Wednesday Feb 24 Recall from Leek 3 The indefinite integral f(x) dx = [F(x)+(c)] "general antiderivative where F(x) sotisfies F'(x) = f(x)For example $\int 2x dx = x^2 + C$ To calculate a definite integral (b) f(x) dx · hind some F(x) with f'(x) = f(x) · Colculate F(x) = F(b)-F(a) For example

 $\frac{\pi}{z}$ Sin x = $8h^{2} - 8h^{6} = 1 - 0 = 1$

Powers of *x*

Example 17

Important Note: We know that in order to calculate the derivative of an expression like x^n , we reduce the index by 1 to n-1, and we multiply by

the constant *n*. So

$$\frac{d}{dx}x^{n} = nx^{n-1}$$

$$\frac{d}{dx}x^{n+1} = nx^{n+1}$$

$$\frac{1}{2}x^{n+1} = x^{n+1}$$

$$= x^{n+1}$$

in general. To find an antiderivative of x^n we have to reverse this process. This means that the index increases by 1 to n+1 and we

multiply by the constant $\frac{-}{n+1}$. So

Stant
$$\frac{1}{n+1}$$
. So $\frac{1}{x^n dx} = \frac{1}{6} + C$

$$\int x^n dx = \frac{1}{(n+1)^{n+1}} + C.$$

$$\int x^n dx = \frac{2}{3} x + C$$

This makes sense as long as the number n is not equal to -1 (in which case the fraction $\frac{1}{n+1}$ wouldn't be defined).

Vote:

This example includes) 1 dx = Jidx=1+C

$$\int 5 dx = 5x + C$$

$$\int 3x + 1 dx = 3\frac{x^2}{2} + x + C$$

$$=\frac{3}{2}\chi^{2}+\chi+C$$

The Integral of $\frac{1}{\sqrt{2}} = \sqrt{2}$

Suppose that x > 0 and $y = \ln x$. Recall this means (by definition) that $e^y = x$. Differentiating both sides of this equation (with respect to x)

$$\frac{d}{dx} \left[\ln x \right] = \frac{1}{x}$$

Thus the derivative of $\ln x$ is $\frac{1}{x}$, and

If
$$x<0$$
, then
$$\frac{d}{dx}\left[\ln(-x)\right] = \frac{1}{x}$$

If
$$x < 0$$
, then

If
$$x < 0$$
, then
$$\int \left(\frac{1}{x} \right) dx = \ln x + C, \text{ for } x > 0.$$

$$\int \left(\frac{1}{x}\right) dx = \ln|x| + C.$$

This latter formula applies for all $x \neq 0$.

A definite integral

Example 18

Determine
$$\int_0^{\pi} \sin x + \cos x \, dx$$
.

Solution: We need to write down <u>any</u> antiderivative of $\sin x + \cos x$ and evaluate it at the limits of integration :

$$\sin x + \cos x \, dx = -\cos x + \sin x \Big|_{0}^{\pi}$$

$$= (-\cos \pi + \sin \pi) - (-\cos 0 + \sin 0)$$

$$= -(-1) + 0 - (-1 + 0) = 2.$$

Note: To determine $\cos \pi$, start at the point (1,0) and travel counter–clockwise along the unit circle for a distance of π , arriving at the point (-1,0). The x-coordinate of the point you are at now is $\cos \pi$, and the y-coordinate is $\sin \pi$.

1.4.1 Substitution - Reversing the Chain Rule

The Chain Rule of Differentiation tells us that in order to differentiate the expression $\sin x^2$, we should regard this expression as $\sin(\text{"something"})$ whose derivative (with respect to "something") is $\cos(\text{"something"})$, then multiply this expression by the derivative of the "something" with respect to x. Thus

$$\frac{d}{dx}(\sin(x^2)) = \cos x^2 \frac{d}{dx}(x^2) = (2x\cos x^2)$$

Equivalently

$$\int 2x \cos x^2 dx = \sin x^2 + C.$$

In this section, through a series of examples, we consider how one might go about reversing the differentiation process to get from $2x \cos x^2$ back to $\sin x^2$.

How Substitution Works

Example 19

Determine $\int 2x\sqrt{x^2+1}dx$.

Solution Notice that the integrand involves both the expressions $x^2 + 1$ and 2x. Note also that 2x is the derivative of $x^2 + 1$.

- Introduce the notation u and set $u = x^2 + 1$.
- Note $\frac{du}{dx} = 2x$; rewrite this as du = 2x dx.
- 3 Then

$$\int 2x\sqrt{x^2+1}\,dx = \int \sqrt{x^2+1}(2x\,dx) = \int u^{\frac{1}{2}}\,du = \frac{2}{3}u^{\frac{3}{2}}+C.$$

4 So

$$\int 2x\sqrt{x^2+1}\,dx=\frac{2}{3}(x^2+1)^{\frac{3}{2}}+C.$$