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14th Workshop on Numerical Methods for Problems with Layer Phenomena
Galway, Ireland, 6–7 April 2017

Thursday, 6 April, 2017

09:00 Registration, tea and coffee, outside the O’Flaherty Theatre,

Main Concourse, NUI Galway

09:50 Opening of the workshop by Rachel Quinlan, Head of the School of Mathematics,

Statistics and Applied Mathematics (in AC201)

Session chair: Natalia Kopteva

10:00 Christos Xenophontos On the finite element approximation of fourth order
singularly perturbed eigenvalue problems

10:25 Torsten Linß Collocation for singularly perturbed boundary-value
problems

10:50 Stephen Russell A two-scale sparse grid method for a singularly perturbed
reaction-diffusion problem in three dimensions

11:15 Tea and coffee break

Session chair: Martin Stynes

11:55 Simon Becher Uniform error estimates for general linear turning point
problems on layer-adapted meshes

12:20 Sebastian Franz Exponentially graded meshes and singularly perturbed
problems

12:45 Lunch in An Bhialann

Session chair: Maria Pickett

14:15 John J. H. Miller Tutorial on using MATLAB to solve singularly perturbed
systems of initial value problems

14:40 Eugene O’Riordan Singularly perturbed convection-diffusion problems posed
on an annulus

15:05 Alan F. Hegarty Numerical solution of convection-diffusion problems on
annular and related domains

15:30 Tea and coffee break

Session chair: Christos Xenophontos

16:10 Vladimir Volkov Asymptotic-numerical method for the description of
moving fronts in nonlinear two-dimensional reaction-
diffusion models

16:35 Dmitry Lukyanenko Solving ill-posed problems for nonlinear singularly
perturbed equations with internal and boundary layers

17:00 Organisational issues

18:30 Conference dinner, Viña Mara, 19 Middle St., Galway
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14th Workshop on Numerical Methods for Problems with Layer Phenomena
Galway, Ireland, 6–7 April 2017

Friday, 7 April, 2017

Session chair: Sebastian Franz

10:00 Martin Stynes Supercloseness of continuous interior penalty method for
convection-diffusion problems with characteristic layers

10:25 Catherine Timoney Singularly perturbed nonlinear time-dependent parabolic
problem with singularly perturbed Neumann boundary
conditions

10:50 Chad Westphal Adaptively Weighted Finite Element Methods for PDE
with Boundary Layers

11:15 Tea and coffee break

Session chair: Alan Hegarty

11:55 Nikolay Nefedov Initial boundary value problems for Burgers equation with
nonlinear forcing: front motion and blow-up

12:20 Natalia Kopteva Fully computable a posteriori error estimator using
anisotropic flux equilibration on anisotropic meshes

12:45+ε Closing of the workshop

Saturday, 8 April, 2017

There will be an excursion to the Burren and Cliffs of Moher, with stops including Dungauire
Castle, Poulnabrone Dolmen and Blackhead. The bus depart at 9am from the Quadrangle of
NUI Galway, and return at 3pm.
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Uniform error estimates for general linear turning point problems
on layer-adapted meshes

S. Becher

Institute of Numerical Mathematics
Technical University of Dresden, Dresden D-01062, Germany.

E-mail: Simon.Becher@tu-dresden.de

We consider singularly perturbed linear boundary value problems of the type

−εu′′(x) + b(x)u′(x) + c(x)u(x) = f(x), for x ∈ (a, a),

u(a) = ν−, u(a) = ν+,
(1a)

where 0 < ε� 1 and b, c, f are supposed to be sufficiently smooth. Furthermore, we assume

c(x) ≥ γ > 0,
(
c− 1

2b
′)(x) ≥ γ̃ > 0, for all x ∈ I := [a, a]. (1b)

A point x̄ ∈ I is called turning point of the problem if b(x̄) = 0 and for every neighborhood
U of x̄ there is a point x ∈ U ∩ I such that b(x) 6= 0. Note that the assumptions in (1b) on b
and c allow an arbitrary number, location, and multiplicity of turning points.

As result of the general setting of problem (1), we have to be aware of many (possibly
different) layers. It shows that exponential boundary layers, interior cusp-type layers, and
certain power-type boundary layers could occur, see [1]. In order to treat these layers and
to enable uniform estimates a convenient mesh construction strategy can be given. This one
combines the well known Shishkin-type meshes with piecewise equidistant meshes proposed
by Sun and Stynes in [2].

The mesh construction as well as some of the arising difficulties in proving uniform error
estimates in the energy norm for higher order finite elements are discussed on the basis
of several examples of problems with different layers. Note that the presented results and
techniques can also be extended to a certain type of semilinear problems, see [3].

REFERENCES

1. V. D. Liseikin, Layer resolving grids and transformations for singular perturbation problems, VSP, Utrecht,
2001.

2. G. Sun, M. Stynes, Finite element methods on piecewise equidistant meshes for interior turning point
problems, Numer. Algorithms 8(1), 111–129, 1994.

3. S. Becher, Uniform error estimates for general semilinear turning point problems on layer-adapted meshes,
arXiv:1701.06323v1 [math.NA], 2017.
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Exponentially graded meshes and singularly perturbed problems

S. Franz∗, L. Ludwig∗, Chr. Xenophontoso

∗ Institute of Scientific Computing, Technische Universität Dresden, Germany.
E-mail: {sebastian.franz,lars.ludwig}@tu-dresden.de,

o Department of Mathematics and Statistics, University of Cyprus, PO BOX 20537, Nicosia 1678, Cyprus.
E-mail: xenophontos@ucy.ac.cy,

By using a-priori defined layer-adapted meshes for singularly perturbed problems we are able
to prove uniform convergence results for many variants of finite element methods. Some meshes
allow for optimal convergence orders in the sense that the final estimate is O(N−p) for some
number p > 0 where N is a mesh parameter. One such mesh is the exponentially graded mesh
(eXp-mesh).

In this talk we look into some applications of this mesh to singularly perturbed problems
and compare it to well known S-type meshes. Upon doing so, we generalise the class of S-type
meshes and provide a new approach to analyse the eXp-mesh.

key words: eXp-mesh, S-type meshes

REFERENCES

1. Chr. Xenophontos: Optimal mesh design for the finite element approximation of reaction-diffusion problems,
Int. J. Numer. Meth. Eng., 53 (2002), 929-943

2. S. Franz, L. Ludwig, Chr. Xenophontos: Finite element approximation of convection-diffusion problems
using an exponentially graded mesh, Computer Math. Appl., 72 (2016) 6, 1532-1540

3. S. Franz, Chr. Xenophontos: On a connection between layer-adapted exponentially graded and S-type
meshes, submitted. arXiv :1611.07213
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Numerical solution of convection-diffusion problems on annular
and related domains

Alan F. Hegarty∗ & Eugene O’Riordan∗∗

∗ Department of Mathematics and Statistics, University of Limerick, Ireland.
E-mail: alan.hegarty@ul.ie

∗∗ School of Mathematical Sciences, Dublin City University, Ireland,
E-mail: eugene.oriordan@dcu.ie

We examine numerical methods for convection diffusion problems on annular domains, which
combine polar coordinates, upwinding and a piecewise-uniform Shishkin mesh in the radial
direction, and possibly some refinement in the axial direction. We examine computationally
the effect of relaxing constraints on the data which are required to obtain parameter-uniform
error bounds and also consider the application of the method to similar domains with non-
circular boundaries. The numerical method is a variation of that considered in [1, 2], where the
domain is circular and [3] in which numerical solutions are also obtained on annular domains.

key words: annular domain, convection-diffusion, polar coordinates, mesh refinement

REFERENCES

1. A. F. Hegarty and E. O’ Riordan, Numerical solution of a singularly perturbed elliptic problem on a circular
domain, Modeling and Analysis of Information Systems, Vol. 23, No. 3, 2016, 349–356.

2. A. F. Hegarty and E. O’ Riordan, Parameter-uniform numerical method for singularly perturbed convection-
diffusion problem on a circular domain, Advances in Computational Mathematics, 2016, doi:10.1007/s10444-
016-9510-z.

3. A. F. Hegarty and E. O’ Riordan, Numerical methods for singularly perturbed problems on non-rectangular
domains. (submitted to Proceedings of BAIL 2016).

ACKNOWLEDGEMENT

1The work of the first author was supported by MACSI, the Mathematics Applications Consortium
for Science and Industry (www.macsi.ul.ie), funded by the Science Foundation Ireland Investigator
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Fully computable a posteriori error estimator using anisotropic
flux equilibration on anisotropic meshes

Natalia Kopteva∗

∗ Department of Mathematics and Statistics, University of Limerick.
E-mail: natalia.kopteva@ul.ie

Fully computable a posteriori error estimates in the energy norm are given for singularly
perturbed semilinear reaction-diffusion equations posed in polygonal domains. Linear finite
elements are considered on anisotropic triangulations. To deal with the latter, we employ
anisotropic quadrature and explicit anisotropic flux reconstruction. Prior to the flux
equilibration, divergence-free corrections are introduced for pairs of anisotropic triangles
sharing a short edge. We also give an upper bound for the resulting estimator, in which
the error constants are independent of the diameters and the aspect ratios of mesh elements,
and of the small perturbation parameter.

key words: a posteriori error estimate, anisotropic triangulation, anisotropic flux equilibration,
flux reconstruction, anisotropic quadrature, energy norm, singular perturbation, reaction-diffusion.

We consider linear finite element approximations to singularly perturbed semilinear reaction-
diffusion equations of the form −ε24u + f(x, y;u) = 0 posed in a, possibly non-Lipschitz,
polygonal domain Ω ⊂ R2. Here 0 < ε ≤ 1. We also assume that f is continuous on
Ω × R and satisfies f(·; s) ∈ L∞(Ω) for all s ∈ R, and the one-sided Lipschitz condition
f(x, y;u)− f(x, y; v) ≥ Cf [u− v] whenever u ≥ v, with some constant Cf ≥ 0.

Our goal is to give explicitly and fully computable a posteriori error estimates on reasonably
general anisotropic meshes in the energy norm. This goal is achieved by a certain combination
of explicit flux reconstruction and flux equilibration.

Flux equilibration for reaction-diffusion equations was considered in [1, 3, 4] on shape-
regular meshes (see also [2, Chap. 6] for the case ε = 1), and in [5] on anisotropic meshes. The
estimators in [3, 4] are based on flux reconstructions, while [1, 5] employ solutions of certain
local problems.

Our approach in this paper differs from the previous work in a few ways.

• The fluxes are equilibrated within a local patch using anisotropic weights depending on
the local, possibly anisotropic, mesh geometry.

• Prior to the flux equilibration, divergence-free corrections are introduced for pairs of
anisotropic triangles sharing a short edge.

• A certain anisotropic quadrature is used on anisotropic elements. This is motivated by
some observations made in [6], and also enables us to drop some mesh assumptions made
in recent papers [7, 8].
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• Our estimator is explicitly and fully computable in the sense that it involves no unknown
error constants (unlike other estimators on anisotropic meshes, such as in [5, 7, 8]).

• In contrast to [5], an upper bound for our estimator involves no matching functions
(which depend on the unknown error). In fact, the error constant C in our upper bound
is independent not only of the diameters and the aspect ratios of mesh elements, but
also of the small perturbation parameter ε.

For further details, we refer the audience to a recent paper [9].

REFERENCES

1. M. Ainsworth and I. Babuška, Reliable and robust a posteriori error estimating for singularly perturbed
reaction-diffusion problems, SIAM J. Numer. Anal., 1999, v. 36, 331–353.

2. M. Ainsworth and J. T. Oden, A posteriori error estimation in finite element analysis, Wiley-Interscience,
New York, 2000.

3. M. Ainsworth and T. Vejchodský, Fully computable robust a posteriori error bounds for singularly perturbed
reaction-diffusion problems, Numer. Math., 2011, v. 119, 219–243.

4. I. Cheddadi, R. Fuč́ık, M. I. Prieto and M. Vohraĺık, Guaranteed and robust a posteriori error estimates for
singularly perturbed reaction diffusion equations, M2AN Math. Model. Numer. Anal., 2009, v. 43, 867–888.

5. S. Grosman, An equilibrated residual method with a computable error approximation for a singularly
perturbed reaction-diffusion problem on anisotropic finite element meshes, M2AN Math. Model. Numer.
Anal., 2006, v. 40, 239–267.

6. N. Kopteva, Linear finite elements may be only first-order pointwise accurate on anisotropic triangulations,
Math. Comp., 2014, v. 83, 2061–2070.

7. N. Kopteva, Maximum-norm a posteriori error estimates for singularly perturbed reaction-diffusion
problems on anisotropic meshes, SIAM J. Numer. Anal., 2015, v. 53, 2519–2544.

8. N. Kopteva, Energy-norm a posteriori error estimates for singularly perturbed reaction-diffusion problems
on anisotropic meshes, Numer. Math., 2017, to appear.

9. N. Kopteva, Fully computable a posteriori error estimator using anisotropic flux equilibration on anisotropic
meshes, 2017, submitted for publication, http://www.staff.ul.ie/natalia/pubs.html.
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Thursday 10:25 14th Workshop on Numerical Methods for Problems with Layer Phenomena
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Collocation for singularly perturbed boundary-value problems

Torsten Linß∗ and Goran Radojev† and Helena Zarin†

∗Fakultät für Mathematik und Informatik, FernUniversität in Hagen.
E-mail: torsten.linss@fernuni-hagen.de, web page: http://www.fernuni-hagen.de/numerik/

†Departman za matematiku i informatiku, Prirodno-matematički fakultet, Univerzitet u Novom Sadu.

A short summary of recent research into collocation methods for singularly perturbed
boundary-value problems of reaction-diffusion type will be given. Both a priori and a posteriori
error bounds will be presented.

key words: collocation, a priori error analysis, a posteriori error bounds.

REFERENCES

1. T. Linß, G. Radojev and H. Zarin, Approximation of singularly perturbed reaction-diffusion problems by
quadratic C1-splines, Numerical Algorithms, 61 (2012) 1, 35-55, DOI: 10.1007/s11075-011-9529-7.

2. T. Linß and G. Radojew, Robust a posteriori error bounds for spline collocation applied to singularly
perturbed reaction-diffusion problems, Electronic Transactions on Numerical Analysis 45 (2016), 342-353.

3. G. Radojev and T. Linß, A posteriori maximum-norm error bounds for the biquadratic spline collocation
method applied to reaction-diffusion problems, submitted for publication, 2017.

¶This work was partially supported by DAAD and the Serbian Ministry of Education and Science
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Solving ill-posed problems for nonlinear singularly perturbed
equations with internal and boundary layers

D.V. Lukyanenko∗, V.T. Volkov∗, M.A. Shishlenin∗∗

∗ Department of Mathematics, Faculty of Physics,
Lomonosov Moscow State University, Moscow 119991, Russia.

E-mail: lukyanenko@physics.msu.ru, volkovvt@mail.ru

∗∗ Sobolev Institute of Mathematics, Novosibirsk 630090, Russia.
E-mail: mshishlenin@ngs.ru

We consider two approaches based on the asymptotic analysis [1] which are able to solve
ill-posed problems for nonlinear singularly perturbed equations with internal and boundary
layers.

The first approach is based on the idea that the asymptotic analysis allows to extract a
priory information about interior layer (moving front), which appears in the direct problem,
and boundary layers, which appear in the conjugate problem (in the case of using some gradient
method for numerical solving of the considered problem). In this case we are able to construct
so called dynamically adapted mesh based on this a priory information. The dynamically
adapted mesh significantly reduces the complexity of the numerical calculations and improve
the numerical stability in comparison with the usual approaches. The effectiveness of this
approach are shown on the example of coefficient inverse problem for a nonlinear singularly
perturbed reaction-diffusion-advection equation [2] with the final time observation data.

The second approach is based on the idea that in particular cases the asymptotic analysis
allows to reformulate the initial ill-posed problem to the problem that is well-posed. The
effectiveness of this approach are shown on the example of boundary inverse problem for a
nonlinear singularly perturbed reaction-diffusion-advection equation [3] with the observation
data based on the position of interior layer.

key words: singularly perturbed problem, inverse problem, interior and boundary layers,

dynamically adapted mesh, reaction-diffusion-advection equation.

ams subject classifications: 65M32, 65L04, 65L12, 65L20, 65M20, 35G31.

¶The work was supported by RFBR (projects NNo. 17-01-00519, 17-01-00670, 17-01-00159, 16-01-00755, 16-29-
15120 and 16-01-00437), International Mathematical Center of Novosibirsk State University and the Ministry
of Education and Science of the Russian Federation.
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REFERENCES
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Fund. and Prikl. Math., 1998, v. 4, N. 3, 799-851.
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Thursday 14:15 14th Workshop on Numerical Methods for Problems with Layer Phenomena
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Tutorial on using Matlab to solve singularly perturbed systems of
initial value problems

John J. H. Miller

∗ Department of Mathematics, Trinity College. Dublin, Ireland
E-mail: jmiller@tcd.ie

In mathematical biology many systems of nonlinear differential equations arise, which are
singularly perturbed. These may be found, for example, in the mathematical modelling of
enzyme-substrate dynamics. It is necessary to solve these systems numerically. This is difficult
because of the singular perturbations, but it is even more difficult when the system is large. In
this tutorial, the use of standard packages in Matlab to solve such problems is demonstrated.
This approach is then compared with the use of numerical methods based on specially
constructed piecewise uniform meshes and appropriate standard finite difference operators.

key words: initial value problems, large systems, singularly perturbed, Matlab packages, Shishkin

meshes.
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Initial boundary value problems for Burgers equation with
nonlinear forcing: front motion and blow-up

N. N. Nefedov ∗

∗ Department of Math., Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow Russia.
E-mail: nefedov@phys.msu.ru

For the initial boundary value problems for reaction-diffusion-advection equations we prove
the existence of fronts and give their asymptotic approximation including the new case of the
blowing-up fronts. The last case we illustrate by the generalised Burgers equation.

key words: boundary and interior layers, singular perturbations, comparison principle. moving

fronts, blow-up.

We present recent results for some classes of IBVP (initial boundary value problem)
where we investigate moving fronts by using the developed comparison technique. For these
initial boundary value problems we proved the existence of fronts and give its asymptotic
approximation. We proved that the principal term, describing the location of the moving
front, is determined by the initial value problem

dx0
dt

= V (x0), x0(0) = x00, (2)

where x00 is the initial location of the front, V (x0) is a known function, defined by the input
data. We proved that the Lyapunov stability of steady points of equation (2) determine the
Lyapunov stability of stationary solutions with interior layer of the IBVP. In the present
paper we also have proved that under some conditions the blow-up of the solution problem
(2) determine the blow-up of the interior layer solution of the IBVP.

We illusrate our results by the problem

ε
∂2u

∂x2
−A(u, x)

∂u

∂x
− ∂u

∂t
= f(u, x, ε), x ∈ (0, 1), t > 0,

u(0, t, ε) = u0, u(1, t, ε) = u1, t ∈ [0, T ],

u(x, 0, ε) = uinit(x, ε), x ∈ [0, 1].

These results can be considered as an extension of the results of [1] - [5].

This work is supported by RFBR, pr. N 16-01-00437.

REFERENCES
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Thursday 14:40 14th Workshop on Numerical Methods for Problems with Layer Phenomena
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Singularly perturbed convection-diffusion problems posed on an
annulus

Alan F. Hegarty ∗ & Eugene O’Riordan ∗∗

∗ Department of Mathematics and Statistics, University of Limerick, Ireland.
E-mail:alan.hegarty@ul.ie,

∗∗ School of Mathematical Sciences, Dublin City University, Ireland,
E-mail:eugene.oriordan@dcu.ie,

A finite difference method is constructed for a singularly perturbed convection diffusion
problem posed on an annulus. The method involves combining polar coordinates, upwinding
and a piecewise-uniform Shishkin mesh in the radial direction. Constraints are imposed on the
data in the vicinity of certain characteristic points to ensure that interior layers do not form
within the annulus. Under these constraints, a theoretical parameter-uniform error bound is
established. This approach is an extension of the method examined in [1, 2], where the problem
was posed within a circle, as opposed to the problem examined here, where the problem domain
is exterior to a circle.

key words: annulus, convection-diffusion, characteristic points

REFERENCES

1. A. F. Hegarty and E. O’ Riordan, Numerical solution of a singularly perturbed elliptic problem on a circular
domain, Modeling and Analysis of Information Systems, Vol. 23, No. 3, 2016, 349–356.

2. A. F. Hegarty and E. O’ Riordan, Parameter-uniform numerical method for singularly perturbed convection-
diffusion problem on a circular domain, Advances in Computational Mathematics, doi:10.1007/s10444-016-
9510-z.
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A two-scale sparse grid method for a singularly perturbed
reaction-diffusion problem in three dimensions

Stephen Russell∗ and Niall Madden†

∗Applied and Computational Mathematics Division,
Beijing Computational Science Research Center, Haidian District, Beijing 100084, China

E-mail: stephenrussell@csrc.ac.cn
†School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway

E-mail: Niall.Madden@NUIGalway.ie

Standard finite element methods (FEMs), such as the Galerkin method, become impractical
for large problems and in high dimensions. It is known that sparse grid methods have the
ability to attain the accuracy of classical FEMs while requiring fewer degrees of freedom to do
so. This is well-documented for both two-scale and multiscale sparse grid methods applied to
singularly perturbed reaction-diffusion problems in two dimensions, (see, e.g., [1, 2]).

Sparse grid methods are important tools in the numerical solution of high-dimensional
non-singularly perturbed problems because the computational cost associated with them is
essentially independent of the dimension in which the problem is posed. However, little is
known about the theoretical properties of sparse grid methods applied to singularly perturbed
problems in more than two dimensions.

We investigate a two-scale sparse grid method applied to a three-dimensional singularly
perturbed reaction-diffusion problem posed on the unit cube. To resolve the associated
boundary layers a Shishkin solution decomposition and mesh are used to achieve a parameter-
robust solution. By extending the ideas of [1] to the three-dimensional setting, we show that
the two-scale sparse grid FEM we describe achieves essentially the same level of accuracy as
the standard Galerkin FEM, while reducing the number of degrees of freedom required from
O(N3) to O(N2). We conclude with the results of numerical experiments that support our
theoretical findings.

key words: sparse grids, finite elements, reaction-diffusion.
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Supercloseness of continuous interior penalty method for
convection-diffusion problems with characteristic layers

Martin Stynes∗ and Jin Zhang†

∗ Beijing Computational Science Research Center, Haidian District, Beijing 100193, China
E-mail: m.stynes@csrc.ac.cn, web page: http://www.csrc.ac.cn/en/people/faculty/151.html
† School of Mathematical Sciences, Shandong Normal University, Jinan 250014, China

E-mail: jinzhangalex@hotmail.com

A singularly perturbed convection-diffusion problem posed on the unit square is solved using
a continuous interior penalty (CIP) method with piecewise bilinears on a rectangular Shishkin
mesh. A detailed analysis [1] proves a new stability bound for the CIP method, in a norm that
is stronger than the usual CIP norm. This bound enables a new supercloseness result for the
CIP method: the computed solution is shown to be second order (up to a logarithmic factor)
convergent in the new strong norm to the piecewise bilinear interpolant of the true solution. As
a corollary one obtains almost optimal order convergence in the L2 norm of the CIP solution
to the true solution. Numerical experiments illustrate these theoretical results.

key words: Convection-diffusion, boundary layer, interior penalty finite element method, Shishkin

mesh
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Singularly perturbed nonlinear time-dependent parabolic problem
with singularly perturbed Neumann boundary conditions
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A singularly perturbed nonlinear reaction-diffusion equation with singularly perturbed
Neumann boundary conditions is examined,

ε2
(
∂u

∂t
− ∂2u

∂x2

)
+ f(x, t, u) = 0, (x, t) ∈ [0, 1]× [0, T ], T ∈ R+,

ε
∂u

∂x

∣∣∣∣
x=0

= g0(t), ε
∂u

∂x

∣∣∣∣
x=1

= g1(t) for t ∈ [0, T ],

and
u(x, 0) = ϕ(x) for x ∈ [0, 1],

where g0(t), g1(t), f(x, t, u) and ϕ(x) are sufficiently smooth and 0 < ε� 1. Solutions to this
equation involving boundary and initial layers will be discussed. This system is considered
with a nonlinear function f(x, t, u) and so the reduced problem, f(x, t, u) = 0, has multiple
solutions. The condition fu(x, t, u) > 0 is not assumed and instead weaker local assumptions
are made. We consider [1] for assumptions that are necessary for existence of a boundary layer
solution. In [1] an asymptotic expansion is constructed and existence of an exact solution is
proven for a similar time dependent problem with periodic solutions. We enforce compatibility
conditions at x = 0, t = 0 so that a sufficiently smooth solution can be obtained and by
adding suitable conditions the existence of corner layer functions are removed. Discrete upper
and lower solutions are constructed to prove existence and give accuracy of computed solutions.

Examples can be found which illustrate the difficulty of finding accurate solutions to this
equation and give incorrect computed solutions. This problem is addressed by the introduction
of artificial stabilisation previously considered by [2] for a time dependent problem with
Dirichlet boundary conditions.

key words: time dependent, boundary layers, singularly perturbed Neumann boundary conditions.
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Asymptotic-numerical method for the description of moving
fronts in nonlinear two-dimensional reaction-diffusion models
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This work develops an analytic-numerical approach for the description of moving fronts
in nonlinear singularly perturbed parabolic equations. We consider a singularly perturbed
reaction-diffusion problem featuring the solutions with moving internal layers (moving fronts).
It is important that the layer location and its speed are not known a priori and could be
determined from the asymptotic procedure by smooth joining of asymptotic expansions. In
quite general cases this procedure can be done explicitly and also explicit asymptotic formulas
for the layers location or the front speed can be written. But for some classes of reaction-
diffusion problems it can not be done explicitly and the asymptotic algorithm needs to be
supplemented by the appropriate numerical calculations. The main purpose of this work is, on
the one hand, to show the ideas of the asymptotic algorithm for the solutions with internal
layers or moving fronts; on the other hand, to outline some problems which need to use
numerical calculations on some steps of the asymptotic procedure.

Some combined asymptotic-numerical algorithm for the determination of moving fronts
location in two-dimensional reaction-diffusion models is proposed. Asymptotic technique
allows to reduce this two-dimensional nonlinear reaction-diffusion equation to a series of one-
dimensional problems. This decomposition significantly decreases the complexity of numerical
calculations for practical applications and allows the effective use of parallel computing. Some
numerical experiments are presented to illustrate the proposed method.

We demonstrate our approach on the following problem:

ε2∆u− ε∂u
∂t

= f(u, x, y, ε),

y ∈ (0, a), x ∈ (−∞,+∞), t > 0
(3)

with some boundary and initial conditions and the L–periodicity condition in the variable x.
In (3) the function f(u, x, y, ε) is assumed to be sufficiently smooth and L–periodic in the

variable x; 0 < ε � 1 is small parameter, which is usually a consequence of the parameters

¶The work supported by RFBR (projects NNo. 17-01-00519, 17-01-00670, 17-01-00159, and 16-01-00437) and
Supercomputing Center of Lomonosov Moscow State University.
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of the physical problem. The appearance of small parameter before the spatial derivatives is
determined by the characteristics of the physical system, while small parameter before the
time derivative determines only the time scale, convenient for further consideration.

The problem of type (3) featuring the solution of moving front type which have been
investigated, for example, in [1], [2] (see also the references therein). In these works some
asymptotic procedure was developed and proof of the existence of such type solution was
done. Also the equations for effective description of the front dynamics was obtained.

Asymptotic solution of the problem (3) could be constructed as a combination of the
solutions of boundary value problems in two domains located at the opposite sides of some
curve Ĉ(t). Front location (the curve Ĉ(t)) and its speed are not known a priori and must
be determined from the asymptotic procedure by the smooth joining of these two solutions
(C(1)–matching condition). As a result, the main problem for the front dynamics description
can be written as

∂2ũ

∂ξ2
+ v0

∂ũ

∂ξ
= f(ũ, x, y, 0), (x, y) ∈ Ĉ(t)

ũ(0) = ϕ(0)(x, y), ũ(±∞) = ϕ(±)(x, y),

(4)

where the parameter v0 provides a smooth joining of the solutions of (4) for ξ > 0 and ξ < 0
and determines the main term of the normal speed of the front’s point with coordinates (x; y).
Note, that the problem (4) is a series of one-dimensional equations which depends on (x; y) as
a parameters considered on some curve (surface).

Explicit formulas for speed or location of the moving front can be written only for certain
types of nonlinearities f(u, y, x, ε). But in general case it can not be done explicitly. This work
extends [2] and supplements the asymptotic procedure, based on the formulas from [2], by
some numerical algorithm for the description of the moving front location and its dynamics in
two-dimensional case.

It is important, that for two(or higher)–dimensional case the asymptotic procedure [1], [2]
requires, that C(1)–matching needs to be done only for the normal derivatives at each point
(x; y) on the curve Ĉ(t). So, the asymptotic approach allows to reduce numerical determination
of the front location or speed to a series of one-dimensional problems. This fact enables to
optimize computer calculations and effectively use parallel computing technologies.

key words: singularly perturbed problem, interior and boundary layers, dynamically adapted

mesh, reaction-diffusion-advection equation, coefficient inverse problem, final time observed data.
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The overall effectiveness of numerical methods may be limited by solutions that lack
smoothness on a relatively small subset of the domain. This includes elliptic or parabolic
systems with boundary or interior layers as a result of convection dominated diffusion, or
problems with singularities induced by boundary conditions or nonsmooth coefficients. In
particular, finite element methods may exhibit slow convergence, or in some cases, may
fail to converge. There are a wide range of approaches to address these issues, from the
use of exotic finite element spaces, to enhancing the finite element spaces with additional
local basis functions, to mesh construction/refinement strategies, to a variety of strategies
that weaken the variational problem. The approach we present here has similarities to each
of these methodologies, where the underlying discrete variational problem is adaptively re-
weighted by a sequence of approximate solutions. By changing the underlying metric of the
numerical method, the choice of mesh and finite element space can better represent the solution.
For problems with boundary layers, for example, an optimal metric has lower weight where
sharp gradients develop. This effectively weakens the variational problem locally, reducing
under/overshoot behavior in typical Galerkin formulations or excessive smoothing in typical
least-squares formulations. For such problems where it is not known a priori where layers will
form, an adaptive approach is necessary. In many cases the adaptively weighted approach
can achieve optimal convergence rates (in both weighted and non-weighted norms) when
the equivalent non-weighted solutions have significant defects. We present an overview of the
approach and algorithmic framework as well as numerical examples that focus on problems
with boundary layers.

key words: adaptive, finite element, least-squares, boundary layers.
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On the finite element approximation of fourth order singularly
perturbed eigenvalue problems
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We consider fourth order singularly perturbed eigenvalue problems in one-dimension and the
approximation of their solution by the h version of the Finite Element Method (FEM). In
particular, we use piecewise Hermite polynomials of degree p ≥ 3 defined on an exponentially
graded mesh. We show that the method converges uniformly, with respect to the singular
perturbation parameter, at the optimal rate when the error in the eigenvalues is measured (in
absolute value) and when the error in the eigenvectors is measured in the energy norm. We
also illustrate our theoretical findings through numerical computations.

key words: fourth order singulary perturbed eigenvalue problem, boundary layers, finite element

method, exponentially graded mesh, uniform convergence.
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