Section 3.4: Introduction to power series

Definition 74

A <u>power series</u> in the variable x resembles a polynomial, except that it may contain infinitely many positive powers of x. It is an expression of the type

where each a_i is a number. $\sum_{i=0}^{i=0} a_i x^i = a_0 + a_1 x + a_2 x^2 + \dots,$ $\sum_{i=0}^{i=0} a_i x^i = a_0 + a_1 x + a_2 x^2 + \dots,$ $\sum_{i=0}^{i=0} a_i x^i = a_0 + a_1 x + a_2 x^2 + \dots,$ $\sum_{i=0}^{i=0} a_i x^i = a_0 + a_1 x + a_2 x^2 + \dots,$ $\sum_{i=0}^{i=0} a_i x^i = a_0 + a_1 x + a_2 x^2 + \dots,$ $\sum_{i=0}^{i=0} a_i x^i = a_0 + a_1 x + a_2 x^2 + \dots,$ $\sum_{i=0}^{i=0} a_i x^i = a_0 + a_1 x + a_2 x^2 + \dots,$ $\sum_{i=0}^{i=0} a_i x^i = a_0 + a_1 x + a_2 x^2 + \dots,$ $\sum_{i=0}^{i=0} a_i x^i = a_0 + a_1 x + a_2 x^2 + \dots,$ $\sum_{i=0}^{i=0} a_i x^i = a_0 + a_1 x + a_2 x^2 + \dots,$

Example 75

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots$$

is a power series.

Question: Can we think of a power series as a function of x?

Dr Rachel Quinlan

MA180/MA186/MA190 Calculus

What happens it was in the "plug" 7

Power Series as Functions

Define a "function" by

$$f(x) = \sum_{n=0}^{\infty} x^n = \underbrace{1 + x + x^2 + \dots}_{n=0}$$

If we try to evaluate this function at x = 2, we get a series of real numbers. $\int_{\infty} \int_{\infty} \int_{\infty}$

$$f(2) = \sum_{n=0}^{\infty} 2^n = 1 + 2 + 2^2 + \dots$$
 then 2 is not
in its domain

This series is divergent, so our power series does not define a function that can be evaluated at 2.

If we try evaluating at 0 (and allow that the first term x⁰ of the power series is interpreted as 1 for all values of x), we get

$$f(0) = 1 + 0 + 0^2 + \dots = 1.$$
 $f(0) = 1$

So it does make sense to "evaluate" this function at x = 0.

$$f(x) = \sum_{n=0}^{\infty} x^n = (1) + x^2 + \dots$$

If we try evaluating at $x = \frac{1}{2}$, we get $\left(f\left(\frac{1}{2}\right) \right) = \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n = \left(1 + \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2 + \cdots \right)$ This is a geometric series with first term a = 1 and common ratio $r = \frac{1}{2}$. We know that if |r| < 1, such a series converges to the number $\frac{a}{1-r}$. In this case $\frac{a}{1-r} = \frac{1}{1-\frac{1}{2}} = 2,$ and we have $f(\frac{1}{2}) = 2$. So we can evaluate our function at $x = \frac{1}{2}$.

$f(x) = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}, \text{ for } |x| < 1 \qquad f(x) = \lfloor x + x^2 + \dots$

A geometric series of this sort converges provided that the absolute value of its common ratio is less than 1. In general for any value of x whose absolute value is less than 1 (i.e. any x in the interval (-1, 1)), we find that f(x) is a convergent geometric series, converging to $\frac{1}{1-x}$. with initial herm 1, commercities x Conclusion: For values of x in the interval (-1, 1) (i.e. |x| < 1), the function $f(x) = \frac{1}{1-x}$ coincides with the power series $\sum_{n=0}^{\infty} x^n$. $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, \text{ for } |x| < 1.$ $\begin{array}{c} Q.S \\ \frac{1}{1-1/2} = 2 = \tilde{Z}(\frac{1}{2}) \\ \frac{1}{1-1/2} = 2 = \tilde{Z}(\frac{1}{2}) \end{array}$ $|+\chi+\chi^{2}+\chi^{2}+...$

The interval (-1, 1) is called the interval of convergence of the power series, and 1 is the radius of convergence. We say that the power series representation of the function $f(x) = \frac{1}{1-x}$ is $\sum_{n=0}^{\infty} x^n$, for values of x in the interval (-1, 1).

Remark: The power series representation is not particularly useful if you want to calculate $\frac{1}{1-x}$ for some particular value of x, because this is easily done directly. However, if we could obtain a power series representation for a function like $\sin x$ and use it to evaluate (or approximate) $\sin(1)$ or $\sin(9)$ or $\sin(20)$, that might be of real practical use. These numbers are not easy to obtain directly because the definition of $\sin x$ doesn't tell us how to calculate $\sin x$ for a particular x - you can use a calculator of course but how does the calculator do it?

Questions: What functions can be represented by power series, and on what sorts of interval or subsets of \mathbb{R} ? If a function could be represented by a power series, how would we calculate the coefficients in this series?

Maclaurin (or Taylor) series

Suppose that f(x) is an infinitely differentiable function (this means that all the deriviatives of f are themselves differentiable), and suppose that f is represented by the power series

 $f(x) = \sum_{n=0}^{\infty} c_n x^n. \quad = (c_0 + (c_1)x + (c_2)x^2 + (c_3)x^2 + \cdots$

We can work out appropriate values for the coefficients c_n as follows. • Put x = 0 Then $f(0) = c_0 + \sum_{n=1}^{\infty} c_n(0)^n \Longrightarrow f(0) = c_0$ $\int c_0 f(0) = c_0$ The constant term in the power series is the value of f at 0. • To calculate c_1 , look at the value of the first derivative of f at 0, and differentiate the power series term by term. We expect $f(\chi) = G + G \chi + C_2 \chi^2 +$ $f'(x) = c_1 + 2c_2x + 3c_3x^2 + \cdots = \sum nc_nx^{n-1}$. $f'(x) \neq 0 + c_1 + 2c_2x + 3c_3x^2 + \dots \qquad n=1$ Then we should have $f'(0) = c_1 + 2c_2 \times 0 + 3c_3 \times 0 + \dots = c_1$. Thus

$f(x) = \sum_{n=0}^{\infty} c_n x^n$

For
$$c_2$$
, look at the second derivative of f . We expect

$$f'(x) = c_2 + c_1 + c_2 + c_$$

For c_3 , look at the third derivative $f^{(3)}(x)$. We have

Continuing this process, we obtain the following general formula for c_n :

$$c_n=\frac{1}{n!}f^{(n)}(0).$$

Definition 76

For a positive integer n, the number n factorial, denoted n! is defined by

$$n! = n \times (n-1) \times (n-2) \times \dots 3 \times 2 \times 1.$$

The number 0! (zero factorial) is defined to be 1.

Power series representation of $\sin x$

$$C_n = \frac{f^{(n)}(o)}{n!}$$

Write $f(x) = \sin x$, and write $\sum_{n=0}^{\infty} c_n x^n$ for the Maclaurin series of $\sin x$. Then

$$f(0) = \sin 0 = 0 \implies c_0 = 0$$
 $f'(0) = \cos 0 = 1 \implies c_1 = 1$
 $f''(0) = -\sin 0 = 0 \implies c_2 = \frac{0}{2!} = 0$
 $f^{(3)}(0) = -\cos 0 = -1 \implies c_3 = \frac{-1}{3!} = -\frac{1}{6}$
 $f^{(4)}(0) = \sin 0 = 0 \implies c_4 = \frac{0}{4!} = 0$

$$f(x) = \sinh x \quad f(o) = 0$$

$$\int (x) = \cos x \quad \int (o) = 1$$

$$\int (x) = -\sinh x \quad f'(o) = 0$$

$$\int (x) = -\cos x \quad \int (o) = -1$$

$$\int (x) = -\cos x \quad \int (o) = -1$$

$$\int (x) = -\sin x$$

$$\int (x) = -\sin x$$

This pattern continues :

- If k is even then $f^{(k)}(0) = \pm \sin 0 = 0$, so $c_k = 0$.
- If k is odd and $k \equiv 1 \mod 4$ then $f^{(k)}(0) = \cos 0 = 1$ and $c_k = \left(\frac{1}{k!}\right)$.
- If k is odd and $k \equiv 3 \mod 4$ then $f^{(k)}(0) = -\cos 0 = -1$ and $c_k = -\frac{1}{k!}$.

Thus the Maclaurin series for sin x is given by

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1} = x - \frac{1}{3!} x^3 + \frac{1}{5!} x^5 - \frac{1}{7!} x^7 + \dots$$

Note that this series only involves odd powers of x - this is not surprising because sin is an odd function; it satisfies sin(-x) = -sin x.

Theorem 77

For every real number x, the above series converges to sin x.

Thus computing partial sums of this series gives us an effective way of approximating sin x for any real number x.

Exercise 78

Show that the Maclaurin series for cos x is given by

$$\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2k!)} x^{2k} = 1 - \frac{7^{2}}{2!} + \frac{7^{2}}{4!} - \cdots$$

(Note that this can be obtained by differentiating term-by-term the series for sin x, as we would expect since $\frac{d}{dx}(\sin x) = \cos x$.)

After studying this section you should be able to

- State the meaning of the term *power series*,
- Explain the concept of the *radius of convergence* of a power series,
- Calculate the coefficients in (an initial segment of) the Maclaurin series representation of a given function.