MA203 Linear Algebra 06/07 - Homework 3

Due date for problems marked (H) - Friday March 16

1. Use elementary row operations to find the inverses of the following matrices

$(3 \ 2 \ -1)$	(1	4	-2	$\begin{pmatrix} 1\\ 1 \end{pmatrix}$	0	2	1	
$\left(\begin{array}{rrrr} 3 & 2 & -1 \\ 1 & 0 & 2 \\ 0 & 3 & -1 \end{array}\right)$,	$2 \\ -2$	1 1	$\begin{pmatrix} 0\\3 \end{pmatrix}$,	$ \left \begin{array}{c}1\\2\\2\end{array}\right $	$-4 \\ 3$	$-2 \\ 1 \\ 0$		

2. Use elementary row operations to calculate the determinant of each of the following matrices.

(a)
$$\begin{pmatrix} 3 & 2 & 6 & 2 \\ 4 & 0 & 8 & 2 \\ 1 & 0 & 1 & -1 \\ 2 & 2 & 5 & 2 \end{pmatrix}$$
 (b) $\begin{pmatrix} 1 & -2 & 4 & -3 \\ -2 & 8 & -1 & -1 \\ 3 & -5 & 2 & 4 \\ 2 & -5 & 7 & 9 \end{pmatrix}$ (c) (H) $\begin{pmatrix} 1 & 2 & 0 & 1 \\ 5 & 14 & -7 & 8 \\ -2 & 0 & -8 & -1 \\ -3 & 2 & -8 & 3 \end{pmatrix}$

3. (H)

- (a) Calculate the third row of the inverse of the matrix of part (c) of Problem 2 above.
- (b) Calculate the third column of the inverse of the matrix of part (c) of Problem 2 above.

4. Let
$$A = \begin{pmatrix} 3 & 2 \\ -3 & -4 \end{pmatrix}$$
.

- (a) Find the characteristic polynomial of A.
- (b) Find the eigenvalues of A.
- (c) Find an eigenvector of A corresponding to each eigenvalue.
- (d) Write down an invertible matrix E and a diagonal matrix D for which $A = EDE^{-1}$.
- (e) Calculate A^{10} .

5. (H) Let
$$B = \begin{pmatrix} 3 & 5 \\ 4 & 2 \end{pmatrix}$$
.

- (a) Find the characteristic polynomial of B.
- (b) Find the eigenvalues of B.
- (c) Find an eigenvector of B corresponding to each eigenvalue.
- (d) Write down an invertible matrix E and a diagonal matrix D for which $B = EDE^{-1}$.
- (e) Calculate B^4 .

6. Let
$$A = \begin{pmatrix} 0 & -3 & 5 \\ -4 & 4 & 10 \\ 0 & 0 & 4 \end{pmatrix}$$
.

- (a) Find the characteristic polynomial of A.
- (b) Find all the eigenvalues of A.
- (c) Find an eigenvector corresponding to each eigenvalue.
- (d) Write down an invertible 3×3 matrix E for which $E^{-1}AE$ is diagonal.
- (e) Hence calculate A^5 .

7. Let
$$A = \begin{pmatrix} 3 & 4 & -1 \\ -1 & -2 & 1 \\ 3 & 9 & 0 \end{pmatrix}$$
.

- (a) Find the characteristic polynomial of A.
- (b) Find all the eigenvalues of A.
- (c) Find an eigenvector corresponding to each eigenvalue.
- (d) Explain why no invertible 3×3 matrix E for which $E^{-1}AE$ is diagonal exists.
- 8. (H) Suppose that $x_0 = 1$, $y_0 = -1$ and for n = 1, 2, ... the integers x_n and y_n are defined by

$$\begin{aligned} x_n &= 3x_{n-1} + 5y_{n-1} \\ y_n &= 4x_{n-1} + 2y_{n-1}. \end{aligned}$$

Solve these recurrence relations to obtain explicit formulae for x_n and y_n .

- 9. (H) The terms of the *Fibonacci Sequence* are given by $F_0 = 0$, $F_1 = 1$ and for $n \ge 0$ $F_{n+2} = F_{n+1} + F_n$. Thus each term is the sum of the previous two; the sequence begins $0, 1, 1, 2, 3, 5, 8, \ldots$
 - (a) For n = 0, 1, 2, 3, verify directly that $F_n = \frac{1}{\sqrt{5}}(a^n b^n)$, where $a = \frac{1}{2}(1 + \sqrt{5})$ and $b = \frac{1}{2}(1 - \sqrt{5})$.
 - (b) By considering the relations

$$F_{n+2} = 1F_{n+1} + 1F_n$$

$$F_{n+1} = 1F_{n+1} + 0F_n$$

prove that

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right)$$

for all n.

Hint: You will probably find this problem easier if you keep the names a and b for the numbers $\frac{1}{2}(1 + \sqrt{5})$ and $\frac{1}{2}(1 - \sqrt{5})$ until the very end. Note that these are the eigenvalues of the matrix $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$. Note also that $\binom{a}{1}$ and $\binom{b}{1}$ are eigenvectors of A. To confirm this you need to use the fact that $a^2 = a + 1$ and $b^2 = b + 1$, i.e. a and b are both roots of the characteristic polynomial of A.