Section 1.3 Subgroups and Generating Sets

Definition

Let G be a group and let H be a subset of G. Then H is called a subgroup of G if H is itself a group under the operation of G.

Not every group has proper subgroups. For example, consider the group of fifth roots of unity in $\mathbb{C}.$

Examples of subgroups of \mathbb{C}^{\times} :

- 1. The set \mathbb{R}^{\times} of non-zero real numbers.
- The set S = {a + bi ∈ C : a² + b² = 1}; S is the set of complex numbers of modulus 1, geometrically it is the unit circle in the complex plane. Why is this set closed under multiplication and taking inverses?
- 3. Is the set of *pure imaginary* numbers a subgroup of \mathbb{C}^{\times} ?

Cyclic subgroups of a group

Let G be a group (with operation \star), and let $a \in G$. We use the shorthand a^2 for $a \star a$, a^3 for $a \star a \star a$, etc. We think of these elements as "positive integer powers" of a. We also adopt the convention that a^0 means the identity element. We already have a^{-1} representing the inverse of a, we define negative integer powers of a by defining a^{-k} to mean $(a^{-1})^k$.

Notation: We denote by $\langle a \rangle$ the set of *all* integer powers of the element *a* (which may or may not be distinct elements of *G*).

Lemma

For each $a \in G$, $\langle a \rangle$ is a subgroup of G.

It is called the cyclic subgroup of G generated by a. In general a subgroup of a group G is said to be cyclic if it is equal to $\langle a \rangle$ for *some* element a of G.

Cyclic groups

Definition: A group G is cyclic if $G = \langle a \rangle$ for some element a of G. In this case a is said to be a generator of G.

Examples

- 1. $(\mathbb{Z}, +)$ is an infinite cyclic group, with 1 as a generator. *Question*: There is one other generator. What is it?
- 2. For a natural number *n*, the group of *n*th roots of unity in \mathbb{C}^{\times} is a cyclic group of order *n*, with (for example) $e^{\frac{2\pi i}{n}}$ as a generator.

Question to think about: What other elements generate this group?

 For n ≥ 3, the group of rotational symmetries of a regular n-gon is a cyclic group of order n, generated (for example) by the rotation through ^{2π}/_n in a counterclockwise direction.

Generators of cyclic groups

We often denote a cyclic group of order *n* by C_n , and an infinite cyclic group by C_{∞} .

Question: If C_n is generated by x, what other elements (i.e. which powers of x) also generate the group?

• If
$$C_4 = \langle x \rangle$$
, then x and x^3 are generators.

• If
$$C_5 = \langle x \rangle$$
, then x, x^2, x^3, x^4 all generate C_5 .

• If
$$C_6 = \langle x \rangle$$
, then only x and x^5 generate C_6 .

Theorem 1.3.7 Suppose that x is a generator of C_n . Then the elements of C_n that generate it as a cyclic group are those elements of the form x^i where gcd(i, n) = 1. The number of generators is $\phi(n)$.