
Chapter 3

Sequences, Series and Convergence

3.1 Introduction to sequences and series

Example 3.1.1. Does it make sense to talk about the “number”
∞�

n=1

1
n2 = 1 +

1
4
+

1
9
+

1
16

+
1

25
+ . . .?

What does the question “does it make sense” mean? What we are talking about is the sum of
infinitely many specified positive numbers. We can’t actually do the addition and calculate what
this “number” is based on the definition above. But we can add up any finite collection of the
given terms and get an answer for that. Does this sum “settle down” to some identifiable value if
we keep adding more terms (whatever that means)? Does it keep growing and growing without
bound? Are there ways of finding out? Why would we want to know?

The following experiment might give a slightly vague but hopefully convincing answer to
some of these questions. Partially evaluating the sum above for various “initial segments” gives
the following results.

• 1 + 1
4 = 1.25

• 1 + 1
4 + 1

9 ≈ 1.361111

• 1 + 1
4 + 1

9 + 1
16 ≈ 1.423611

• 1 + 1
4 + 1

9 + · · ·+ 1
(10)2 ≈ 1.549767

• 1 + 1
4 + 1

9 + · · ·+ 1
(200)2 ≈ 1.639947

• 1 + 1
4 + 1

9 + · · ·+ 1
(10000)2 ≈ 1.644834

This experiment goes as far as computing the first 100000 terms of the sum, and it appears
that the values are not increasing without limit but “settling down” at around 1.6449. What is the
significance of this?

π2

6
≈ 1.644934

The series
∞�

n=1

1
n2 converges to the number

π2

6
(we will have precise definitions for the italicized

terms a bit later). This fact is remarkable - there is no obvious connection between π and squares

of the form 1
n2 ; moreover all the terms in the series are rational but

π2

6
is certainly not. This

example gives us in principle a way of calculating the digits of π or at least of π2. (In practice
there are similar but better ways, as the convergence in this example is very slow).
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Example 3.1.2. What about
∞�

i=1

1
n

= 1 +
1
2
+

1
3
+

1
4
+ . . .?

Try experimenting with initial segments again :

•

There’s no sign of this “settling down” or converging to anything that we can identify from this
information. This doesn’t tell us anything of course - maybe there is convergence but it can’t be
seen until we take many more millions of terms into our calculation? How could we know that
this doesn’t converge to anything?

Example 3.1.3. What about
∞�

i=1

1
22n =

1
4
+

1
16

+
1

64
+ . . .?

Experimenting reveals

• 1
4 + 1

16 = 5
16

• 1
4 + 1

16 + 1
64 + 1

256 + 1
1024 = 341

1024 ≈ 0.33301

These calculations can be verified directly using properties of sums of geometric progressions. It
appears that this series is converging to 1

3 .
The following picture gives some graphical evidence for this hypothesis. The large square has

area 1, and the red squares have areas 1
4 , 1

16 , etc. The picture is intended to indicate that the red
squares occupy one-third of the total area, since every red square is “accompanied” by two white
squares of the same area, and all these squares together make up the total area 1. This picture is
not really a proof, as it is not possible to actually draw squares representing all the terms of the

series, but it is a visual way of understanding the statement that the series
∞�

n=1

1
22n converges to

1
3

.
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3.2 Sequences

Note: Chapter 11 of Stewart’s Calculus is a good reference for this chapter of our lecture notes.

Definition 3.2.1. A sequence is basically an infinite ordered list

a1,a2,a3, . . .

• The items in list a1,a2 etc. are called terms (1st term, 2nd term, and so on).

• In our context the terms will generally be real numbers - but they don’t have to be.

• The sequence a1,a2, . . . can be denoted by {an} or by {an}
∞
n=1.

• There may be an overall formula for the terms of the sequence, or a “rule” for getting from
one to the next, but there doesn’t have to be.

Example 3.2.2. 1. {(−1)n + 1}∞n=1 : an = (−1)n + 1
a1 = −1 + 1 = 0, a2 = (−1)2 + 1 = 2,a3 = (−1)3 + 1 = 0, . . .

0, 2, 0, 2, 0, 2, . . .

2. {sin(nπ
2 )}∞n=1 : an = sin(nπ

2 )

a1 = sin(π2 ) = 1, a2 = sin(π) = 0, a3 = sin( 3π
2 ) = −1, a4 = sin(2π) = 0, . . . .

1, 0,−1, 0, 1, 0,−1, 0, . . .

3. { 1
n

sin(nπ
2 )}∞n=1 : an = sin(nπ

2 )

a1 = sin(π2 ) = 1, a2 = 1
2 sin(π) = 0, a3 = 1

3 sin( 3π
2 ) = − 1

3 , a4 = 1
4 sin(2π) = 0, . . . .

1, 0,−
1
3

, 0,
1
5

, 0,−
1
7

, 0, . . .

One way of visualizing a sequence is to consider is as a function whose domain is the set of
natural numbers and think of its graph, which will be a collection of isolated points, one for each
natural number.

Example 3.2.3. {2 + (−1)n21−n}∞n=1. Write an = 2 + (−1)n21−n. Then

a1 = 2 − 20 = 1, a2 = 2 + 2−1 =
5
2

, a3 = 2 − 2−2 =
7
4

,a4 = 2 + 2−3 =
17
8

.

Graphical representation of {an}:

As n gets very large the positive number
1

2n−1 gets very small. By taking n as large as we like,

we can make
1

2n−1 as small as we like.

Hence for very large values of n, the number 2 + (−1)n 1
2n−1 is very close to 2. By taking n as

large as we like, we can make this number as close to 2 as we like.
We say that the sequence converges to 2, or that 2 is the limit of the sequence, and write

lim
n→∞

�
2 + (−1)n

1
2n−1

�
= 2.
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Note: Because (−1)n is alternately positive and negative as n runs through the natural numbers,
the terms of this sequence are alternately greater than and less than 2.

We now state the formal definition of convergence of a sequence. This is reminiscent of the
definition of a limit for a function. A sequence converges to the number L if no matter how
restrictive your notion of “near L” is, there is a point in the sequence beyond which every term is
near L.

Definition 3.2.4. The sequence {an} converges to the number L (or has limit L) if for every positive real
number ε (no matter how small) there exists a natural number N with the property that the term an of the
sequence is within ε of L for all terms an beyond the Nth term. In more compact language :

∀ε > 0, ∃N ∈ N for which |an − L| < ε ∀n > N.

Notes

• If a sequence has a limit we say that it converges or is convergent. If not we say that it diverges
or is divergent.

• If a sequence converges to L, it means that no matter how small a radius around L we
choose, there is a point in the sequence beyond which all terms are within that radius of
L. This means (at least) that beyond a certain point all terms of the sequence are very close
together (and very close to L). Where that point is depends on how you interpret “very close
together”.

Being convergent is a very strong property for a sequence to have, and there are lots of differ-
ent ways for a sequence to be divergent.

Example 3.2.5. 1. {max({(−1)n, 0})}∞n=1 : 0, 1, 0, 1, 0, 1, . . .
This sequence alternates between 0 and 1 and does not approach any limit.

2. A sequence can be divergent by having terms that increase (or decrease) without limit.
{2n}∞n=1 : 2, 4, 8, 16, 32, 64, . . .

3. A sequence can have haphazard terms that follow no overall pattern, such as the sequence whose nth
term is the nth digit after the decimal point in the decimal representation of π.

Remark: The notion of a convergent is sometimes described informally with words like “the
terms get closer and closer to L as n gets larger”. It is not true however that the terms in a sequence
that converges to a limit L must get progressively closer to L as n increases, as the following example
shows.

Example 3.2.6. The sequence an is defined by

an = 0 if n is even, an = 1
n

if n is odd.

This sequence begins :

1, 0,
1
3

, 0,
1
5

, 0,
1
7

, 0,
1
9

, 0, . . .

It converges to 0 although it is not true that every step takes us closer to zero.

The following is an example of a convergent sequence.

Example 3.2.7. Find limn→∞
n

2n− 1
.

Solution: As if calculating a limit as x → ∞ of an expression involving a continuous variable x, divide
above and below by n.

lim
n→∞

n

2n− 1
= lim

n→∞
n/n

2n/n− 1/n
= lim

n→∞
1

2 − 1
n

=
1
2

.

So the sequence
�

n

2n− 1

�
converges to 1

2 .
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As for subsets of R, there is a concept of boundedness for sequences. Basically a sequence is
bounded (or bounded above or bounded below) if the set of its terms, considered as a subset of
R, is bounded (or bounded above or bounded below). More precisely :

Definition 3.2.8. The sequence {an} is bounded above if there exists a real number M for which an � M
for all n ∈ N.
The sequence {an} is bounded below if there exists a real number m for which m � an for all n ∈ N.
The sequence {an} is bounded if it is bounded both above and below.

Example 3.2.9. The sequence {n} is bounded below (for example by 0 or 1) but not above. The sequence
{sinn} is bounded below (for example by −1) and above (for example by 1).

Theorem 3.2.10. If a sequence is convergent it must be bounded.

Proof

Note : what we have to do here is use the definitions of convergent and bounded to reason that every
sequence that is convergent must be bounded.

Suppose that {an}
∞
n=1 is a convergent sequence with limit L.

Then (by definition of convergence) there exists a natural number N such that every term of
the sequence after aN is between L− 1 and L+ 1.

(Note: there is nothing special here about L− 1 and L+ 1 - you could choose L− 1
2 and L+ 1

2 or anything
like that - the point is that when you choose a certain “window” around L, there is a point (N) beyond
which all the terms of the sequence are in this “window”.)

The set consisting of the first N terms of the sequence is a finite set : it has a maximum element
M1 and a minimum element m1.
Let M = max{M1,L+ 1} and let m = min{m1,L− 1}.

(So M is defined to be either M1 or L + 1, whichever is the greater, and m is defined to be either m1 or
L− 1, whichever is the lesser.)

Then {an} is bounded above by M and bounded below by m.
So our sequence is bounded.

INCREASING AND DECREASING SEQUENCES

Definition 3.2.11. A sequence {an} is called increasing if an � an+1 for all n � 1.
A sequence {an} is called strictly increasing if an < an+1 for all n � 1.
A sequence {an} is called decreasing if an � an+1 for all n � 1.
A sequence {an} is called strictly decreasing if an > an+1 for all n � 1.

Definition 3.2.12. A sequence is called monotonic if it is either increasing or decreasing.
Similar terms : monotonic increasing, monotonic decreasing, monotonically increasing/decreasing.

Note: These definitions are not entirely standard. Some authors use the term increasing for what we
have called strictly increasing and/or use the term nondecreasing for what we have called increasing.
Examples

1. An increasing sequence is bounded below but need not be bounded above. For example

{n}∞n=1 : 1, 2, 3, . . .

2. A bounded sequence need not be monotonic. For example

{(−1)n} : −1, 1, −1, 1, −1, . . .
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3. A convergent sequence need not be monotonic. For example
�
(−1)n+1

n

�∞

n=1
: 1, −

1
2

,
1
3

, −
1
4

, . . .

This sequence converges to 0 but is neither increasing nor decreasing.

4. A montonic sequence need not be convergent, as Example 1 above shows.

However, if a sequence is bounded and monotonic, it is convergent. This is the Monotone Convergence
Theorem, which is the major theorem of this section.

Theorem 3.2.13 (The Monotone Convergence Theorem). If a sequence {an}
∞
n=1 is montonic and

bounded, then it is convergent.

Proof: (We can start by giving ourselves a monotonic bounded sequence - we can take it to be increasing;
the argument for a decreasing sequence is similar.)
Suppose that {an} is increasing and bounded. Then the set {an : n ∈ N} is a bounded subset of R
and by the Axiom of Completeness it has a least upper bound (or supremum) L.

(We are just giving the name L here to the supremum of the set of values of the sequence. We are supposed
to be showing that the sequence is convergent, i.e. has a limit : L is our candidate for that limit)

We will show that the sequence {an} converges to L.

Choose a (very small) ε > 0. Then L− ε is not an upper bound for {an : n ∈ N}, becasue L is the least
upper bound for this set.

This means there is some N ∈ N for which L − ε < aN. Since L is an upper bound for
{an : n ∈ N}, this means

L− ε < aN � L

(i.e. aN is between L− ε and L).

Since the sequence {an} is increasing and its terms are bounded above by L, every term after aN is
between aN and L, and therefore between L− ε and L. These terms are all within ε of L.

Using the fact that our sequence is increasing and bounded, we have

• Identified L as the least upper bound for the set of terms in our sequence

• Showed that no matter how small an ε we take, there is a point in our sequence beyond
which all terms are within ε of L.

This is exactly what it means for the sequence to converge to L. This concludes the proof.

Example 3.2.14 (from 2011 Summer Exam). A sequence {an} is defined by

a1 = 0, an+1 =
�

an + 6 for all n � 1.

Show that this sequence is bounded above by 3 and that it is increasing.
Deduce that the sequence is convergent and find its limit.

Note: This is an example of a sequence that is defined recursively. This means that the first term is
given and subsequent terms are defined (one by one) in terms of previous ones. We are not given
a general formula for the nth term although one may exist.

Solution:

1. 3 is an upper bound.
Suppose that ak < 3 for some k. Then

ak+1 =
�

ak + 6 <
√

3 + 6 = 3.

This says that if ak � 3, then ak+1 � 3 also.
Then, since a1 < 3, we have a2 < 3, then a3 < 3, etc.
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2. The sequence is increasing
Let k ∈ N. We need to show that ak � ak+1.
We know that 0 � ak < 3 : note this implies that

ak =
�

a2
k <

�
3ak =

�
ak + 2ak <

�
ak + 6 = ak+1.

Then ak < ak+1 for each k, which means the sequence is increasing.

3. The sequence converges
Since the sequence is increasing and bounded, it converges by the Monotone Convergence
Theorem.

Let L be the limit. Then, taking limits as n → ∞ on both sides of the equation

an+1 =
�

an + 6

we find that
L =

√
L+ 6 =⇒ L2 = L+ 6 =⇒ (L− 3)(L+ 2) = 0.

Thus L = 3 or L = −2, and since all the terms of our sequence are between 0 and 3 it must
be that L = 3.
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3.3 Introduction to Infinite Series

Definition 3.3.1. A series or infinite series is the sum of all the terms in a sequence.

Example 3.3.2 (Examples of infinite series). 1.
∞�

n=1

n = 1 + 2 + 3 + . . .

2. A geometric series
∞�

n=1

1/2n

=
1 +

1
2
+

1
22 + . . .

Every term in this series is obtained from the previous one by multiplying by the common ratio 1
2 .

This is what geometric means.

3. The harmonic series ∞�

n=1

1
n

= 1 +
1
2
+

1
3
+ . . .

4. An alternating series
∞�

n=0

(−1)n = 1 + (−1) + 1 + (−1) + . . .

Notes

1. For now these infinite sums are just formal expressions or arrangements of symbols. Whether
it is meaningful to think of them as numbers or not is something that can be investigated.

2. A series is not the same thing as a sequence and it is important not to confuse these terms. A
sequence is just a list of numbers. A series is an infinite sum.

3. The “sigma” notation for sums : sigma (lower case σ, upper case Σ) is a letter from the Greek
alphabet, the upper case

�
is used to denote sums. The notation

j�

n=i

an

means : i and j are integers and i � j. For each n from i to j the number an is defined; the
expression above means the sum of the numbers an where n runs through all the values
from i to j, i.e.

j�

n=i

an = ai + ai+1 + ai+2 + · · ·+ aj−1 + aj.

For example
5�

n=2

n2 = 22 + 32 + 42 + 52 = 54.

For infinite sums it is possible to have −∞ and/or ∞ (instead of fixed integers i and j) as
subscripts and superscripts for the summation.

What does it mean to talk about the sum of infinitely many numbers? We cannot add infinitely
many numbers together in practice, although we can (in principle) at least, add up any finite
collection of numbers. In the examples above we can start from the beginning, adding terms at
the start of the series. Adding term by term we get the following lists.
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1.
∞�

n=1

n = 1 + 2 + 3 + . . .

1, 1 + 2, 1 + 2 + 3, 1 + 2 + 3 + 4, 1 + 2 + 3 + 4 + 5, · · · : 1, 3, 6, 10, 15, . . .

Since the terms being added on at each stage are getting bigger, the numbers in the list above
will keep growing (faster and faster as n increases) - we can’t associate a numberical value
with this infinite sum.

2. A geometric series
∞�

n=1

1/2n

=
1 +

1
2
+

1
22 + . . .

1, 1 +
1
2

, 1 +
1
2
+

1
22 , 1 +

1
2
+

1
22 +

1
23 . . . : 1,

3
2

, frac74, frac158,
31
16

,
63
32

. . .

In this example the terms that are being added on at each step ( 1
2n ) are getting smaller and

smaller as n increases, and the numbers in the list appear to be converging to 2.

3. The harmonic series ∞�

n=1

1
n

= 1 +
1
2
+

1
3
+ . . .

1, 1 +
1
2

, 1 +
1
2
+

1
3

, 1 +
1
2
+

1
3
+

1
4

. . . : 1,
3
2

,
11
6

,
25
12

,
137
60

, . . .

It is harder to see what is going on here.

4. An alternating series
∞�

n=0

(−1)n = 1 + (−1) + 1 + (−1) + . . .

1, 1 − 1, 1 − 1 + 1, 1 − 1 + 1 − 1, 1 − 1 + 1 − 1 + 1 . . . : 1, 0, 1, 0, 1, . . .

The terms being “added on” at each step are alternating between 1 and −1, and as we
proceed with the summation the “running total” alternates between 0 and 1. So there is no
numerical value that we can associate with the infinite sum

�∞
n=0(−1)n.

Note: The series in 2. above converges to 2, the series in 1. and 4. are both divergent and it is not
obvious yet but the series in 3. is divergent as well. Our next task is to give precise meanings to
these terms for series. In order to do this we need some terminology. Bear in mind that we know
what it means for a sequence to converge, but we don’t yet have a definition of convergence for
series.

Definition 3.3.3. For a series
∞�

n=1

an, and for k � 1, let

sk =

k�

n=1

an = a1 + a2 + a3 + · · ·+ ak.

Thus s1 = a1, s2 = a1 + a2, s3 = a1 + a2 + a3 etc.
Then sk is called the kth partial sum of the series, and the sequence {sk}

∞
k=1 is called the sequence of

partial sums of the series.
If the sequence of partial sums converges to a limit s, the series is said to converge and s is called its sum.
In this situation we can write ∞�

n=1

an = s.

If the sequence of partial sums diverges, the series is said to diverge.
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Example 3.3.4 (Convergence of a geometric series). Recall the second example above :

∞�

n=0

1
2n

= 1 +
1
2
+

1
22 + . . .

In this example, for k � 0,

sk =

k�

n=0

1
2n

= 1 +
1
2
+

1
4
+ . . .

1
2k

1
2
sk =

k�

n=1

1
2n+1 =

1
2
+

1
4
+ . . .

1
2k

+
1

2k+1

Then
sk −

1
2
sk =

1
2
sk = 1 −

1
2k+1 =⇒ sk = 2 −

1
2k

.

So the sequence of partial sums has kth term 2 − 1
2k . This sequence converges to 2 so the series

converges to 2; we can write
�

n

= 0∞
1

2k
= 2.

General geometric series : Consider the sequence of partial sums for the geometric series

∞�

n=0

arn = a+ ar+ ar2 + . . .

(This is a geometric series with initial term a and common ratio r.) The kth partial sum sk is given
by

sk =

k�

n=0

arn = a + ar+ . . .ark

rsk =

k�

n=0

arn+1 = ar+ ar2 + . . .ark+1

Then (1 − r)sk = a − ark+1 =⇒ sk =
a(1 − rk+1)

1 − r
. If |r| < 1, then rk+1 → 0 as k → ∞, and the

sequence of partial sums (hence the series) converges to
a

1 − r
. If |r| � 1 the series is divergent.

Next we show that the harmonic series is divergent.

Theorem 3.3.5. The harmonic series
∞�

n=1

1
n

is divergent.

Proof: We show that the sequence of partial sums of the harmonic series is not bounded above.

• The first term is 1.

• The second term is 1
2 .

• The sum of the 3rd and 4th terms exceeds 1
2 :

1
3
+

1
4
>

1
4
+

1
4
=

1
2

.

65



• The sum of the 5th, 6th, 7th and 8th terms exceeds 1
2 :

1
5
+

1
6
+

1
7
+

1
8
>

1
8
+

1
8
+

1
8
+

1
8
=

1
2

.

• For the same reason, the sum of the next 8 terms (terms 9 through 16) also exceeds 1
2 .

• In general the sum of the 2n−1 terms
1

2n−1 + 1
through

1
2n

exceeds 1
2 .

So, as we list terms in the sequence of partial sums of the harmonic series, we keep accumulating
non-overlapping stretches of terms that add up to more than 1

2 . Thus the entire series has infinitely
many non-overlapping stretches all individually summing to more than 1

2 . Then the sum of this
series is not finite and the series diverges.

Note: A necessary condition for the series
�∞

n=1 an to converge is that the sequence {an}
∞
n=1 con-

verges to 0; i.e. that an → 0 as n → ∞. If this does not happen, then the sequence of partial sums
has no possibility of converging.

The example of the harmonic series shows that the condition an → 0 as n → ∞ is not sufficient
to guarantee that the series

�∞
n=1 will converge.
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3.4 Introduction to power series

Definition 3.4.1. A polynomial in the variable x is an expression of the form

n�

i=0

aix
i = a0 + a1x+ a2x

2 + · · ·+ an−1x
n−1 + anx

n

or anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0,

where the coefficients ai are real numbers and n is a natural number. The degree of the polynomial is the
highest k for which xk appears with non-zero coefficient.

Examples

1. x3 + 5x2 is a polynomial of degree 3 (also called cubic).

2. 2 + 2x+ 2x2 + 2x7 is a polynomial of degree 7.

3. x4 + x3 + 3
x2 is not a polynomial, because it involves a negative power of x.

The point is that a polynomial can has a constant term (which may be zero) and a finite number
of terms involving particular positive powers of x that have numbers as coefficients. A polyno-
mial may be regarded as a function of x, and polynomials are functions of a special type.

Definition 3.4.2. A power series in the variable x resembles a polynomial, except that it may contain
infinitely many positive powers of x. It is an expression of the type

∞�

i=0

aix
i = a0 + a1x+ a2x

2 + . . . ,

where each ai is a number.

Example 3.4.3.
∞�

n=0

xn = 1 + x+ x2 + x3 + . . .

is a power series.

Question: Does it make sense to think of a power series as a function of x? We investigate this
question for the example above.

So define a “function” by

f(x) =

∞�

n=0

xn = 1 + x+ x2 + . . .

• If we try to evaluate this function at x = 2, we get a series of real numbers.

f(2) =
∞�

n=0

2n = 1 + 2 + 22 + . . .

This series is divergent, so our power series does not define a function that can be evaluated
at 2.

• If we try evaluating at 0 (and allow that the first term x0 of the power series is interpreted
as 1 for all values of x), we get

f(0) = 1 + 0 + 02 + · · · = 1.

So it does make sense to “evaluate” this function at x = 0.
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• If we try evaluating at x = 1
2 , we get

f(
1
2
) =

∞�

n=0

�
1
2

�n

= 1 +
1
2
+

�
1
2

�2

+ . . .

From our work on geometric series in Section 2.3 we know that this is a geometric series
with first term a = 1 and common ratio r = 1

2 . We know that if |r| < 1, such a series

converges to the number
a

1 − r
. In this case

a

1 − r
=

1
1 − 1

2

= 2,

and we have f( 1
2 ) = 2.

In general we know that a geometric series of this sort converges provided that the absolute value
of its common ratio is less than 1. So for example if we put x = 1

3 we find that f( 1
3 ) is the sum of a

geomtric series with first term 1 and common ratio 1
3 ; this is

1
1 − 1

3

=
3
2

.

In general for any value of x whose absolute value is less than 1 (i.e. any x in the interval (−1, 1)),

we find that f(x) is a convergent geometric series, converging to
1

1 − x
.

Conclusion: For values of x in the interval (−1, 1) (i.e. |x| < 1), the function f(x) = 1
1−x

coincides
with the power series

�∞
n=0 x

n.

1
1 − x

=

∞�

n=0

xn, for |x| < 1.

The interval (−1, 1) is called the interval of convergence of the power series, and 1 is the radius of
convergence. We say that the power series representation of the function f(x) = 1

1−x
is

�∞
n=0 x

n, for
values of x in the interval (−1, 1).
Note: The expression 1

1−x
makes sense of course for all values of x except x = 1. We are not saying

that the domain of the function f(x) = 1
1−x

only consists of the interval (−1, 1), but just that it is
only on this interval that our power series represents this function.

Remark: The fact that for certain values of x we can represent 1
1−x

with a power series might be
interesting (at least to some people!), but it is not of particular use if you want to calculate 1

1−x

for some particular value of x, because this is easily done directly. However, if we could obtain
a power series representation for a function like sin x and use it to evaluate (or approximate)
sin(1) or sin(9) or sin(20), that might be of real practical use. These numbers are not easy to
obtain directly because the definition of sin x doesn’t tell us how to calculate sin x for a particular
x - you can use a calculator of course but how does the calculator do it? If we had a power
series representation for sin x and we knew it converged for the value of x we had in mind, we
couldn’t necessarily write down the limit but we could calculate partial sums to get an estimation
as accurate as we like.

Questions: What functions can be represented by power series, and on what sorts of interval or
subsets of R? If a function could be represented by a power series, how would we calculate the
coefficients in this series?

We are not going to give a full answer to these questions, but a partial one involving Maclaurin
or Taylor series.
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Suppose that f(x) is an infinitely differentiable function (this means that all the deriviatives of
f are themselves differentiable), and suppose that f is represented by the power series

f(x) =

∞�

n=0

cnx
n.

We can work out appropriate values for the coefficients cn as follows.

• Put x = 0. Then f(0) = c0 +
�∞

n=1 cn(0)
n =⇒ f(0) = c0.

The constant term in the power series is the value of f at 0.

• To calculate c1, look at the value of the first derivative of f at 0, and differentiate the power
series term by term. We expect

f �(x) = c1 + 2c2x+ 3c3x
2 + · · · =

∞�

n=1

ncnx
n−1.

Then we should have

f �(0) = c1 + 2c2 × 0 + 3c3 × 0 + · · · = c1.

Thus c1 = f �(0).

• For c2, look at the second derivative of f. We expect

f ��(x) = 2(1)c2 + 3(2)c3x+ 4(3)c4x
2 + 5(4)c5x

3 + · · · =
∞�

n=2

n(n− 1)cnxn−2.

Putting x = 0 gives f ��(0) = 2(1)c2 or c2 =
f ��(0)
2(1)

.

• For c3, look at the third derivative f(3)(x). We have

f(3)(x) = 3(2)(1)c3 + 4(3)(2)c4x+ 5(4)(3)c5x
2 + · · · =

∞�

n=3

n(n− 1)(n− 2)cnxn−3.

Setting x = 0 gives f(3)(0) = 3(2)(1)c3 or c3 = f(3)(0)
3(2)(1)

Continuing this process, we obtain the following general formula for cn:

cn =
1
n!

f(n)(0).

Definition 3.4.4. For a positive integer n, the number n factorial, denoted n! is defined by

n! = n× (n− 1)× (n− 2)× . . . 3 × 2 × 1.

The number 0! (zero factorial) is defined to be 1.

Example 3.4.5 (Power series representation of ex).

The coefficient of xn in the Maclaurin series expansion of ex is

cn =
1
n!

dn

dxn
(ex)|x=0 =

1
n!

e0 =
1
n!

.

Thus the Maclaurin series for ex is given by
∞�

n=0

1
n!

xn.

Note that if we differentiate this series term by term we get exactly the same series back, which is

what we would expect for a power series that represents ex, since
d

dx
(ex) = ex.
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Theorem 3.4.6. For every real number x, the above power series converges to ex. The interval of conver-
gence of this power series is all of R and the radius of convergence is infinite.

Example 3.4.7 (Power series representation of sin x).

Write f(x) = sin x, and write
�∞

n=0 cnx
n for the Maclaurin series of sin x. Then

• f(0) = sin 0 = 0 =⇒ c0 = 0

• f �(0) = cos 0 = 1 =⇒ c1 = 1

• f ��(0) = − sin 0 = 0 =⇒ c2 = 0
2! = 0

• f(3)(0) = − cos 0 = −1 =⇒ c3 = −1
3! = − 1

6

• f(4)(0) = sin 0 = 0 =⇒ c4 = 0
4! = 0

This pattern continues : if k is even then f(k)(0) = ±sin0 = 0, so ck = 0.
If k is odd and k ≡ 1 mod 4 then f(k)(0) = cos 0 = 1 and ck = 1

k! .
If k is odd and k ≡ 3 mod 4 then f(k)(0) = − cos 0 = −1 and ck = − 1

k! .
Thus the Maclaurin series for sin x is given by

∞�

k=0

(−1)k

(2k+ 1)!
x2k+1 = x−

1
3!
x3 +

1
5!
x5 −

1
7!
x7 + . . .

Note that this series only involves odd powers of x - this is not surprising because sin is an odd
function; it satisfies sin(−x) = − sin x.

Theorem 3.4.8. For every real number x, the above series converges to sin x.

Thus computing partial sums of this series gives us an effective way of approximating sin x
for any real number x.

Exercise 3.4.9. Show that the Maclaurin series for cos x is given by

∞�

k=0

(−1)k

(2k!)
x2k.

(Note that this can be obtained by differentiating term-by-term the series for sin x, as we would

expect since
d

dx
(sin x) = cos x. )

3.5 Exam advice and sample question for Chapter 3

Here is a “sample Question 3”. For this question you will need to be able to use the concept of
convergence and demonstrate a clear understanding of what it means. You will need to be able to
state and apply the main theoretical elements of Chapter 3, such as the Monotone Convergence
Theorem and the statement that every convergent sequence is bounded.

3. (a) Give an example of

i. a convergent sequence of real numbers;
ii. a sequence of real numbers that is bounded and divergent;

iii. a sequence of real numbers that is strictly monotonically increasing;
iv. a sequence of real numbers that is convergent and is not monotonic.

(b) A sequence (an) of real numbers is defined by

a0 = 4, an =
�

a2
n−1 − 2an−1 + 4 for n � 1.
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i. Write down the first four terms of the sequence.
ii. Show that the sequence is bounded below by 2.

iii. Show that the sequence is montonically decreasing.
iv. State why it can be deduced that the sequence is convergent, and determine its

limit.

(c) Find the first four terms in the Maclaurin series of
1

1 − x
.

Sample Solution:

(a) i (an) defined by an = 1
n

for n � 1.
ii (an) defined by an = (−1)n, for n � 1.

iii (an) defined by an = n, n � 1.
iv (an) defined by an = (−1)n 1

n
, for n � 1.

(b) i a0 = 4, a1 =
√

12, a2 =
�

16 − 2
√

12, a3 =

�
16 − 2

√
12 − 2

�
16 − 2

√
12 + 4

ii Certainly a0 > 2. Suppose that ak > 2 for some k. Then a2
k − 2ak > 0 and

ak+1 =
�

a2
k − 2ak + 4 >

√
4 =⇒ ak+1 > 2.

iii We know that ak > 2 for k ∈ N. Then 4 − 2ak < 0 and

ak+1 =
�

a2
k − 2ak + 4 <

�
a2
k =⇒ ak+1 < ak.

iv Since the sequence (an) is bounded below and monotonically decreasing, it is con-
vergent by the Monotone Convergence Theorem. Its limit L must satisfy

L =
�

L2 − 2L+ 4 =⇒ L2 = L2 − 2L+ 4 =⇒ 2L = 4 =⇒ L = 2.

(c) Write f(x) =
1

1 − x
. Then

f(0) = 1
f �(0) = 1

1
2
f ��(0) =

1
2
(2) = 1

1
3
f(3)(0) =

1
6
(6) = 1

First four terms of Maclaurin series: 1, x, x2, x3.
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