
Chapter 3: Sequences, series and convergence

Section 3.1: Introduction to sequences and series

Question 51

Does it make sense to talk about the “number”

∞�

n=1

1

n2
= 1 +

1
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+
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9
+

1

16
+

1

25
+ ...?

1 + 1
4 = 1.25

1 + 1
4 + 1

9 + 1
16 ≈ 1.423611

1 + 1
4 + 1

9 + · · ·+ 1
(10)2

≈ 1.549767

1 + 1
4 + 1

9 + · · ·+ 1
(200)2

≈ 1.639947

1 + 1
4 + 1

9 + · · ·+ 1
(10000)2

≈ 1.644834

1 + 1
4 + 1

9 + · · ·+ 1
(100000)2

≈ 1.644924

π2

6
≈ 1.644934
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The series
�∞

n=1
1
n2

The series ∞�

n=1

1

n2

converges to the number
π2

6
(we will have precise definitions for the

highlighted terms a bit later).

This fact is remarkable - there is no obvious connection between π and
squares of the form 1

n2
; moreover all the terms in the series are rational

but π2

6 is certainly not.
This example gives us in principle a way of calculating the digits of π or
at least of π2. (In practice there are similar but better ways, as the
convergence in this example is very slow).
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Another Example

Example 52

What about ∞�

n=1

1

n
= 1 +

1

2
+
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+
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4
+ ...?

Try experimenting with initial segments again :

1 +
1

2
+

1

3
+ · · ·+ 1

50
≈ 4.4992

1 +
1

2
+

1

3
+ · · ·+ 1

100
≈ 5.1874

1 +
1

2
+

1

3
+ · · ·+ 1

1000
≈ 7.4855

1 +
1

2
+

1

3
+ · · ·+ 1

50000
≈ 11.3970

There’s no sign of this “settling down” or converging to anything that we
can identify from this information. This doesn’t tell us anything of
course.
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Another Example . . .

Example 53

What about ∞�

n=1

1

22n
=

1

4
+

1

16
+

1

64
+ ...?

Experimenting reveals
1
4 + 1

16 = 5
16

1
4 + 1

16 + 1
64 + 1

256 + 1
1024 = 341

1024 ≈ 0.33301
1
22

+ 1
24

+ 1
26

+ · · ·+ 1
214

≈ 0.3333

These calculations can be verified directly using properties of sums of
geometric progressions. It appears that this series is converging (quite
fast) to 1

3 .
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Another Example . . .

Example 54

What about ∞�

n=1

1

22n
=

1

4
+

1

16
+

1

64
+ ...?

The following picture gives some graphical evidence for this hypothesis.
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A last example

Example 55

Does it make sense to talk about

f (x) = x − x3

3!
+

x5

5!
− x7

7!
+ ...

as a function of x?

If it does, then f must have a domain (consisting of some or all of the
real numbers?) and substituting these values in to the definition in place
of x must somehow make sense.

x = 0 : f (0) = 0

x = π
2 : f (π2 ) ≈ 0.9999 (six terms)

x = π
6 : f (π6 ) ≈ 0.5000 (six terms)

x = π
3 : f (π3 ) ≈ 0.8660 (six terms) (

√
3
2 ≈ 0.8660)

In all cases we get (just from the first six terms) something very close to
sin x .
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Section 3.2 : Sequences

Note: Chapter 11 of Stewart’s Calculus is a good reference for this
chapter of our lecture notes.

Definition 56

A sequence is an infinite ordered list

a1, a2, a3, ...

The items in list a1, a2 etc. are called terms (1st term, 2nd term,
and so on).

In our context the terms will generally be real numbers - but they
don’t have to be.

The sequence a1, a2, ... can be denoted by (an) or by (an)
∞
n=1.

There may be an overall formula for the terms of the sequence, or a
“rule” for getting from one to the next, but there doesn’t have to be.
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A Few Examples

1 ((−1)n + 1)∞n=1 : an = (−1)n + 1
a1 = −1 + 1 = 0, a2 = (−1)2 + 1 = 2, a3 = (−1)3 + 1 = 0, ...

0, 2, 0, 2, 0, 2, ...

2 (sin(nπ2 ))∞n=1 : an = sin(nπ2 )
a1 = sin(π2 ) = 1, a2 = sin(π) = 0, a3 = sin(3π2 ) = −1, a4 =
sin(2π) = 0, ... .

1, 0,−1, 0, 1, 0,−1, 0, ...

3 ( 1n sin(
nπ
2 ))∞n=1 : an = 1

n sin(
nπ
2 )

a1 = sin(π2 ) = 1, a2 =
1
2 sin(π) = 0, a3 =

1
3 sin(

3π
2 ) = −1

3 , a4 =
1
4 sin(2π) = 0, ... .

1, 0,−1

3
, 0,

1

5
, 0,−1

7
, 0, ...
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Visualising a sequence

One way of visualizing a sequence is to consider is as a function whose
domain is the set of natural numbers and think of its graph, which will
be a collection of isolated points, one for each natural number.

Example 57

(2 + (−1)n21−n)∞n=1. Write an = 2 + (−1)n21−n. Then

a1 = 2−20 = 1, a2 = 2+2−1 =
5

2
, a3 = 2−2−2 =

7

4
, a4 = 2+2−3 =

17

8
.

Graphical representation of (an):
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The sequence (2 + (−1)n 1
2n−1 )

∞
n=1

As n gets very large the positive number
1

2n−1
gets very small. By taking

n as large as we like, we can make
1

2n−1
as small as we like.

Hence for very large values of n, the number 2 + (−1)n 1
2n−1 is very close

to 2. By taking n as large as we like, we can make this number as close
to 2 as we like.
We say that the sequence converges to 2, or that 2 is the limit of the
sequence, and write

lim
n→∞

�
2 + (−1)n

1

2n−1

�
= 2.

Note: Because (−1)n is alternately positive and negative as n runs
through the natural numbers, the terms of this sequence are alternately
greater than and less than 2.
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Convergence of a sequence : “official” definitions

Definition 58

The sequence (an) converges to the number L (or has limit L) if for every
positive real number ε (no matter how small) there exists a natural
number N with the property that the term an of the sequence is within ε
of L for all terms an beyond the Nth term. In more compact language :

∀ε > 0, ∃N ∈ N for which |an − L| < ε ∀n > N.

Notes

If a sequence has a limit we say that it converges or is convergent. If
not we say that it diverges or is divergent.

If a sequence converges to L, then no matter how small a radius
around L we choose, there is a point in the sequence beyond which
all terms are within that radius of L. So beyond this point, all terms
of the sequence are very close together (and very close to L). Where
that point is depends on how you interpret “very close together”.
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Ways for a sequence to be divergent

Being convergent is a very strong property for a sequence to have, and
there are lots of different ways for a sequence to be divergent.

Example 59

1 (max{(−1)n, 0})∞n=1 : 0, 1, 0, 1, 0, 1, ...
This sequence alternates between 0 and 1 and does not approach
any limit.

2 A sequence can be divergent by having terms that increase (or
decrease) without limit.
(2n)∞n=1 : 2, 4, 8, 16, 32, 64, ...

3 A sequence can have haphazard terms that follow no overall pattern,
such as the sequence whose nth term is the nth digit after the
decimal point in the decimal representation of π.
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Convergence is a precise concept!

Remark: The notion of a convergent sequence is sometimes described
informally with words like “the terms get closer and closer to L as n gets
larger”. It is not true however that the terms in a sequence that
converges to a limit L must get progressively closer to L as n increases.

Example 60

The sequence (an) is defined by

an = 0 if n is even, an = 1
n if n is odd.

This sequence begins :

1, 0,
1

3
, 0,

1

5
, 0,

1

7
, 0,

1

9
, 0, ...

It converges to 0 although it is not true that every step takes us closer to
zero.
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