
Lecture 7: Lagrange’s Theorem

Theorem
(Lagrange’s Theorem) Let G be a finite group with a subgroup H.

Then the order of H divides the order of G.

Notes

1. Recall that “divides” means “is a factor of”. The symbol for

“divides” is a vertical bar. For example “3|21” is the

statement that 3 is a divisor of 21.

2. Lagrange’s Theorem says that a subgroup of S4, which has

4! = 24 elements, could possibly have 1, 2, 3, 4, 6, 8, 12 or 24

elements, but couldn’t have (for example) 7 or 16 elements.

3. The converse of Lagrange’s Theorem is not true; if n and k

are integers and k|n, it is not true that every group of order n

has a subgroup of order k .



Left cosets

Definition Let H be a subgroup of a group G (with binary

operation ?). Then the left coset of H in G determined by x ,

which is denoted xH or x ? H, is the set xH = {x ? h : h ∈ H}.

Notes

1. xH consists of the elements of H, all “translated” by being

composed on the left with the element x . We can think of it

as a “shifted copy” of H inside G .

2. xH is a subset of G , generally not a subgroup.

3. It is possible for two different elements x and y of G to

determine the same left coset of H. For example if x is any

element of the subgroup H, then xH is just H itself.

4. There is a corresponding concept of right coset, which we will

care about later but not now. The right coset of H

determined by x would be Hx = {hx : h ∈ H}.



Examples of Left Cosets

If G is the group of integers under addition, and H is a subgroup

5Z consisting of all multiples of 5, then the left coset of H in G

determined by 3 is

3 + H = {. . . , 3 + (−5), 3 + 0, 3 + 5, 3 + 10, . . . }
= {. . . ,−2, 3, 8, 13, . . . }
= 3 + 5Z.

This is the congruence class of 3 modulo 5. Note that 3, 8,−2,−7

all determine the same coset (they are all congruent to each other

modulo 5).



Examples of Left Cosets

If G is GL(2,Q), the group of all 2× 2 rational matrices under

matrix multiplication, and H is the subgroup SL(2,Q) consisting

of all matrices of determinant 1, then the left coset of H in G

determined by

(
2 3

4 3

)
is

{(
2 3

4 3

)
B : det(B) = 1

}
.

This set consists of all matrices in GL(2,Q) whose determinant is

−6.



Examples of Left Cosets

If G is the dihedral group D8 consisting of symmetries of the

square, and H is the subgroup of G consisting of the four

rotations, then the left coset of H in G determined by any one of

the four reflections consists of the four reflections. The left coset

of H in G determined by any one of the four rotations consists of

the four rotations.

Note that there are only two distinct cosets, they have empty

intersection and their union is the whole group G .



Proof Mechanism for Lagrange’s Theorem

Start with the subgroup H of the finite group G .

If H = G the theorem holds.

If not, choose an element x of G with x 6∈ H.

Then the coset xH is disjoint from H and has |H|
elements.

If H ∪ xH = G then |G | = 2|H| and we are done.

If not, choose y 6∈ H ∪ xH and add the coset yH.

Eventually we find that G is the union of k disjoint

left cosets of H, and |G | = k|H|.



Challenge for Week 4

The Euclidean plane R2 is a group under vector addition. The

elements are ordered pairs (a, b) (points in the plane) and the

addition is defined by (a, b) + (c , d) = (a + c , b + d). The group

R2 is also a real vector space, which means that its elements can

be multiplied by real numbers as well as added together.

What are the nontrivial proper subgroups of R2 that are also

closed under multiplication by real numbers?

If H is such a subgroup of R2, what do the left cosets of H

determined by different elements of R2 look like?

Hint/Remark: There are very many nontrivial proper subgroups of

R2 of this type, but geometrically they all look alike, and their left

cosets have a nice geometric description too. A good answer to

this challenge would be a geometric explanation with a picture.


