
2.3 The Inverse of a Matrix

Notation: For a positive integer n, we let Mn(R) denote the set of n × n matrices with entries

in R.

Remark: When we work in the full set of matrices over R, it is not always possible to add or

multiply two matrices (these operations are subject to restrictions on the sizes of the matrices

involved). However, if we restrict attention to Mn(R) we can add any pair of matrices and

multiply any pair of matrices, and we never move outside Mn(R).

Mn(R) is an example of the type of algebraic structure known as a ring.

In this section we will consider how we might define a version of “division” for matrices in

Mn(R).

In the set R of real numbers, dividing by a non-zero number x means multiplying by the

reciprocal 1/x of x. For example if we divide a real number by 5 we are multiplying it by 1

5
:

1

5
is the reciprocal or multiplicative inverse of 5 in R. This means

1

5
× 5 = 1,

i.e., if you multiply 5 by 1

5
, you get 1; multiplying by 1

5
“reverses” the work of multiplying by

5.

Definition 2.3.1 Let A be a n × n matrix.If B is a n × n matrix for which

AB = In and BA = In

then B is called an inverse for A.

Example: Let A =





2 1

5 3



 and let B =





3 −1

−5 2



. Then

AB =





2 1

5 3









3 −1

−5 2



 =





1 0

0 1



 = I2

BA =





3 −1

−5 2









2 1

5 3



 =





1 0

0 1



 = I2

So B is an inverse for A.

Remarks:
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1. Suppose B and C are both inverses for a particular matrix A, i.e.

BA = AB = In and CA = AC = In

Then

(BA)C = InC = C

Also (BA)C = B(AC) = BIn = B

Hence B = C, and if A has an inverse, its inverse is unique. Thus we can talk about the

inverse of a matrix.

2. The inverse of a n × n matrix A, if it exists, is denoted A−1.

3. Not every square matrix has an inverse. For example the 2 × 2 zero matrix





0 0

0 0





does not.

In Example 1.5.1 we saw that the system

3x + 2y − 5z = 4

x + y − 2z = 1

5x + 3y − 8z = 6

is inconsistent. This system can be written in matrix form as follows











3x + 2y − 5z

x + y − 2z

5x + 3y − 8z











=











4

1

6











.

The left hand side of this equation can be written as the matrix product of the 3 × 3

coefficient matrix of the system and the column containing the variable names to obtain

the following version :










3 2 −5

1 1 −2

5 3 −8





















x

y

z











=











4

1

6











We let A denote the 3 × 3 matrix above.
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If this matrix had an inverse, we could multiply both sides of the above equation on the

left by A−1 to obtain

A−1A











x

y

z











= A−1











4

1

6











=⇒











x

y

z











= A−1











4

1

6











.

This would mean that the system has a unique solution in which the values of x, y, z are

the entries of the matrix A−1











4

1

6











.

Since we know from Example 1.5.1 that the system has no solution, we must conclude

that the matrix A has no inverse in M3(R).

General Fact : Suppose that a system of equations ha a square coefficient matrix. If

this coefficient matrix has an inverse the system has a unique solution.

4. A square matrix that has an inverse is called invertible or non-singular. A matrix that

has no inverse is called singular or non-invertible.

5. A Converse to Item 3 above: Suppose now that A is a n× n matrix (say 3× 3) and that

there is a system of equations with A as coefficient matrix that has a unique solution.

Then the RREF obtained from the augmented matrix of the system has the following

form










1 0 0 ∗

0 1 0 ∗

0 0 1 ∗











.

Since the rightmost column does not contribute to the choice of elementary row operations,

it follows that every system of linear equations having A as coefficient matrix has an

augmented matrix with a RREF of the above form. Thus every system of equations

having A as coefficient matrix has a unique solution.

In particular then the system described by

A











x

y

z











=











1

0

0











has a unique solution x = a1, y = a2, z = a3.
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Similarly the systems described by

A











x

y

z











=











0

1

0











, A











x

y

z











=











0

0

1











have unique solutions given respectively by x = b1, y = b2, z = b3 and x = c1, y =

c2, z = c3.

Now define

B =











a1 b1 c1

a2 b2 c2

a3 b3 c3











,

and look at the product AB. This is the 3×3 identity matrix I3. Thus B is an inverse for

A and A is invertible. We conclude that if A is the coefficient matrix of a system having

a unique solution, then A is invertible.

Putting this together with Item 3. above and the remarks at the end of Section 2.2, we

obtain the following :

Theorem 2.3.2 A n × n matrix A is invertible if and only if the following equivalent

conditions hold.

(a) Every system of linear equations with A as coefficient matrix has a unique solution.

(b) A can be reduced by elementary row operations to the n × n identity matrix.
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