3.3 Diagonalization

Let $A =$ $\sqrt{ }$ \mathcal{L} −4 1 4 −4 \setminus . Then $\sqrt{ }$ \mathcal{L} 1 2 \setminus and $\sqrt{ }$ \mathcal{L} 1 -2 \setminus \Box are eigenvectors of A , with corresponding eigenvalues −2 and −6 respectively (check). This means

$$
\left(\begin{array}{cc} -4 & 1 \\ 4 & -4 \end{array}\right)\left(\begin{array}{c} 1 \\ 2 \end{array}\right) = -2\left(\begin{array}{c} 1 \\ 2 \end{array}\right), \quad \left(\begin{array}{cc} -4 & 1 \\ 4 & -4 \end{array}\right)\left(\begin{array}{c} 1 \\ -2 \end{array}\right) = -6\left(\begin{array}{c} 1 \\ -2 \end{array}\right).
$$

Thus

$$
\left(\begin{array}{cc} -4 & 1 \\ 4 & -4 \end{array}\right)\left(\begin{array}{cc} 1 & 1 \\ 2 & -2 \end{array}\right) = \left(-2\left(\begin{array}{c} 1 \\ -2 \end{array}\right) - 6\left(\begin{array}{c} 1 \\ -2 \end{array}\right)\right) = \left(\begin{array}{cc} -2 & -6 \\ -4 & 12 \end{array}\right)
$$

We have

$$
\left(\begin{array}{cc} -4 & 1 \\ 4 & -4 \end{array}\right)\left(\begin{array}{cc} 1 & 1 \\ 2 & -2 \end{array}\right) = \left(\begin{array}{cc} 1 & 1 \\ 2 & -2 \end{array}\right)\left(\begin{array}{cc} -2 & 0 \\ 0 & -6 \end{array}\right)
$$

(Think about this). Thus $AE = ED$ where $E =$ \mathcal{L} 1 1 2 -2 has the eigenvectors of A as $\sqrt{ }$ \setminus

columns and $D =$ \mathcal{L} -2 0 $0 -6$ is the *diagonal* matrix having the eigenvalues of A on the main diagonal, in the order in which their corresponding eigenvectors appear as columns of E.

Definition 3.3.1 A $n \times n$ matrix is A diagonal if all of its non-zero entries are located on its main diagonal, i.e. if $A_{ij} = 0$ whenever $i \neq j$.

Diagonal matrices are particularly easy to handle computationally. If A and B are diagonal $n \times n$ matrices then the product AB is obtained from A and B by simply multiplying entries in corresponding positions along the diagonal, and $AB = BA$.

If A is a diagonal matrix and k is a positive integer, then A^k is obtained from A by replacing each entry on the main diagonal with its kth power.

Back to our Example : We have $AE = ED$. Note that $\det(E) \neq 0$ so E is invertible. Thus

$$
AE = ED
$$

$$
\implies AEE^{-1} = EDE^{-1}
$$

$$
\implies A = EDE^{-1}.
$$

It is convenient to write A in this form if for some reason we need to calculate powers of A. Note for example that

$$
A^{3} = (EDE^{-1})(EDE^{-1})(EDE^{-1})
$$

= $EDI_{2}DI_{2}DE^{-1}$
= $ED^{3}E^{-1}$

$$
= E\left(\begin{array}{cc} (-2)^3 & 0\\ 0 & (-6)^3 \end{array}\right) E^{-1}.
$$

In general $A^n = E$ $\sqrt{ }$ $\overline{1}$ $(-2)^n$ 0 $0 \quad (-6)^n$ \setminus E^{-1} , for any positive integer *n*. (In fact this is true for

negative integers too if we interpret A^{-n} to mean the *n*th power of the inverse A^{-1} of A).

Example 3.3.2 Solve the recurrence relation

$$
x_{n+1} = -4x_n + 1y_n
$$

$$
y_{n+1} = 4x_n - 4y_n
$$

given that $x_0 = 1$, $y_0 = 1$.

Note: this means we have sequences x_0, x_1, \ldots and y_0, y_1, \ldots defined by the above relations. If for some *n* we know x_n and y_n , the relations tell us how to calculate x_{n+1} and y_{n+1} .

For example

$$
x_1 = -4x_0 + y_0 = -4(1) + 1 = -3
$$

\n
$$
y_1 = 4x_0 - 4y_0 = 4(1) - 4(1) = 0
$$

\n
$$
x_2 = -4x_1 + y_1 = -4(-3) + 0 = 12
$$

$$
y_2 = 4x_1 - 4y_1 = 4(-3) - 4(0) = -12.
$$

Solution of the problem:

The relations can be written in matrix form as

$$
\left(\begin{array}{c} x_{n+1} \\ y_{n+1} \end{array}\right) = \left(\begin{array}{c} -4x_n + 1y_n \\ 4x_n - 4y_n \end{array}\right) = \left(\begin{array}{c} -4 & 1 \\ 4 & -4 \end{array}\right) \left(\begin{array}{c} x_n \\ y_n \end{array}\right) = A \left(\begin{array}{c} x_{n+1} \\ y_{n+1} \end{array}\right),
$$

where A is the matrix $\sqrt{ }$ \mathcal{L} −4 1 4 −4 \setminus . Thus

$$
\begin{pmatrix}\nx_1 \\
y_1\n\end{pmatrix} = A \begin{pmatrix}\nx_0 \\
y_0\n\end{pmatrix} = A \begin{pmatrix}\n1 \\
1\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\nx_2 \\
y_2\n\end{pmatrix} = A \begin{pmatrix}\nx_1 \\
y_1\n\end{pmatrix} = A \begin{pmatrix}\nA \begin{pmatrix}\n1 \\
1\n\end{pmatrix}\n\end{pmatrix} = A^2 \begin{pmatrix}\n1 \\
1\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\nx_3 \\
y_3\n\end{pmatrix} = A \begin{pmatrix}\nx_2 \\
y_2\n\end{pmatrix} = A \begin{pmatrix}\nA^2 \begin{pmatrix}\n1 \\
1\n\end{pmatrix}\n\end{pmatrix} = A^3 \begin{pmatrix}\n1 \\
1\n\end{pmatrix}, \text{ etc.}
$$

In general $\sqrt{ }$ \mathcal{L} \bar{x}_n yn \setminus $= A^n$ $\sqrt{ }$ \mathcal{L} 1 1 \setminus \cdot

To obtain general formulae for x_n and y_n we need a general formula for A^n . We have

$$
A^{n} = (EDE^{-1})^{n} = ED^{n}E^{-1}
$$

where $E = \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix}$ and $D = \begin{pmatrix} -2 & 0 \\ 0 & -6 \end{pmatrix}$.
Note

$$
E^{-1} = -\frac{1}{4} \begin{pmatrix} -2 & -1 \\ -2 & 1 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 2 & 1 \\ 2 & -1 \end{pmatrix}.
$$

Thus

$$
A^{n} = \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} (-2)^{n} & 0 \\ 0 & (-6)^{n} \end{pmatrix} \frac{1}{4} \begin{pmatrix} 2 & 1 \\ 2 & -1 \end{pmatrix}
$$

=
$$
\begin{pmatrix} (-2)^{n} & (-6)^{n} \\ 2(-2)^{n} & -2(-6)^{n} \end{pmatrix} \frac{1}{4} \begin{pmatrix} 2 & 1 \\ 2 & -1 \end{pmatrix}
$$

=
$$
\frac{1}{4} \begin{pmatrix} (-2)^{n}(2) + (-6)^{n}(2) & (-2)^{n} - (-6)^{n} \\ 4(-2)^{n} - 4(-6)^{n} & 2(-2)^{n} + 2(-6)^{n} \end{pmatrix}
$$

and

$$
\begin{pmatrix}\nx_n \\
y_n\n\end{pmatrix} = A^n \begin{pmatrix}\n1 \\
1\n\end{pmatrix} = \frac{1}{4} \begin{pmatrix}\n(-2)^n (2) + (-6)^n (2) & (-2)^n - (-6)^n \\
4(-2)^n - 4(-6)^n & 2(-2)^n + 2(-6)^n\n\end{pmatrix} \begin{pmatrix}\n1 \\
1\n\end{pmatrix}
$$
\n
$$
= \frac{1}{4} \begin{pmatrix}\n3(-2)^n + (-6)^n \\
6(-2)^n - 2(-6)^n\n\end{pmatrix}
$$

We conclude that

$$
x_n = \frac{3}{4}(-2)^n + \frac{1}{4}(-6)^n
$$

$$
y_n = \frac{3}{2}(-2)^n - \frac{1}{2}(-6)^n
$$

for $n \geq 0$.

(This is easily verified for small values of n using the recurrence relations). See Problem Sheet 3 for more problems of this type.

Definition 3.3.3 The $n \times n$ matrix A is diagonalizable (or diagonable) if there exists an invertible matrix E for which

$$
E^{-1}AE
$$

is diagonal.

We have already seen that if E is a matrix whose columns are eigenvectors of A , then $AE = ED$, where D is the diagonal matrix whose entry in the (i, i) position is the eigenvalue of A to which the *i*th column of E corresponds as an eigenvector of A . If E is invertible then $E^{-1}AE = D$ and A is diagonalizable. Hence we have the following statement

1. If there exists an invertible matrix whose columns are eigenvectors of A, then A is diagonalizable.

On the other hand, suppose that A is diagonalizable. Then there exists an invertible $n \times n$ matrix E and a diagonal matrix D whose entry in the (i, i) position can be denoted d_i , for which

$$
D = E^{-1}AE.
$$

This means $ED = AE$, so

$$
E\left(\begin{array}{cccc} d_1 & \dots & & \\ \vdots & d_2 & & \\ & & \ddots & \\ & & & d_n \end{array}\right) = AE
$$

. Looking at the jth column of each of these products shows that

$$
\begin{pmatrix} E_{1j} \\ E_{2j} \\ \vdots \\ E_{nj} \end{pmatrix} d_j = A \begin{pmatrix} E_{1j} \\ E_{2j} \\ \vdots \\ E_{nj} \end{pmatrix}.
$$

Thus the jth column of E is an eigenvector of A (with corresponding eigenvalue d_i). So

2. If the $n \times n$ matrix A is diagonalizable, then there exists an invertible matrix whose columns are eigenvectors of A.

Putting this together with 1. above gives

Theorem 3.3.4 The square matrix A is diagonalizable if and only if there exists an invertible matrix having eigenvectors of A as columns.

It is not true that every square matrix is diagonalizable.

Example 3.3.5 Let
$$
A = \begin{pmatrix} 2 & -1 \\ 1 & 4 \end{pmatrix}
$$
.

Then

$$
\det(\lambda I - A) = \lambda^2 - 6\lambda + 9 = (\lambda - 3)^2.
$$

So $\lambda = 3$ is the only eigenvalue of A and it occurs twice. Eigenvectors : Suppose $A\binom{x}{y} = 3\binom{x}{y}$. Then

$$
\begin{array}{rcl}\n2x & - & y & = & 3x \\
x & + & 4y & = & 3y\n\end{array}\n\Longrightarrow x + y = 0, \quad x = -y.
$$

So every eigenvector of A has the form $\sqrt{ }$ \mathcal{L} $-y$ \hat{y} \setminus for some non-zero real number y . Thus every

 2×2 matrix having eigenvectors of A as columns as of the form $\sqrt{ }$ \mathcal{L} $-a$ $-b$ a b \setminus for some non-zero real numbers a and b. The determinant of such a matrix is $-ab - (-ab) = 0$. Thus no matrix having eigenvectors of A as columns is invertible, and A is not diagonalizable.

Although the above example shows that not all square matrices are diagonalizable, we do have the following fact.

Theorem 3.3.6 Suppose that the $n \times n$ matrix A has n distinct eigenvalues $\lambda_1, \ldots, \lambda_n$. If E is a matrix whose columns are eigenvectors of A corresponding to the different eigenvalues, then E is invertible. Thus A is diagonalizable.