Section 3.4: Introduction to power series

Definition 74

A power series in the variable x resembles a polynomial, except that it may contain infinitely many positive powers of x. It is an expression of the type

$$
\begin{aligned}
& \sum_{i=0}^{\sum_{i=1}^{\infty} a_{i} x^{i}}=\underset{-1}{a_{0}+a_{1} x+a_{2} x^{2}+\ldots,} \\
& \text { number. } \\
& =\sum_{i=0}^{\infty} x^{i}
\end{aligned}
$$

Example 75

$$
\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\ldots
$$

is a power series.
Question: Can we think of a power series as a function of x ?

Define a "function" by

$$
f(x)=\sum_{n=0}^{\infty} x^{n}=\underline{\underline{1+x+x^{2}+\ldots}}
$$

- If we try to evaluate this function at $x=2$, we get a series of real numbers.

$$
f(2)=\sum_{n=0}^{\infty} 2^{n}=1+2+2^{2}+\ldots
$$

This series is divergent, so our power series does not define a function that can be evaluated at 2 .

- If we try evaluating at 0 (and allow that the first term x^{0} of the power series is interpreted as 1 for all values of x), we get

$$
f(0)=1+0+0^{2}+\cdots=1
$$

So it does make sense to "evaluate" this function at $x=0$.
$\left.f(x)=\sum_{n=0}^{\infty} x^{n}=(1)+x\right)+x^{2}+\ldots$

- If we try evaluating at $x=\frac{1}{2}$, we get

$$
f\left(\frac{1}{2}\right)=\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n}=(1)+\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{4}+
$$

This is a geometric series with first term $a=1$ and common ratio $r=\frac{1}{2}$. We know that if $(|r|<1$, such a series converges to the number $\frac{a}{1-r} \cdot$ In this case

$$
\frac{a}{1-r}=\frac{1}{1-\frac{1}{2}}=2,
$$

and we have $f\left(\frac{1}{2}\right)=2$.
So we can evaluate our function at $x=\frac{1}{2}$.
$f(x)=\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$, for $|x|<1 \quad f(x)=1+x+x^{2}+\ldots$.
A geometric series of this sort converges provided that the absolute value of its common ratio is less than 1 . In general for any value of x whose absolute value is less than 1 (i.e. any x in the interval $(-1,1)$), we find that $f(x)$ is a convergent geometric series, converging to $\frac{1}{1-x}$. $=\frac{a}{1-r}$

$$
\text { with initiol berm } 1 \text {, commen rolber } x
$$

Conclusion: For values of x in the interval $(-1,1)$ (i.e. $|x|<1$), the function $f(x)=\frac{1}{1-x}$ coincides with the power series $\sum_{n=0}^{\infty} x^{n}$.

The interval $(-1,1)$ is called the interval of convergence of the power series, and 1 is the radius of convergence. We say that the power series representation of the function $f(x)=\frac{1}{1-x}$ is $\sum_{n=0}^{\infty} x^{n}$, for values of x in the interval $(-1,1)$.

Which functions have power series representations?

Remark: The power series representation is not particularly useful if you want to calculate $\frac{1}{1-x}$ for some particular value of x, because this is easily done directly. However, if we could obtain a power series representation for a function like $\sin x$ and use it to evaluate (or approximate) $\sin (1)$ or $\sin (9)$ or $\sin (20)$, that might be of real practical use. These numbers are not easy to obtain directly because the definition of $\sin x$ doesn't tell us how to calculate $\sin x$ for a particular x - you can use a calculator of course but how does the calculator do it?

Questions: What functions can be represented by power series, and on what sorts of interval or subsets of \mathbb{R} ? If a function could be represented by a power series, how would we calculate the coefficients in this series?

Maclaurin (or Taylor) series

Suppose that $f(x)$ is an infinitely differentiable function (this means that all the derivatives of f are themselves differentiable), and suppose that f is represented by the power series

$$
f(x)=\sum_{n=0}^{\infty} c_{n} x^{n} .=c_{0}+\left(c_{1} x+\left(c_{2}\right) x^{2}+c_{3} x^{3}+\cdots\right.
$$

We can work out appropriate values for the coefficients c_{n} as follows

- Put $x=0$. Then $f(0)=c_{0}+\sum_{n=1}^{\infty} c_{n}(0)^{n} \Longrightarrow f(0)=c_{0} \quad C_{0}=(f(0)$ The constant term in the power series is the value of f at 0 .
■ To calculate c_{1}, look at the value of the first derivative of f at 0 , and differentiate the power series term by term. We expect

$$
\begin{aligned}
& f(x)=c_{0}+c_{1} x+c_{2} x^{2}+\ldots \\
& f^{\prime}(x)=c_{1}+2 c_{2} x+3 c_{3} x^{2}+\cdots=\sum_{n=1}^{\infty} n c_{n} x^{n-1} . \\
& f^{\prime}(x)=0+c_{1}+2 c_{2} x+3 c_{3} x^{2}+\cdots
\end{aligned}
$$

$$
\text { Then we should have } f^{\prime}(0)=\left[c_{1}\right]+2 c_{2} \times 0+3 c_{3} \times 0+\cdots=c_{1} \text {. Thus }
$$

$$
c_{1}=f^{\prime}(0) .
$$

$$
f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}
$$

- For c_{2}, look at the second derivative of f. We expect

$$
f^{\prime \prime}(x)=\begin{aligned}
& f(x)=c_{0}+c_{1} x+\quad c_{2} x^{2}+c_{3} x^{3}+\ldots \\
& \hline 4(1) c_{2} \\
& \left.4(3) c_{4} x_{1}^{2}\right)+5(4) c_{5} x^{3}+\ldots
\end{aligned}
$$

Putting $x=0$ gives $f^{\prime \prime}(0)=2(1) c_{2}$ or

$$
c_{2}=\frac{f^{\prime \prime}(0)}{2(1)} .
$$

- For c_{3}, look at the third derivative $f^{(3)}(x)$. We have

$$
f^{(3)}(x)=3(2)(1) c_{3}+4(3)(2) c_{4} x+5(4)(3) c_{5} x^{2}+\ldots
$$

Setting $x=0$ gives $f^{(3)}(0)=3(2)(1) c_{3}$ or

$$
c_{3}=\frac{f^{(3)}(0)}{3(2)(1)}
$$

Coefficients of the Maclaurin Series

Continuing this process, we obtain the following general formula for c_{n} :

$$
c_{n}=\frac{1}{n!} f^{(n)}(0)
$$

Definition 76

For a positive integer n, the number n factorial, denoted n ! is defined by

$$
n!=n \times(n-1) \times(n-2) \times \ldots 3 \times 2 \times 1 .
$$

The number 0 ! (zero factorial) is defined to be 1 .

$$
c_{n}=\frac{f^{(n)}(0)}{n!}
$$

Write $f(x)=\sin x$, and write $\sum_{n=0}^{\infty} c_{n} x^{n}$ for the Maclaurin series of $\sin x$. Then

- $f(0)=\sin 0=0 \Longrightarrow c_{0}=0$

■ $f^{\prime}(0)=\cos 0=1 \Longrightarrow c_{1}=1$

- $f^{\prime \prime}(0)=-\sin 0=0 \Longrightarrow c_{2}=\frac{0}{2!}=0$
- $f^{(3)}(0)=-\cos 0=-1 \Longrightarrow c_{3}=\frac{-1}{3!}=-\frac{1}{6}$
- $f^{(4)}(0)=\sin 0=0 \Longrightarrow c_{4}=\frac{0}{4!}=0$

$$
\begin{aligned}
& f(x)=\sin x \quad f(0)=0 \\
& f^{\prime}(x)=\cos x \quad f^{\prime}(0)=1 \\
& f^{\prime \prime}(x)=-\sin x \quad f^{\prime \prime}(0)=0 \\
& f^{\prime \prime \prime}(x)=-\cos x \quad f^{(3)}(0)=-1 \\
& f^{(4)}(x)=\sin x \\
& f^{\prime \prime}(0)
\end{aligned}
$$

This pattern continues :

- If k is even then $f^{(k)}(0)= \pm \sin 0=0$, so $c_{k}=0$.
- If k is odd and $k \equiv 1 \bmod 4$ then $f^{(k)}(0)=\cos 0=1$ and $c_{k}=\frac{1}{k!}$.
- If k is odd and $k \equiv 3 \bmod 4$ then $f^{(k)}(0)=-\cos 0=-1$ and $c_{k}=-\frac{1}{k!}$.
Thus the Maclaurin series for $\sin x$ is given by

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1} \left\lvert\,=1 x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\frac{1}{7!} x^{7}+\ldots\right.
$$

Note that this series only involves odd powers of x - this is not surprising because \sin is an odd function; it satisfies $\sin (-x)=-\sin x$.

Power series representations of $\sin x$ and $\cos x$

Theorem 77

For every real number x, the above series converges to $\sin x$.
Thus computing partial sums of this series gives us an effective way of approximating $\sin x$ for any real number x.

Exercise 78

Show that the Maclaurin series for $\cos x$ is given by

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k!)} x^{2 k}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots
$$

(Note that this can be obtained by differentiating term-by-term the series for $\sin x$, as we would expect since $\frac{d}{d x}(\sin x)=\cos x$.)

Learning outcomes for Section 3.4

After studying this section you should be able to

- State the meaning of the term power series,

■ Explain the concept of the radius of convergence of a power series,

- Calculate the coefficients in (an initial segment of) the Maclaurin series representation of a given function.

