Lecture 3: Groupsof permutations and symmetries
A permutation of a finite set T is a bijection from T to T. This means that every element has a different image, and the image of the function is the whole set T. The permutations of a set form a group under composition.

The group of all permutations of a set of n elements is called the symmetric group of degree n and denoted S_{n}.

How the composition operation works: the example of S_{3}.
S_{3} : the set of all permutations of $\{1,2,3\}$

$$
\sigma=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right) \quad z=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) \quad \text { (Notation) }
$$

Composition

Inverses Two permutations, σ, z ore inverses of each other if σ_{0} z and roo are both equal to id.
The inverse of $\sigma: \begin{array}{ll}1 \underset{2}{\rightleftarrows} & 3 \\ 3 \underset{\sigma^{-1}}{\rightleftarrows} & 1\end{array}$
In "array notation"

$$
\sigma=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right) \sum \quad \sigma^{-1}=\left(\begin{array}{lll}
3 & 2 & 1 \\
1 & 2 & 3
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)
$$

Grapple

$$
\begin{aligned}
& z=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right) \\
& z^{-1}=\left(\begin{array}{lll}
2 & 3 & 1 \\
1 & 2 & 3
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)
\end{aligned}
$$

Note ${Z^{-1} \neq r \text { in this case. }}_{\text {a }} \neq$.

The group of symmetries of the equilateral triangle

Symmetries of the triangle

The Group Operation in D_{6}

The group D_{6} of symmetries of the triangle has six elements.

$$
D_{6}=\left\{\mathrm{id}, R_{120}, R_{240}, T_{L}, T_{M}, T_{N}\right\}
$$

The group operation is composition, denoted by the symbol \circ. $R_{120} \circ T_{L}$ means " R_{120} after T_{L}, the symmetry obtained by applying T_{L} first and then R_{120}. We can figure out which one it is by watching what happens to the vertices in this composition of symmetries.

Comparing the final position to the starting position, we see that

$$
R_{120} \circ T_{L}=T_{M}
$$

Group table for D_{6}

\circ	id	R_{120}	R_{240}	T_{L}	T_{M}	T_{N}
id	id	R_{120}	R_{240}	T_{L}	T_{M}	T_{N}
R_{120}	R_{120}	R_{240}	id	T_{M}	T_{N}	T_{L}
R_{240}	R_{240}	id	R_{120}	T_{N}	T_{L}	T_{M}
T_{L}	T_{L}	T_{N}	T_{M}	id	R_{240}	R_{120}
T_{M}	T_{M}	T_{L}	T_{N}	R_{120}	id	R_{240}
T_{N}	T_{N}	T_{M}	T_{L}	R_{240}	R_{120}	id

In general, the group of symmetries of the regular n-gon is denoted $D_{2 n}$ and called the dihedral group of order $2 n$. It has $2 n$ elements, n rotations (including the identity) and n reflections.

Weekly Challenge 2

Like a polygon, a 3-dimensional object has a group of symmetries, which includes rotations and reflections. This week's challenge is to give a description of the rotational symmtries of the cube. How many are there? What are the axes about which rotational symmetries occur, and what the the angles of rotation?

