MA 180/190/186 Lecture 8 Calculus
from yesterday - integration by ports

$$
\int\left(u v^{\prime}\right) d x=u v-\int \underline{u}^{\prime} \underline{v} d x
$$

One more axomple on this topic: $\int e^{x} \cos x d x$
Try $\quad u=\underline{e}^{x} \quad v^{\prime}=\cos x$

$$
\begin{aligned}
& u^{\prime}=e^{x} \quad v=\frac{\sin x}{} \\
& * \quad \int \frac{e^{x} \cos x d x}{u} v^{\prime}
\end{aligned}
$$

Look et $\iint e^{x} \sin x d x$
Use integration by parts. again:

$$
\begin{array}{ll}
u=e^{x} & v^{\prime}=\sin x \\
u^{\prime}=e^{x} & y=-\cos x
\end{array}
$$

$$
\int e^{x} \sin x d x=\begin{gathered}
-e^{x} \cos x+\int e^{x} \cos x d x \\
u v \\
u^{\prime} v
\end{gathered}
$$

* $\int e^{x} \cos x d x=e^{x} \sin x+e^{x} \cos x-\int e^{x} \cos x d x$

$$
\begin{aligned}
2 \int e^{x} \cos x d x & =e^{x} \sin x+e^{x} \cos x(+c) \\
\int e^{x} \cos x d x & =\frac{1}{2}\left(e^{x} \sin x+e^{x} \cos x\right)+c
\end{aligned}
$$

Section 1.4.3 : Partial Fraction Expansions

We know how to integrate polynomial functions; for example

$$
\int 2 x^{2}+3 x-4 d x=\frac{2}{3} x^{3}+\frac{3}{2} x^{2}-4 x+C
$$

We also know that

$$
\int \frac{1}{(x)} d x=\ln |x|+c \quad \int \frac{1}{x+a} d x=\ln |x+a|+c
$$

and that

$$
\int \frac{1}{x^{n}} d x=-\frac{1}{n-1} \frac{1}{x^{n-1}}+C
$$

for $n>1$.
This section is about integrating rational functions; i.e. quotients in which the numerator and denominator are both polynomials.

Adding Symbolic Fractions

Remark: If we were presented with the task of adding the expressions $\frac{2}{x+3}$ and $\frac{1}{x+4}$, we would take $(x+3)(x+4)$ as a common denominator and write

$$
\frac{2}{x+3}+\frac{1}{x+4}=\frac{2(x+4)}{(x+3)(x+4)}+\frac{1(x+3)}{(x+3)(x+4)}
$$

$$
=\frac{2(x+4)+1(x+3)}{(x+3)(x+4)}=\frac{3 x+11}{(x+3)(x+4)} .
$$

Question: Suppose we were presented with the expression $\frac{3 x+11}{(x+3)(x+4)}$ and asked to rewrite it in the form $\frac{A}{x+3}+\frac{B}{x+4}$, for num
How would we do it?
Another Question Why would we want to do such a thing?

The Partial Fraction Expansion

Write

$$
\frac{3 x+11}{(x+3)(x+4)}=\frac{A}{x+3}+\frac{B}{x+4} \text {. for numbers } A \text { and } b \text { ? }
$$

Then
$\left(\frac{3 x+11}{(x+3)(x+4)}=\frac{A(x+4)}{(x+3)(x+4)}+\frac{B(x+3)}{(x+3)(x+4)}=\frac{(A+B) x+4 A+3 B}{(x+3)(x+4)}\right.$.
*This means $3 x+11=(A+B) x+4 A+3 B$ for all x, which means

$$
\begin{aligned}
A+B=3 \text {, and } 4 A+3 B=11 \\
\text { 2. So }
\end{aligned} \quad \begin{aligned}
3 A+3 B & =9 \\
4 A+3 B & =11 \\
A & =2 \\
B & =1
\end{aligned}
$$

Thus $B=1$ and $A=2$. So

$$
\frac{3 x+11}{(x+3)(x+4)}=\frac{2}{x+3}+\frac{1}{x+4}
$$

An Alternative Method

 - often move efficient!We want

for all real numbers x. If this statement is true for all x, then in particular it is true when $x=-4$. Setting $x=-4$ gives

$$
\begin{aligned}
& -12+11=A(0)+B(-1)=B=1 . \Rightarrow-1=-B \\
& \text { gives } \\
& -9+11=A(1)+B(0) \Longrightarrow A=2 .
\end{aligned}
$$

Thus

$$
\frac{3 x+11}{(x+3)(x+4)}=\frac{2}{x+3}+\frac{1}{x+4}
$$

Integration using partial fractions

Example 30

Determine $\int \frac{3 x+11}{(x+3)(x+4)} d x$.
Solution: Write

$$
\int \frac{3 x+11}{(x+3)(x+4)} d x=\int \frac{(2)}{x+3} d x+\int \frac{1}{x+4} d x
$$

Then

$$
\int \frac{3 x+11}{(x+3)(x+4)} d x=\underline{2 \ln |x+3|}+\ln |x+4|+C=\underline{\ln (x+3)^{2}}+\ln |x+4|+C .
$$

Partial fractions with long division

Example 31

In this example the degree of the numerator exceeds the degree of the denominator, so first apply long division to find the quotient and remainder upon dividing $x^{3}+3 x+2$ by $x+1$.
We find that the quotient is $x^{2}-x+4$ and the remainder is -2 . Hence

$$
\frac{x^{3}+3 x+2}{x+1}=\frac{x^{2}-x+4}{x+1} \quad \forall
$$

Thus

$$
\begin{aligned}
\int \frac{x^{3}+3 x+2}{x+1} d x & =\int \frac{x^{2}-x+4}{} d x-2 \int \frac{1}{x+1} d x \\
& =\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+4 x-2 \ln |x+1|+C
\end{aligned}
$$

$$
\begin{gathered}
\frac{x^{2}-x+4}{\frac{x^{3}+3 x+2}{}} \begin{array}{c}
\frac{x^{3}+x^{2}}{-x^{2}+3 x+2} \\
\frac{-x^{2}-x}{4 x+2} \\
\frac{4 x+4}{-2}
\end{array} \quad \frac{x^{3}+3 x+2}{x+1}
\end{gathered}
$$

A Harder Example

Example 32

Determine $\int \frac{x+1}{\frac{(2 x+1)^{2}(x-2)}{(2 x+1} d x \text { if we try }} \frac{x^{2}}{(2 x+1)^{2}(x-2)}=\frac{B}{2 x+1}+\frac{C}{2 x+1}+\frac{C}{x-2}$
Solution: In this case the denominator has a repeated linear factor
$2 x+1$. It is necessary to include both
$\frac{A}{2 x+1}$ and $\frac{B}{(2 x+1)^{2}}$ in the partial fraction expansion. We have

$$
\frac{x+1}{(2 x+1)^{2}(x-2)}=\frac{A}{2 x+1}+\frac{B}{(2 x+1)^{2}}+\frac{C}{x-2} \cdot \begin{gathered}
\text { Commminoter } \\
(2 x+1)^{2}(x-2)
\end{gathered}
$$

Then

$$
\frac{x+1}{(2 x+1)^{2}(x-2)}=\frac{A(2 x+1)(x-2)+B(x-2)+C(2 x+1)^{2}}{(2 x+1)^{2}(x-2)} .
$$

and so

$$
x+1=A(2 x+1)(x-2)+B(x-2)+C(2 x+1)^{2} .
$$

$$
\begin{array}{rlr}
2+1 & =A(0)+B(0)+C(5)^{2} & \\
x=2: \quad 3=C(5)^{2} & B=\frac{3}{25} \\
x=-\frac{1}{2}: \quad \frac{1}{2}=B\left(-\frac{5}{2}\right) & B=-\frac{1}{5} \\
x=0: \quad 1=A(1)(-2)+B(-2)+C(1)^{2} & A=-\frac{6}{25} \\
\frac{x+1}{(2 x+1)^{2}(x-2)}=\frac{-6 / 25}{2 x+1}+\frac{-1 / 5}{(2 x+1)^{2}}+\frac{3 / 25}{x-2}
\end{array}
$$

Thus
and

$$
\begin{aligned}
\int \frac{x+1}{(2 x+1)^{2}(x-2)} d x=- & \frac{6}{25} \int \frac{1}{2 x+1} d x-\frac{1}{5} \int \frac{1}{(2 x+1)^{2}} d x \\
& +\frac{3}{25} \int \frac{1}{x-2} d x
\end{aligned}
$$

Call the three integrals on the right above I_{1}, I_{2}, I_{3} respectively.

- $I_{1}: \int \frac{1}{2 x+1} d x=\frac{1}{2} \ln |2 x+1|\left(+C_{1}\right)$.
- $I_{2}: \int \frac{1}{(2 x+1)^{2}} d x=-\frac{1}{2(2 x+1)}\left(+C_{2}\right)$.
- I $I_{3}: \int \frac{1}{x-2} d x=\ln |x-2|\left(+C_{3}\right)$.

Thus
$\int \frac{x+1}{(2 x+1)^{2}(x-2)} d x=-\frac{3}{25} \ln |2 x+1|+\frac{1}{10(2 x+1)}+\frac{3}{25} \ln |x-2|+C$.

At the end of this section you should

- Know the difference between a definite and indefinite integral and be able to explain it accurately and precisely.
- Be able to evaluate a range of definite and indefinite integrals using the following methods:
- direct methods;
- suitably chosen substitutions;
- integration by parts;
- partial fraction expansions.

