Wednesday Feb 24
Recall from Week 3 The indefinite integral

$$
\int f(x) d x=F(x)+(c) \text { "generd entiderivative" }
$$

where $F(x)$ satisfies $F^{\prime}(x)=f(x)$
For example $\int 2 x d x=x^{2}+C$

To calculate a definite integral

$$
f(x) d x
$$

- Find some $F(x)$ with $f^{\prime}(x)=f(x)$
- Colculote. $\left.F(x)\right|_{a} ^{b}=F(b)-F(a)$

$$
\left.x^{2}\right|_{2} ^{5}=5^{2}-2^{2}
$$

For example

$$
\int_{0}^{\pi / 2} \cos x d x=1
$$

$$
\left.\sin x\right|_{0} ^{\pi / 2}=\sin \pi / 2-\sin \theta=1-0=1
$$

Powers of x
Example 17
Determine
What do 1 need t differentiate to
Important Note: We know that in order to calculate the derivative of an expression like x^{n}, we reduce the index by 1 to $n-1$, and we multiply by the constant n. So

$$
\frac{d}{d x} \times(1)=n x^{n-1}
$$

$$
\frac{d}{d x}\left[\frac{1}{n+1} x^{n+1}\right]=\frac{1}{n+1}
$$

in general. To find an antiderivative of x^{n} we have to reverse this $=x^{n}$ process. This means that the index increases by 1 to $n+1$ and we multiply by the constant $\frac{1}{n+1}$. So

$$
\int x_{3 / 2}^{1 / 2}+x^{2} d x
$$

$$
=\frac{2}{3} x^{3 / 2}+\frac{x^{3}}{3}+C
$$

$$
\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C .
$$

$$
\begin{aligned}
& \text { es. } \int x^{5} d x=\frac{x^{6}}{6}+c \\
& \int x^{1 / 2} d x=\frac{2}{3} x^{3 / 2}+c
\end{aligned}
$$

This makes sense as long as the number n is not equal to l -1 (in which case the fraction $\frac{1}{n+1}$ wouldn't be defined).

Note:
This example includes $\int 1 d x: \int x^{i} d x=x+C$

$$
\begin{aligned}
\int 5 d x & =5 x+c \\
\left.\int 3 x+1\right) d x & =3 \frac{x^{2}}{2}+x+c \\
& =3 / 2 x^{2}+x+c
\end{aligned}
$$

The Integral of $\frac{1}{x}=x^{-1}$

Suppose that $x>0$ and $y=\ln x$. Recall this means (by definition) that $e^{y}=x$. Differentiating both sides of this equation (with respect to x) gives

$$
e^{y^{g i v e s}}=x \quad \Longrightarrow \quad e^{y} \frac{d y}{d x}=1 \Longrightarrow \frac{d y}{d x}=\frac{1}{e^{y}}=\frac{1}{x} \cdot \quad \frac{d}{d x}[\ln x]=1 / x
$$

Thus the derivative of $\ln x$ is $\frac{1}{x}$, and

$$
\text { If } x<0 \text {, then, }
$$

$$
\frac{d}{d x}[\ln (-x)]=\frac{1}{x}
$$

$$
\int\left(\frac{1}{x}\right) d x=\ln x+C, \text { for } x>0
$$

If $x<0$, then

$$
\int\left(\frac{1}{x}\right) d x=\ln |x|+C
$$

This latter formula applies for all $x \neq 0$.

A definite integral

Example 18

Determine $\int_{0}^{\pi} \sin x+\cos x d x$.
Solution: We need to write down any antiderivative of $\sin x+\cos x$ and evaluate it at the limits of integration :

Note: To determine $\cos \pi$, start at the point $(1,0)$ and travel counter-clockwise along the the unit circle for a distance of π, arriving at the point $(-1,0)$. The x-coordinate of the point you are at now is $\cos \pi$, and the y-coordinate is $\sin \pi$.

1.4.1 Substitution - Reversing the Chain Rule

The Chain Rule of Differentation tells us that in order to differentiate the expression $\sin x^{2}$, we should regard this expression as \sin ("something") whose derivative (with respect to "something") is $\cos ($ "something"), then multiply this expression by the derivative of the "something" with respect to x. Thus

$$
\frac{d}{d x}\left(\sin \left(x^{2}\right)=\cos x^{2} \cdot \frac{d}{d x}\left(x^{2}\right)=2 x \cos x^{2} .\right.
$$

Equivalently

$$
\int 2 x \cos x^{2} d x=\sin x^{2}+C .
$$

In this section, through a series of examples, we consider how one might go about reversing the differentiation process to get from $2 x \cos x^{2}$ back to $\sin x^{2}$.

How Substitution Works

Example 19

Determine $\int 2 x \sqrt{x^{2}+1} d x$.
Solution Notice that the integrand involves both the expressions $\underline{x}^{2}+1$ and $2 x$. Note also that $2 x$ is the derivative of $x^{2}+1$.
1 Introduce the notation u and set $u=x^{2}+1$.
2 Note $\frac{d u}{d x}=2 x$; rewrite this as $d u=2 x d x$.
3 Then

$$
\int 2 x \sqrt{x^{2}+1} d x=\int \underline{\sqrt{x^{2}+1}}(2 x d x)=\int u^{\frac{1}{2}} d u=\frac{2}{3} u^{\frac{3}{2}}+C .
$$

4 So

$$
\int 2 x \sqrt{x^{2}+1} d x=\frac{2}{3}\left(x^{2}+1\right)^{\frac{3}{2}}+C .
$$

