Section 3.2 : Sequences

Note: Chapter 11 of Stewart's Calculus is a good reference for this chapter of our lecture notes.

Definition 56

A sequence is an infinite ordered list

$$
a_{1}, a_{2}, a_{3}, \ldots
$$

- The items in list a_{1}, a_{2} etc. are called terms (1st term, 2 nd term, and so on).
- In our context the terms will generally be real numbers - but they don't have to be.
- The sequence a_{1}, a_{2}, \ldots can be denoted by $\left(a_{n}\right)$ or by $\left(a_{n}\right)_{n=1}^{\infty}$.
- There may be an overall formula for the terms of the sequence, or a "rule" for getting from one to the next, but there doesn't have to be.

1 $\left((-1)^{n}+1\right)_{n=1}^{\infty}: a_{n}=(-1)^{n}+1$

$$
\begin{gathered}
a_{1}=-1+1=0, \quad a_{2}=(-1)^{2}+1=2, a_{3}=(-1)^{3}+1=0, \ldots \\
0,2,0,2,0,2, \ldots
\end{gathered}
$$

2 $\left(\sin \left(\frac{n \pi}{2}\right)\right)_{n=1}^{\infty}: a_{n}=\sin \left(\frac{n \pi}{2}\right)$
$a_{1}=\sin \left(\frac{\pi}{2}\right)=1, a_{2}=\sin (\pi)=0, a_{3}=\sin \left(\frac{3 \pi}{2}\right)=-1, a_{4}=$ $\sin (2 \pi)=0, \ldots$.

$$
1,0,-1,0,1,0,-1,0, \ldots
$$

$3\left(\frac{1}{n} \sin \left(\frac{n \pi}{2}\right)\right)_{n=1}^{\infty}: a_{n}=\frac{1}{n} \sin \left(\frac{n \pi}{2}\right)$
$a_{1}=\sin \left(\frac{\pi}{2}\right)=1, a_{2}=\frac{1}{2} \sin (\pi)=0, a_{3}=\frac{1}{3} \sin \left(\frac{3 \pi}{2}\right)=-\frac{1}{3}, a_{4}=$ $\frac{1}{4} \sin (2 \pi)=0, \ldots$.

$$
1,0,-\frac{1}{3}, 0, \frac{1}{5}, 0,-\frac{1}{7}, 0, \ldots
$$

Visualising a sequence

One way of visualizing a sequence is to consider is as a function whose domain is the set of natural numbers and think of its graph, which will be a collection of isolated points, one for each natural number.

Example 57

$\left(2+(-1)^{n} 2^{1-n}\right)_{n=1}^{\infty}$. Write $a_{n}=2+(-1)^{n} 2^{1-n}$. Then
$a_{1}=2-2^{0}=1, a_{2}=2+2^{-1}=\frac{5}{2}, a_{3}=2-2^{-2}=\frac{7}{4}, a_{4}=2+2^{-3}=\frac{17}{8}$.
Graphical representation of $\left(a_{n}\right)$:

The sequence $\left(2+(-1)^{n} \frac{1}{2^{n-1}}\right)_{n=1}^{\infty}$

As n gets very large the positive number $\frac{1}{2^{n-1}}$ gets very small. By taking n as large as we like, we can make $\frac{1}{2^{n-1}}$ as small as we like. Hence for very large values of n, the number $2+(-1)^{n} \frac{1}{2^{n-1}}$ is very close to 2 . By taking n as large as we like, we can make this number as close to 2 as we like.
We say that the sequence converges to 2 , or that 2 is the limit of the sequence, and write

$$
\lim _{n \rightarrow \infty}\left(2+(-1)^{n} \frac{1}{2^{n-1}}\right)=2
$$

Note: Because $(-1)^{n}$ is alternately positive and negative as n runs through the natural numbers, the terms of this sequence are alternately greater than and less than 2.

Convergence of a sequence: "official" definitions

Definition 58

The sequence (a_{n}) converges to the number L (or has limit L) if for every positive real number ε (no matter how small) there exists a natural number N with the property that the term a_{n} of the sequence is within ε of L for all terms a_{n} beyond the N th term. In more compact language :

$$
\forall \varepsilon>0, \exists N \in \mathbb{N} \text { for which }\left|a_{n}-L\right|<\varepsilon \forall n>N \text {. }
$$

Notes

■ If a sequence has a limit we say that it converges or is convergent. If not we say that it diverges or is divergent.

- If a sequence converges to L, then no matter how small a radius around L we choose, there is a point in the sequence beyond which all terms are within that radius of L. So beyond this point, all terms of the sequence are very close together (and very close to L). Where that point is depends on how you interpret "very close together".

Ways for a sequence to be divergent

Being convergent is a very strong property for a sequence to have, and there are lots of different ways for a sequence to be divergent.

Example 59

$1\left(\max \left\{(-1)^{n}, 0\right\}\right)_{n=1}^{\infty}: 0,1,0,1,0,1, \ldots$
This sequence alternates between 0 and 1 and does not approach any limit.
2 A sequence can be divergent by having terms that increase (or decrease) without limit.
$\left(2^{n}\right)_{n=1}^{\infty}: 2,4,8,16,32,64, \ldots$
3 A sequence can have haphazard terms that follow no overall pattern, such as the sequence whose nth term is the nth digit after the decimal point in the decimal representation of π.

Convergence is a precise concept!

Remark: The notion of a convergent sequence is sometimes described informally with words like "the terms get closer and closer to L as n gets larger". It is not true however that the terms in a sequence that converges to a limit L must get progressively closer to L as n increases.

Example 60

The sequence $\left(a_{n}\right)$ is defined by

$$
a_{n}=0 \text { if } n \text { is even, } a_{n}=\frac{1}{n} \text { if } n \text { is odd. }
$$

This sequence begins :

$$
1,0, \frac{1}{3}, 0, \frac{1}{5}, 0, \frac{1}{7}, 0, \frac{1}{9}, 0, \ldots
$$

It converges to 0 although it is not true that every step takes us closer to zero.

Examples of convergent sequences

Example 61

Find $\lim _{n \rightarrow \infty} \frac{n}{2 n-1}$.
Solution: As if calculating a limit as $x \rightarrow \infty$ of an expression involving a continuous variable x, divide above and below by n.

$$
\lim _{n \rightarrow \infty} \frac{n}{2 n-1}=\lim _{n \rightarrow \infty} \frac{n / n}{2 n / n-1 / n}=\lim _{n \rightarrow \infty} \frac{1}{2-\frac{1}{n}}=\frac{1}{2}
$$

So the sequence $\left(\frac{n}{2 n-1}\right)$ converges to $\frac{1}{2}$.

Bounded Sequences

As for subsets of \mathbb{R}, there is a concept of boundedness for sequences. Basically a sequence is bounded (or bounded above or bounded below) if the set of its terms, considered as a subset of \mathbb{R}, is bounded (or bounded above or bounded below). More precisely :

Definition 62

The sequence $\left(a_{n}\right)$ is bounded above if there exists a real number M for which $a_{n} \leq M$ for all $n \in \mathbb{N}$.
The sequence $\left(a_{n}\right)$ is bounded below if there exists a real number m for which $m \leq a_{n}$ for all $n \in \mathbb{N}$.
The sequence $\left(a_{n}\right)$ is bounded if it is bounded both above and below.

Example 63

The sequence (n) is bounded below (for example by 0) but not above. The sequence $(\sin n)$ is bounded below (for example by -1) and above (for example by 1).

Convergent \Longrightarrow Bounded

Theorem 64

If a sequence is convergent it must be bounded.
Proof Suppose that $\left(a_{n}\right)_{n=1}^{\infty}$ is a convergent sequence with limit L.
Then (by definition of convergence) there exists a natural number N such that every term of the sequence after a_{N} is between $L-1$ and $L+1$.

The set consisting of the first N terms of the sequence is a finite set: it has a maximum element M_{1} and a minimum element m_{1}.

Let $M=\max \left\{M_{1}, L+1\right\}$ and let $m=\min \left\{m_{1}, L-1\right\}$. Then $\left(a_{n}\right)$ is bounded above by M and bounded below by m.

So our sequence is bounded.

Increasing and decreasing sequences

Definition 65

A sequence $\left(a_{n}\right)$ is called increasing if $a_{n} \leq a_{n+1}$ for all $n \geq 1$.
A sequence $\left(a_{n}\right)$ is called strictly increasing if $a_{n}<a_{n+1}$ for all $n \geq 1$.
A sequence $\left(a_{n}\right)$ is called decreasing if $a_{n} \geq a_{n+1}$ for all $n \geq 1$.
A sequence $\left(a_{n}\right)$ is called strictly decreasing if $a_{n}>a_{n+1}$ for all $n \geq 1$.

Definition 66

A sequence is called monotonic if it is either increasing or decreasing. Similar terms: monotonic increasing, monotonic decreasing, monotonically increasing/decreasing.

Note: These definitions are not entirely standard. Some authors use the term increasing for what we have called strictly increasing and/or use the term nondecreasing for what we have called increasing.

Examples

1 An increasing sequence is bounded below but need not be bounded above. For example

$$
(n)_{n=1}^{\infty}: 1,2,3, \ldots
$$

2 A bounded sequence need not be monotonic. For example

$$
\left((-1)^{n}\right):-1,1,-1,1,-1, \ldots
$$

3 A convergent sequence need not be monotonic. For example

$$
\left(\frac{(-1)^{n+1}}{n}\right)_{n=1}^{\infty}: 1,-\frac{1}{2}, \frac{1}{3},-\frac{1}{4}, \ldots
$$

4 A monotonic sequence need not be convergent, as Example 1 above shows.

However, if a sequence is bounded and monotonic, it is convergent. This is the Monotone Convergence Theorem.

The Monotone Convergence Theorem

Theorem 67

If a sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is montonic and bounded, then it is convergent.
Proof: Suppose that $\left(a_{n}\right)$ is increasing and bounded.
Then the set $\left\{a_{n}: n \in \mathbb{N}\right\}$ is a bounded subset of \mathbb{R} and by the Axiom of Completeness it has a least upper bound (or supremum) L.

We will show that the sequence $\left(a_{n}\right)$ converges to L.
Choose a (very small) $\varepsilon>0$. Then $L-\varepsilon$ is not an upper bound for $\left\{a_{n}: n \in \mathbb{N}\right\}$, becasue L is the least upper bound.

This means there is some $N \in \mathbb{N}$ for which $L-\varepsilon<a_{N}$. Since L is an upper bound for $\left\{a_{n}: n \in \mathbb{N}\right\}$, this means

$$
L-\varepsilon<a_{N} \leq L
$$

$$
L-\varepsilon<a_{N} \leq L
$$

Since the sequence $\left(a_{n}\right)$ is increasing and its terms are bounded above by L, every term after a_{N} is between a_{N} and L, and therefore between $L-\varepsilon$ and L. These terms are all within ε of L

Using the fact that our sequence is increasing and bounded, we have
■ Identified L as the least upper bound for the set of terms in our sequence

- Showed that no matter how small an ε we take, there is a point in our sequence beyond which all terms are within ε of L.
This is exactly what it means for the sequence to converge to L.

An Example (from 2015 Summer Exam)

Example 68

A sequence $\left(a_{n}\right)$ of real numbers is defined by

$$
a_{0}=4, a_{n}=\frac{1}{2}\left(a_{n-1}-2\right) \text { for } n \geq 1 .
$$

1 Write down the first four terms of the sequence.
2 Show that the sequence is bounded below.
3 Show that the sequence is montonically decreasing.
4 State why it can be deduced that the sequence is convergent, and determine its limit.

Note: This is an example of a sequence that is defined recursively. This means that the first term is given and subsequent terms are defined (one by one) in terms of previous ones. We are not given a general formula for the nth term although one may exist.

Learning Outcomes for Section 3.2

After studying this section you should be able to

- Explain what a sequence is;
- State what it means for a sequence to be

■ convergent or divergent;
■ bounded or unbounded (above or below);
■ monotonic, increasing or decreasing.

- Give and/or identify examples of sequences with or without various properties (or combinations of properties) from the above list;
■ State, prove and apply the Monotone Convergence Theorem;
- Analyze examples similar to Example 83.

