⇐⇒ S “no non-zero eigenvalues”

A subspace S of Mn(F) has the property that no element

possesses a non-zero eigenvalue in F if and only if every

element of the affine subspace In + S is non-singular.

Theorem (Duality Theorem, Version 3)

Let C ∈ Mn(F) and let k ≤ n. Every element of the affine

space C + S has has rank at least k if and only if every

(n − k + 1)-dimensional subspace of Fn contains the

rowspace of some element of S⊥\S⊥ ∩ C⊥.



Other versions of the duality theorem

S⊥\S⊥ ∩ T “all 1-d rowspaces” ⇐⇒ S “no non-zero eigenvalues”

If S is a subspace of Mm×n(F), we define

S⊥ = {X ∈ Mn×m(F) : trace(XY ) = 0 ∀Y ∈ S}.

Theorem (Duality Theorem, Version 4)

Let S be a subspace of Mm×n(F) and let C ∈ Mm×n(F).

Let k ≤ min(m, n). Then every element of the affine space

C + S has rank at least k if and only if every subspace of

dimension m − k + 1 of Fm contains the rowspace of some

element of S⊥\S⊥ ∩ C⊥.



Background

Duality and Involutions in Representation Theory, August 2008

Question (F. Szechtman, 2003, motivation in group theory)

Suppose R1 is a subspace of EndF(V ) with the following

property :

∃g ∈ EndF(V ), g 6∈ R1, so that for every hyperplane H of

V , some element of R1 agrees with g on H.

What is the minimum possible dimension of R1?



Reformulations of Szechtman’s Question

∃g ∈ EndF(V ), g 6∈ R1, so that for every hyperplane H

of V , some element of R1 agrees with g on H.

What is the minimum possible dimension of R1?

1. g +R1 is a (non-linear) affine subspace of EndF(V )

that contains for every hyperplane H of V an element

annihilating H.

Minimum dimension of such an affine subspace?

2. Write R = 〈g ,R1〉. Then R1 has codimension 1 in R.

Minimum dimension of a subspace R of EndF(V ) for

which R\R1 has elements annihilating all hyperplanes,

for some R1 of codimension 1 in R?

We’ve answered this if R1 = R∩(trace kernel) - this

restriction does not change the minimum dimension.



Reformulations of Szechtman’s Question

∃g ∈ EndF(V ), g 6∈ R1, so that for every hyperplane H

of V , some element of R1 agrees with g on H.

What is the minimum possible dimension of R1?

1. g +R1 is a (non-linear) affine subspace of EndF(V )

that contains for every hyperplane H of V an element

annihilating H.

Minimum dimension of such an affine subspace?

2. Write R = 〈g ,R1〉. Then R1 has codimension 1 in R.

Minimum dimension of a subspace R of EndF(V ) for

which R\R1 has elements annihilating all hyperplanes,

for some R1 of codimension 1 in R?

We’ve answered this if R1 = R∩(trace kernel) - this

restriction does not change the minimum dimension.



Burnside, 1913

On the outer automorphisms of a group, Proc. LMS

“WHILE preparing the second edition of my

Theory of Groups for the press I made many

ineffectual attempts to determine whether an

outer isomorphism of a group necessarily permutes

some of its conjugate sets, or, in the alternative, if

groups exist some outer isomorphisms of which

change every operation into a conjugate operation.

I have since succeeded in constructing

comparatively simple examples showing that of the

two suppositions the latter is the correct one. One

of the simplest of these is given below.”



Neumann, 1981

Not quite inner automorphisms, Bull. Australian MS

“Burnside asked the question whether an

automorphism that maps each element of a group

onto a conjugate element must be an inner

automorphism, and after “many ineffectual

attempts” constructed examples to answer his

question in the negative . . . Gerhard Kowol has

asked (oral communication) whether there is a

group G with an outer automorphism that

coincides on each triplet of elements with an inner

automorphism (depending, of course, on the

triplet), but that does not agree with any inner

automorphism on some quadruplet of elements

. . . I here present examples for all finite n ≥ 2.”



n–Inner automorphisms of finite groups

F. Szechtman, AMS Proceedings, Vol. 131, 2003

An automorphism θ of a finite group G is n-inner if on every

subset of G with fewer than n elements, it coincides with

some inner automorphism.

Szechtman defined an action of the additive group of

Mn(Fp) on Fn
p ⊕ Fn

p; hence a semidirect product

Γ = (Fn
p ⊕ Fn

p) o E

for any subgroup E of Mn(Fp).

Every element σ of Mn(Fp) defines an automorphism of Γ

-this is outer if σ does not belong to E .

-it is n-inner if σ agrees with some element of E on every

subspace of dimension less than n.



Thank You !!
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