
3.3 Diagonalization

Let A =





−4 1

4 −4



. Then





1

2



 and





1

−2



 are eigenvectors of A, with corresponding

eigenvalues −2 and −6 respectively (check). This means





−4 1

4 −4









1

2



 = −2





1

2



 ,





−4 1

4 −4









1

−2



 = −6





1

−2



 .

Thus




−4 1

4 −4









1 1

2 −2



 =



−2





1

−2



 − 6





1

−2







 =





−2 −6

−4 12





We have




−4 1

4 −4









1 1

2 −2



 =





1 1

2 −2









−2 0

0 −6





(Think about this). Thus AE = ED where E =





1 1

2 −2



 has the eigenvectors of A as

columns and D =





−2 0

0 −6



 is the diagonal matrix having the eigenvalues of A on the

main diagonal, in the order in which their corresponding eigenvectors appear as columns of E.

Definition 3.3.1 A n × n matrix is A diagonal if all of its non-zero entries are located on its

main diagonal, i.e. if Aij = 0 whenever i 6= j.

Diagonal matrices are particularly easy to handle computationally. If A and B are diagonal

n × n matrices then the product AB is obtained from A and B by simply multiplying entries

in corresponding positions along the diagonal, and AB = BA.

If A is a diagonal matrix and k is a positive integer, then Ak is obtained from A by replacing

each entry on the main diagonal with its kth power.

Back to our Example : We have AE = ED. Note that det(E) 6= 0 so E is invertible. Thus

AE = ED

=⇒ AEE−1 = EDE−1

=⇒ A = EDE−1.
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It is convenient to write A in this form if for some reason we need to calculate powers of A.

Note for example that

A3 = (EDE−1)(EDE−1)(EDE−1)

= EDI2DI2DE−1

= ED3E−1

= E





(−2)3 0

0 (−6)3



 E−1.

In general An = E





(−2)n 0

0 (−6)n



E−1, for any positive integer n. (In fact this is true for

negative integers too if we interpret A−n to mean the nth power of the inverse A−1 of A).

Example 3.3.2 Solve the recurrence relation

xn+1 = −4xn + 1yn

yn+1 = 4xn − 4yn

given that x0 = 1, y0 = 1.

Note: this means we have sequences x0, x1, . . . and y0, y1, . . . defined by the above relations. If

for some n we know xn and yn, the relations tell us how to calculate xn+1 and yn+1.

For example

x1 = −4x0 + y0 = −4(1) + 1 = −3

y1 = 4x0 − 4y0 = 4(1) − 4(1) = 0

x2 = −4x1 + y1 = −4(−3) + 0 = 12

y2 = 4x1 − 4y1 = 4(−3)− 4(0) = −12.

Solution of the problem:

The relations can be written in matrix form as




xn+1

yn+1



 =





−4xn + 1yn

4xn − 4yn



 =





−4 1

4 −4









xn

yn



 = A





xn+1

yn+1



 ,
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where A is the matrix





−4 1

4 −4



. Thus





x1

y1



 = A





x0

y0



 = A





1

1









x2

y2



 = A





x1

y1



 = A



A





1

1







 = A2





1

1









x3

y3



 = A





x2

y2



 = A



A2





1

1







 = A3





1

1



 , etc.

In general





xn

yn



 = An





1

1



.

To obtain general formulae for xn and yn we need a general formula for An. We have

An = (EDE−1)n = EDnE−1

where E =





1 1

2 −2



 and D =





−2 0

0 −6



.

Note

E−1 = −
1

4





−2 −1

−2 1



 =
1

4





2 1

2 −1



 .

Thus

An =





1 1

2 −2









(−2)n 0

0 (−6)n





1

4





2 1

2 −1





=





(−2)n (−6)n

2(−2)n −2(−6)n





1

4





2 1

2 −1





=
1

4





(−2)n(2) + (−6)n(2) (−2)n − (−6)n

4(−2)n − 4(−6)n 2(−2)n + 2(−6)n





and




xn

yn



 = An





1

1



 =
1

4





(−2)n(2) + (−6)n(2) (−2)n − (−6)n

4(−2)n − 4(−6)n 2(−2)n + 2(−6)n









1

1





=
1

4





3(−2)n + (−6)n

6(−2)n − 2(−6)n




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We conclude that

xn =
3

4
(−2)n +

1

4
(−6)n

yn =
3

2
(−2)n −

1

2
(−6)n

for n ≥ 0.

(This is easily verified for small values of n using the recurrence relations). See Problem Sheet

3 for more problems of this type.

Definition 3.3.3 The n × n matrix A is diagonalizable (or diagonable) if there exists an

invertible matrix E for which

E−1AE

is diagonal.

We have already seen that if E is a matrix whose columns are eigenvectors of A, then

AE = ED, where D is the diagonal matrix whose entry in the (i, i) position is the eigenvalue

of A to which the ith column of E corresponds as an eigenvector of A. If E is invertible then

E−1AE = D and A is diagonalizable. Hence we have the following statement

1. If there exists an invertible matrix whose columns are eigenvectors of A,

then A is diagonalizable.

On the other hand, suppose that A is diagonalizable. Then there exists an invertible n× n

matrix E and a diagonal matrix D whose entry in the (i, i) position can be denoted di, for

which

D = E−1AE.

This means ED = AE, so

E

















d1 . . .

... d2

. . .

dn

















= AE
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. Looking at the jth column of each of these products shows that

















E1j

E2j

...

Enj

















dj = A

















E1j

E2j

...

Enj

















.

Thus the jth column of E is an eigenvector of A (with corresponding eigenvalue dj). So

2. If the n × n matrix A is diagonalizable, then there exists an invertible matrix

whose columns are eigenvectors of A.

Putting this together with 1. above gives

Theorem 3.3.4 The square matrix A is diagonalizable if and only if there exists an invertible

matrix having eigenvectors of A as columns.

It is not true that every square matrix is diagonalizable.

Example 3.3.5 Let A =





2 −1

1 4



.

Then

det(λI − A) = λ2 − 6λ + 9 = (λ − 3)2.

So λ = 3 is the only eigenvalue of A and it occurs twice.

Eigenvectors : Suppose A
(

x

y

)

= 3
(

x

y

)

. Then

2x − y = 3x

x + 4y = 3y
=⇒ x + y = 0, x = −y.

So every eigenvector of A has the form





−y

y



 for some non-zero real number y. Thus every

2×2 matrix having eigenvectors of A as columns as of the form





−a −b

a b



 for some non-zero

real numbers a and b. The determinant of such a matrix is −ab − (−ab) = 0. Thus no matrix

having eigenvectors of A as columns is invertible, and A is not diagonalizable.

Although the above example shows that not all square matrices are diagonalizable, we do

have the following fact.
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Theorem 3.3.6 Suppose that the n×n matrix A has n distinct eigenvalues λ1, . . . , λn. If E is

a matrix whose columns are eigenvectors of A corresponding to the different eigenvalues, then

E is invertible. Thus A is diagonalizable.
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