1.4.1 Substitution - Reversing the Chain Rule

The Chain Rule of Differentation tells us that in order to differentiate the expression $\sin x^{2}$, we should regard this expression as \sin ("something") whose derivative (with respect to "something") is $\cos ($ "something"), then multiply this expression by the derivative of the "something" with respect to x. Thus

$$
\frac{d}{d x}\left(\sin x^{2}\right)=\cos x^{2} \frac{d}{d x}\left(x^{2}\right)=2 x \cos x^{2}
$$

Equivalently

$$
\int 2 x \cos x^{2} d x=\sin x^{2}+C
$$

In this section, through a series of examples, we consider how one might go about reversing the differentiation process to get from $2 x \cos x^{2}$ back to $\sin x^{2}$.

Example 19
Determine $\int 2 x \sqrt{x^{2}+1} d x$. $2 x \sqrt{x^{2}+1}$ is a product
Solution Notice that the integrand involves both the expressions $x^{2}+1$ and $2 x$. Note also that $2 \underline{x}$ is the derivative of $x^{2}+1$.

$$
\begin{gathered}
\text { ChainRule } \\
\frac{d}{d x}[g(u)]=g^{\prime}(u) \frac{d u}{d x}
\end{gathered}
$$

1 Introduce the notation u and set $u=x^{2}+1$.

* 2 Note $\frac{d u}{d x}=2 x$; rewrite this as du= $2 x d x$.

3 Then

$$
\int_{*}^{2 x} \underbrace{d x}_{\underbrace{x^{2}}_{\sqrt{x^{2}}+1}} d x=\int u^{1 / 2} \sqrt{x^{2}+1}(2 x d x)=\int u^{\frac{1}{2}} d u)=\frac{2}{3} u^{\frac{3}{2}}+C
$$

So

$$
\int 2 x \sqrt{x^{2}+1} d x=\frac{2}{3}\left(x^{2}+1\right)^{\frac{3}{2}}+C
$$

Check by differentiating: $\frac{2}{3} \cdot \frac{3}{2}\left(x^{2}+1\right)^{\prime \prime} \frac{3}{(2 x)}=\sqrt{x^{2}+1} 2 x$

$$
\begin{aligned}
& \int \left\lvert\, \frac{2 x \mid \sqrt{x^{2}+1}}{} d x\right. \\
& u=x^{2}+1
\end{aligned}
$$

The probed is

$$
\left.\int 2 x \sqrt{u} d x=\int \frac{\left(\frac{d u}{d x}(\sqrt{u})\right.}{\uparrow}\right) d x
$$

This is essentially

$$
\int \sqrt{u} d u
$$ the result of differentiating some expression involving u, with respect to x, using the chain rule.

Substitution and definite integrals

Example 20

Determine $\cos ^{3} x \sin x d x$ (from 2015 Summer paper)
Solution: Write $u=\cos x$. Then

$$
\frac{d u}{d x}=-\sin x, d u=-\sin x d x, \quad \sin x d x=-d u .
$$

Change variables: $\int_{0}^{\pi} \cos ^{3} x \sin x d x=\Theta \int_{x=0}^{x=\pi}\left(u^{3} d u\right.$. Limits of integration: When $x=0, u=\cos x=\cos \theta=1$. When $x=\pi$, $u=\cos x=\cos \pi=-1$. Our integral becomes:

$$
-\int_{(\operatorname{la}=1}^{(\omega)=-1} \underline{u}^{3} d u==\left.\frac{u^{4}}{4}\right|_{u=-1} ^{u=1}=\frac{1}{4}+\frac{(-1)^{4}}{4}=0 .
$$

Substitution and Definite Integrals - more examples

Example 21

Evaluate $\int_{0}^{1} \frac{(5 r)}{\left(4+r^{2}\right)^{2}} d r$. The derivotive of $4+r^{2}$ reserbles
Solution To find an antiderivative, let $u=4+r^{2}$.
Then $\frac{d u}{d r}=2 r, d u=2 r d r, 5 r d r=\frac{5}{2} d u$.
So

$$
\int \frac{5 r}{\left(4+r^{2}\right)^{2}} d r=\frac{5}{2} \int \frac{1}{\left(u^{2}\right.} d u=\frac{5}{2} \int\left(u^{-2} d u .\right.
$$

Thus

$$
\int \frac{5 r}{\left(4+r^{2}\right)^{2}} d r=-\frac{5}{2} \times \frac{1}{u}+C, \quad(\text { Indetinite intggal })
$$

and we need to evaluate $-\frac{5}{2} \times \frac{1}{u}$ at $r=0$ and at $r=1$. We have two choices.

$$
-\frac{5}{2} \times\left.\frac{1}{u}\right|_{r=0} ^{r=1} \quad u=4+6^{2}
$$

1 Write $u=\underbrace{4+r^{2}}$ to obtain

$$
\begin{aligned}
\int_{0}^{1} \frac{5 r}{\left(4+r^{2}\right)^{2}} d r & =-\frac{5}{2} \times\left.\frac{1}{4+r^{2}}\right|_{r=0} ^{r=1} \\
& =-\frac{5}{2} \times \frac{1}{4+1^{2}}-\left(-\frac{5}{2} \times \frac{1}{4+0^{2}}\right) \\
& =-\frac{5}{2} \times \frac{1}{5}+\frac{5}{2} \times \frac{1}{4} \\
& =\frac{1}{8}
\end{aligned}
$$

Alternatively

2. Alternatively, write the antiderivative as $-\frac{5}{2} \times \frac{1}{4}$ and replace the limits of integration with the corresponding values of u.
When $r=0$ we have $u=4+0^{2}=4$.
When $r=1$ we have $u=4+1^{2}=5$.
Thus

$$
\begin{aligned}
\int_{0}^{1} \frac{5 r}{\left(4+r^{2}\right)^{2}} d r & =-\frac{5}{2} \times\left.\frac{1}{u}\right|_{u=4} ^{u=5} \\
& =-\frac{5}{2} \times \frac{1}{5}-\left(-\frac{5}{2} \times \frac{1}{4}\right) \\
& =\frac{1}{8}
\end{aligned}
$$

From Summer Exam 2013

Example 22

Determine

$$
\int_{1}^{4} \frac{1}{x+\sqrt{x}} d x
$$

Solution: Write

$$
\int_{1}^{4} \frac{1}{x+\sqrt{x}} d x=\int_{1}^{4} \frac{1}{\sqrt{x}(\sqrt{x}+1)} d x
$$

Now write $u=\sqrt{x}+1$. Then $\frac{d u}{d x}=\frac{1}{2} x^{-\frac{1}{2}}=\frac{1}{2} \frac{1}{\sqrt{x}} \Longrightarrow \frac{1}{\sqrt{x}} d x=2 d u$.
Then

$$
\begin{aligned}
\int_{1}^{4} \frac{1}{\sqrt{x}(\sqrt{x}+1)} d x & =\int_{x=1}^{x=4} \frac{2}{u} d u=\int_{u=2}^{u=3} \frac{2}{u} d u=\left.2 \ln u\right|_{2} ^{3} \\
& =2(\ln 3-\ln 2)=2 \ln \frac{3}{2}
\end{aligned}
$$

More Examples

Example 23

Determine $\int(1-\cos t)^{2} \sin t d t$
Question: How do we know what expression to extract and refer to as u ? Really what we are doing in this process is changing the integration problem in the variable t to a (hopefully easier) integration problem in a new variable u - there is a change of variables taking place.
There is no easy answer but with practice we can develop a sense of what might work. In this example the integrand involves the expression $1-\cos t$ and also its derivative $\sin t$. This is what makes the substitution $u=1-\cos t$ effective for this problem.

NOTE: There are more examples of the substitution technique in the lecture notes.

