Chapter 1

Systems of Linear Equations

1.1 Introduction

Consider the equation

$$2x + y = 3$$
.

This is an example of a *linear equation* in the variables x and y. As it stands, the statement "2x + y = 3" is neither true nor untrue: it is just a statement involving the abstract symbols x and y. However if we replace x and y with some particular pair of real numbers, the statement will become either true or false. For example

Putting
$$x=1,\ y=1$$
 gives $2x+y=2(1)+(1)=3$: True $x=1,\ y=2$ gives $2x+y=2(1)+(2)\neq 3$: False $x=0,\ y=3$ gives $2x+y=2(0)+(3)=3$: True

Definition 1.1.1 A pair (x_0, y_0) of real numbers is a solution to the equation 2x + y = 3 if setting $x = x_0$ and $y = y_0$ makes the equation true; i.e. if $2x_0 + y_0 = 3$.

For example (1,1) and (0,3) are solutions - so are (2,-1), (3,-3), (-1,5) and (-1/2,4) (check these).

However (1,4) is not a solution since setting $x=1,\ y=4$ gives $2x+y=2(1)+4\neq 3$.

The set of all solutions to the equation is called its solution set.

Geometric Interpretation

Recall: The Cartesian Coordinate System. The 2-dimensional plane is described by a pair of perpendicular axes, labelled X and Y. A point is described by a pair of real numbers, its X and Y-coordinates.

We plot in the plane those points which correspond to the pairs of numbers which we found to be solutions to the equation 2x + y = 3. These points form a *line* in the plane.

Now consider the equation 4x + 3y = 4. Solutions to this equation include

$$(1,0), (4,-4), (-2,4), (-1/2,2).$$

Again the full solution set forms a line.

Question: Consider the equations

$$2x + y = 3, \quad 4x + 3y = 4$$

together. Can we find simultaneous solutions of these equations? This means - can we find pairs of numbers (x_0, y_0) such that setting $x = x_0$ and $y = y_0$ makes both equations true?

Equivalently - can we find a point of intersection of the two lines? From the picture it looks as if there is exactly one such point, at (5/2, -2).

We can solve the problem algebraically as follows :

$$2x + y = 3 \text{ (A)}$$

$$4x + 3y = 4 \text{ (B)}$$
 A system of linear equations.

Step 1: Multiply Equation (A) by 2 : 4x + 2y = 6 (A2).

Any solution of (A2) is a solution of (A).

Step 2: Multiply Equation (B) by -1: -4x - 3y = -4 (B2)

Any solution of (B2) is a solution of (B).

Step 3: Now add equations (A2) and (B2).

$$4x + 2y = 6$$

$$-4x - 3y = -4$$

$$-y = 2$$

Step 4: So y = -2 and the value of y in any simultaneous solution of (A) and (B) is -2: Now we can use (A) to find the value of x.

$$2x + y = 3$$
 and $y = -2 \Longrightarrow 2x + (-2) = 3$
 $\Longrightarrow 2x = 5$
 $\Longrightarrow x = \frac{5}{2}$

So x = 5/2, y = -2 is the *unique* solution to this system of linear equations.

This kind of "ad hoc" approach may not always work if we have a more complicated system, involving a greater number of variables, or more equations. We will devise a general strategy for solving complicated systems of linear equations.