## Lecture 3: Group of permutations and symmetries

A permutation of a finite set T is a *bijection* from T to T. This means that every element has a different image, and the image of the function is the whole set T. The permutations of a set form a group under composition.

The group of all permutations of a set of n elements is called the symmetric group of degree n and denoted  $S_n$ .

How the composition operation works: the example of  $S_3$ .

## The group of symmetries of the equilateral triangle



# Symmetries of the triangle



#### The Group Operation in $D_6$

The group  $D_6$  of symmetries of the triangle has six elements.

$$D_6 = \{ id, R_{120}, R_{240}, T_L, T_M, T_N \}.$$

The group operation is composition, denoted by the symbol  $\circ$ .  $R_{120} \circ T_L$  means " $R_{120}$  after  $T_L$ , the symmetry obtained by applying  $T_L$  first and then  $R_{120}$ . We can figure out which one it is by watching what happens to the vertices in this composition of symmetries.



Comparing the final position to the starting position, we see that

 $R_{120} \circ T_L = T_M.$ 

### Group table for $D_6$



In general, the group of symmetries of the regular *n*-gon is denoted  $D_{2n}$  and called the dihedral group of order 2n. It has 2n elements, *n* rotations (including the identity) and *n* reflections.

## Weekly Challenge 2

Like a polygon, a 3-dimensional object has a group of symmetries, which includes rotations and reflections. This week's challenge is to give a description of the rotational symmetries of the cube. How many are there? What are the axes about which rotational symmetries occur, and what the the angles of rotation?

