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 A B S T R A C T

Bilayers, soft substrates coated with stiff films, are commonly found in nature, with examples 
including skin tissue, vesicles, and organ membranes. They exhibit different types of instabilities 
when subjected to compression, depending on the contrast in material properties between 
the two components. In this work, we unravel the mechanisms behind wrinkling instabilities 
in auxetic bilayer systems under uniaxial tension. We find that a soft bilayer in tension 
can experience significant lateral contraction, and with sufficient contrast in Poisson ratios, 
compressive stresses may induce wrinkles aligned with the tensile direction. We analytically 
model the onset of wrinkles and validate our predictions using Finite Element simulations in
ABAQUS. Our findings reveal that wrinkles may occur when the Poisson ratio of the substrate 
is greater than that of the film. As the two Poisson ratios converge to a common value, the 
critical stretch for instability shoots up rapidly and the wrinkles disappear. We also confirm 
these results through asymptotic analysis. Using inverse analysis, we design film microstructures 
to achieve desired effective Poisson ratios and further validate the effective properties with 
the Finite Element code FEAP. We show that the critical stretch ratio for buckling in auxetic 
structures with microstructural patterns is in strong agreement with the homogenized model 
predictions. The proposed method has significant potential for controlling surface patterns 
in auxetic skin grafts and hydrogel organ patches under mechanical loads. Moreover, the 
asymptotic expressions for compressible bilayers developed in this work can also be applied 
under finite strain for buckling-based metrology.

. Introduction

Auxetics, materials with negative Poisson’s ratio, expand in all directions under uniaxial tension. For 3D isotropic materials with 
uxetic behavior, which obey the pointwise energy stability criterion, the theoretical value of Poisson’s ratio ranges between −1 
nd 0.5 (Timoshenko, 1983).
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Fig. 1. (a) Undeformed and (b) deformed configurations of a 3D bilayer system with periodic boundary conditions (PBCs) in the lateral directions. The system 
is infinite in the 𝑋− and 𝑍−directions and is under uniaxial tension along the 𝑋−direction. The analysis shows that eventually, (b) wrinkles develop parallel to 
the 𝑋−direction, provided there is enough contrast between the constitutive parameters of the materials. (c) Image obtained using Scanning Electron Microscope 
(SEM) on a natural rubber substrate coated with a gold film, when elongated to 50% strain at room temperature (Volynskii et al., 2000). An inset with an arrow 
shows the direction of elongation. Bright and dark bands represent the buckled gold film layer and the rubber showing through cracks in the stretched film, 
respectively. (d) Optical micrograph of a Polystyrene (PS) film layer on a silicon wafer with decreasing thickness from top to bottom is shown in the left panel. 
The corresponding wrinkles exhibit decreasing wavelengths in the right panel, when the PS films are attached to a Polydimethylsiloxane (PDMS) substrate and 
elongated to induce buckling (Stafford et al., 2004).

Advancements in additive and subtractive manufacturing (Mueller et al., 2013; Sun et al., 2017), combined with extensive 
research on negative Poisson ratio materials, have bridged the gap between theoretical models and practical applications of 
auxetics in diverse fields. Early studies on ferromagnetic films identified a negative Poisson ratio behavior that decayed with 
time (Popereka and Balagurov, 1970), while subsequent work established its theoretical existence in crystalline structures (Milstein 
and Huang, 1979). Lakes (1987) experimentally demonstrated the auxetic behavior of open-cell polyurethane foams with tailored 
microstructures using thermo-mechanical treatments, and Wojciechowski and Brańka (1989) used molecular simulations to explore 
auxetic behavior in two-dimensional isotropic systems. Advances in material design have extended the use of auxetic properties 
to polymer foams, wrestling mats and aircraft sandwich panels (Lakes, 1993). Recent breakthroughs in biomedical engineering 
have introduced auxetic materials for medical implants, including negative Poisson ratio stents for low flexural rigidity and high 
circumferential strength (Dolla et al., 2006), meta-implants for improved load distribution in hip replacements (Kolken et al., 2018), 
and hydrogel-based organ patches that adapt to dynamic tissue mechanics (Chansoria et al., 2022).

Bilayers composed of compliant substrates coated with thin stiff films are commonly found in nature; for example, skin tissue 
consists of a thin, stiff epidermal layer attached to a thick, soft dermis. When subject to mechanical loads, bilayer systems can exhibit 
surface patterns through wrinkles. This instability phenomenon has found a wide range of applications in optical sensors (Bowden 
et al., 1998), novel flexible electronics (Wagner et al., 2004; Khang et al., 2006; Zhang et al., 2019), tunable phase gratings (Harrison 
et al., 2004), buckling-based metrology (Stafford et al., 2004; Huang et al., 2007), surface wetting (Lin and Yang, 2009), and 
buckling-related applications in soft matter (Crosby, 2010).

Historically, instability analysis in elastic half-spaces gained prominence through the seminal works of Biot and Taylor (1957), 
Biot (1963) and Allen (1969a). Dorris and Nemat-Nasser (1980) studied instabilities in bilayer systems with different material 
combinations of elastic and inelastic film–substrate layers. Shield et al. (1994) conducted a linear buckling analysis of a stiff layer 
bonded to an isotropic, elastic half-space using first-order perturbation analysis and compared the results to approximate solutions 
obtained via beam theory for the coating. The first weakly nonlinear analysis was conducted by Cai and Fu (1999) who found that 
2 
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there existed a critical stiffness ratio at which the bifurcation changes character (from being supercritical to subcritical). Building on 
Gurtin–Murdoch theory (Gurtin and Ian Murdoch, 1975; Gurtin and Ian Murdoch, 1978), Steigmann and Ogden (1997) developed 
an incremental bifurcation theory for planar deformations of coated elastic solids with boundary elasticity.

Numerous studies have examined compression-induced surface instabilities in bilayers, driven by thermo-mechanical treatments. 
Experiments revealed surface instabilities, where thermal contraction of the substrate caused buckling in metal films (Bowden et al., 
1998). Similarly, in metal-elastomer bilayers, thermal expansion mismatch during cooling induced equi-biaxial compression, leading 
to herringbone wrinkles (Chen and Hutchinson, 2004). Refined models demonstrated that wrinkles evolve into stripes, labyrinths, or 
herringbones, depending on the anisotropy of the membrane force (Huang et al., 2005). Choi et al. (2007) demonstrated that silicon 
nanomembranes on pre-strained elastomeric substrates form 2D wavy structures under uniaxial and biaxial strains, offering potential 
for stretchable electronics. Auguste et al. (2014) reported that an applied pre-tension in the substrate leads to the stabilization of 
wrinkles, while a pre-compression leads to the emergence of chaotic surface morphologies in thin coating films.

A finite deformation buckling theory was developed to describe the strain-dependent wavelength of wrinkles by Song et al. 
(2008). Hong et al. (2009) found that creasing in bent elastomers occurs at a lower critical strain than the Biot prediction, which 
aligns with experiments. Huang et al. (2017) showed that surface instabilities in 2D bilayers under compression depend on the 
Poisson ratio of the substrate, occurring at smaller strains in incompressible substrates than in auxetics. Cutolo et al. (2020) 
experimentally investigated the evolution of wrinkles in thin metal films bonded to substrates with 3D periodic surface structures. 
Material anisotropy and loading biaxiality influence wrinkling evolution in orthotropic films bound to compliant substrates, with 
phase diagrams revealing various post-buckling surface patterns, including stripes, checkerboard, and herringbone modes (Yin et al., 
2018).

The formation of these surface patterns is controlled by different parameters, such as the contrast in material properties (Cai 
and Fu, 1999; Efimenko et al., 2005), differential growth (Goriely and Ben Amar, 2005), film-to-substrate thickness ratio (Stafford 
et al., 2005; Li et al., 2019), initial imperfections (Cao and Hutchinson, 2012a), nonlinearity of the substrate (Hutchinson, 2013; 
Brau et al., 2013; Zhuo and Zhang, 2015), curvature (Stoop et al., 2015), applied prestretch (Cao and Hutchinson, 2012b; Cai and 
Fu, 2019), origin of compression (Andres et al., 2018), interfacial mechanics (Bigoni et al., 2018; Bakiler and Javili, 2023), etc.

The onset of wrinkles on the surface of a solid under applied tension is rarely studied beyond the linear elastic frame-
work (Nikravesh et al., 2019b), although they have been observed experimentally under large strains (Volynskii et al., 2000; Stafford 
et al., 2004), see Fig.  1 of illustrations and examples. In this paper, we conduct a linear buckling analysis of 3D hyperelastic thin stiff 
films on semi-infinite compliant substrates, including auxetics, under tension and large strains, addressing a gap in the literature, 
which has, so far, primarily focused on compression.

To conduct this investigation, we develop a semi-analytical approach in Mathematica (Wolfram Research Inc., 2022) to predict 
the onset of wrinkles in bilayers under uniaxial tension. We also create a UHYPER subroutine in FORTRAN to implement appropriate 
constitutive models in ABAQUS (ABAQUS Inc., 2019), and use custom Python scripts to simulate wrinkling in compressible bilayers 
with periodic boundary conditions using Finite element (FE) analysis.

Key novelties include (i) Deriving asymptotic expressions for the critical stretch ratios and wavenumber of wrinkling, applicable 
under finite strains and relevant for buckling-based metrology; (ii) Demonstrating that wrinkles occur only when the Poisson ratio of 
the substrate exceeds that of the film (as the Poisson ratios converge, the critical stretch for the instability increases sharply, causing 
the wrinkles to disappear). (iii) Validating the semi-analytical approach and asymptotic expressions with detailed FE simulations; 
(iv) Achieving targeted effective Poisson ratios in the film by altering its microstructure with an inverse design approach, and 
finding that the critical stretch ratio for auxetic structures with microstructural patterns aligns closely with the predictions of the 
homogenized models.

The paper is structured as follows. Section 2 presents the theoretical background, including the semi-analytical method, the 
derivation of asymptotic expressions, and an overview of the homogenization and inverse design analyses. Section 3 describes 
the computational approach, where we implement the Blatz–Ko strain energy model in a user-defined subroutine (UHYPER) 
for ABAQUS and perform buckling analysis of three-dimensional bilayer systems. We also investigate the buckling behavior of 
bilayers with auxetic film microstructures and compare the results with those obtained from homogenized models. Finally, Section 4 
summarizes the key findings and outlines the directions for future research.

2. Theoretical framework

2.1. 3D bilayer system in tension

We consider 3D bilayer systems with a thin stiff film perfectly bonded to a semi-infinite compliant substrate, see Fig.  1(a,b). 
Under a uniaxial tension applied along the 𝑋-direction, the bilayer is intuitively expected to eventually develop wrinkles aligned 
with that direction, as shown in Fig.  1(b), provided compressive stresses develop along the 𝑍-direction due to a sufficient Poisson 
ratio contrast.

To explore the influence of material properties on this wrinkling behavior, we analyze cases where both the film and substrate 
exhibit either auxetic or conventional mechanical responses. Auxetic materials, characterized by a negative Poisson ratio, exhibit 
high compressibility and are distinctly different from nearly incompressible materials with a Poisson ratio close to 0.5.

Earlier studies have employed continuum hyperelastic models derived from the Blatz–Ko strain energy function (Blatz and Ko, 
1962) to describe auxetic behavior, as they capture the mechanical response of materials with negative Poisson ratios, although with 
certain limitations (Crespo and Montáns, 2018). For example, Ciambella and Saccomandi (2014) employed the Blatz–Ko model to 
3 
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Fig. 2. Comparison of wrinkling profiles in thin conventional and auxetic sheets. Top row: Thin acetate sheets under uniaxial tension, with (a) non-auxetic 
micro-structural patterns and (b) auxetic micro-structural patterns (Bonfanti and Bhaskar, 2019). For conventional sheets, wrinkles develop at the center of the 
sheet. For auxetic sheets, they appear near the clamped edges. Bottom row: Buckling profiles (according to the magnitude of the displacement field) obtained 
with ABAQUS and the Blatz–Ko model Eq. (1). Here 𝛼 = 0.4, 𝜇 = 0.53 GPa, and 𝜈 = 0.38,−0.2 in (c) and (d), respectively. The sheet is modeled using 3D shell 
elements in ABAQUS, where the geometry lies in the global 𝑋–𝑍 plane and the initial shell thickness is oriented along the 𝑌 -axis. Uniaxial stretch is applied 
along the 𝑋-direction, and wrinkling amplitudes occurs as out-of-plane displacement along 𝑌 -direction.

replicate the experimental observations of Choi and Lakes (1992) on auxetic structures. The Blatz–Ko strain energy function is as 
follows, 

𝑊 = 𝑐1

(

𝐼1 − 3 + 1
𝛽

(

𝐼−𝛽3 − 1
)

)

+ 𝑐2

(

𝐼2
𝐼3

− 3 + 1
𝛽

(

𝐼𝛽3 − 1
)

)

, (1)

where 𝑐1 =𝛼 𝜇
2 , 𝑐2 = (1 − 𝛼) 𝜇2 , 𝛽 = 𝜈

1−2𝜈 , 𝐅 is the deformation gradient, and 𝐼1 = tr(𝐅𝐅𝑇 ), 𝐼2 = 𝐼3tr[(𝐅𝐅𝑇 )−1], 𝐼3 = det(𝐅𝐅𝑇 ) are three 
strain invariants. Also, the material constants are the non-dimensional parameter 0 < 𝛼 < 1, the initial shear modulus 𝜇 > 0, and 
the Poisson ratio −1 < 𝜈 ≤ 1∕2.

Fig.  2 shows that the Blatz–Ko model can effectively capture the experimentally observed behavior of thin membranes (without 
a substrate) under tension, encompassing both auxetic and conventional Poisson ratios. The model accurately distinguishes the 
differences in the wrinkling patterns between auxetic and conventional materials, aligning with the experimental findings of Bonfanti 
and Bhaskar (2019), who studied thin acetate sheets with laser-cut microstructural patterns.

Although wrinkling in bilayers (Fig.  1) and freestanding films (Fig.  2) represent two distinct classes of problems in terms of 
wrinkle morphology, onset, and location, Fig.  2 demonstrates that the Blatz–Ko model can predict wrinkling behavior in compressible 
systems, including those with auxetic characteristics.

To conduct the ABAQUS simulations of Fig.  2(c,d), we implemented the Blatz–Ko model using a user-defined hyperelastic 
subroutine (UHYPER), and then performed a linear buckling analysis to determine the onset of wrinkling. Here, instead of 
explicitly modeling the microstructural patterns, we assigned effective material properties representative of auxetic and conventional 
behavior to the films. This approach allows for a direct comparison between numerical predictions from homogenized models and 
experimental observations of microstructured models.

2.2. Semi-analytical treatment: linear buckling analysis

To establish a consistent notation for the bilayer system, we denote variables associated with the film and substrate layers using 
the letters 𝑓 and 𝑠, respectively.

To determine the critical stretch and wavelength of the wrinkling instability, we employ the small-on-large method: we first 
compute the base (elastic) solution, and then superimpose an incremental deformation and derive, and solve, the incremental 
governing equations and boundary conditions.

The Blatz–Ko model (1) is used to obtain the principal components of the Cauchy stress 𝐓 as follows: 

𝑇𝑖𝑖 =
𝐸

2(1 + 𝜈)
𝐽−(2𝛼+1) [−𝛼 + [(𝛼 − 1)𝜆−2𝑖 + 𝛼𝜆2𝑖 ]𝐽

2𝛼 − (𝛼 − 1)𝐽 4𝛼] , (no summation over 𝑖), (2)

where 𝜆𝑖 are the principal stretch ratios and 𝐽 = det 𝐅.
For the substrate, which is subjected to uniaxial tension along the 𝑋−direction, the stress conditions impose 𝑇 𝑠

22 = 𝑇 𝑠
33 = 0, 

leading to the following deformation gradient: 
𝐅𝑠 = diag

[

𝜆𝑠1, (𝜆
𝑠
1)

−𝜈𝑠 , (𝜆𝑠1)
−𝜈𝑠

]

. (3)
4 
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Because the film and substrate are perfectly bonded, they experience the same stretches in the 𝑋− and 𝑍−directions, so that 
𝜆𝑓1 = 𝜆𝑠1 = 𝜆1, 𝜆𝑓3 = 𝜆𝑠3 = (𝜆𝑠1)

−𝜈𝑠 . Furthermore, the transverse stress component satisfies 𝑇 𝑓
22 = 𝑇 𝑠

22 = 0. Applying these conditions, we 
find the deformation gradient for the film as: 

𝐅𝑓 = diag
[

𝜆1, 𝜆
𝜈
1, 𝜆

−𝜈𝑠
1

]

, 𝜈 =
𝜈𝑓 (𝜈𝑠 − 1)
(1 − 𝜈𝑓 )

. (4)

Because the two components are perfectly bonded and the system is treated as effectively infinite in-plane, spatial variations in 
the deformation gradient are neglected. This modeling approach aligns with the classical analyses of wrinkling in bilayer systems, 
such as thin-film coatings on semi-infinite substrates, where edge effects are absent and the pre-buckling deformation is assumed to 
be homogeneous (Cai and Fu, 1999; Cao and Hutchinson, 2012b; Alawiye et al., 2019).

Eqs.  (3) to (4), together with the stress expression in Eq. (2), define the base state (elastic solution) of the bilayer under tension.
To determine the onset of wrinkling, a small-amplitude displacement 𝐮 is superimposed on the finite deformations given in Eqs. 

(3) to (4). Following the incremental approach outlined by Haughton and Ogden (1978), the resulting incremental equilibrium 
equations are derived as follows:

A𝑠
0𝑗𝑖𝑙𝑚𝑢

𝑠
𝑚,𝑙𝑗 = 0, −∞ < 𝑦 < 0,

A𝑓
0𝑗𝑖𝑙𝑚𝑢

𝑓
𝑚,𝑙𝑗 = 0, 0 < 𝑦 < ℎ, (5)

where the commas denote differentiation with respect to the current coordinates, ℎ is the current thickness of the film, and A0 is 
the fourth-order tensor of the instantaneous elastic moduli, with components: 

A0𝑗𝑖𝑙𝑚 = 𝐽−1𝐹𝑗𝛼
𝜕2𝑊

𝜕𝐹𝑖𝛼𝜕𝐹𝑚𝛽
𝐹𝑙𝛽 . (6)

We look for solutions in the form: 
𝑢𝑧 = 𝑒𝛾𝑦 sin(𝑘𝑧), 𝑢𝑦 = 𝑒𝛾𝑦 cos(𝑘𝑧), (7)

where 𝛾 is the attenuation coefficient and 𝑘 is the wavenumber of the sinusoidal wrinkles. Substitution into Eq. (5) leads to an 
eigenproblem, with characteristic equation a bicubic in 𝛾. In the film, the general solution is of the form: 

𝑢𝑓𝑧 =
(

4
∑

𝑖=1
V𝑖𝑒

𝛾𝑖𝑦
)

sin(𝑘𝑧), 𝑢𝑓𝑦 =
(

4
∑

𝑖=1
V𝑖𝑒

𝛾𝑖𝑦
)

cos(𝑘𝑧), (8)

where 𝛾1,… , 𝛾4 are the eigenvalues, and V1,… ,V4 are constants.
In the substrate, the stretch ratios along the 𝑌− and 𝑍− directions are equal, and 𝛾 = 1 is a repeated eigenvalue. The other 

repeated root, 𝛾 = −1 is discarded to enforce decay. Therefore, the solution is of the form: 
𝑢𝑠𝑧 = (U1 + U2𝑦)𝑒𝑦 sin(𝑘𝑧), 𝑢𝑠𝑦 = (U1 + U2𝑦)𝑒𝑦 cos(𝑘𝑧), (9)

where U1,U2 are constants.
By applying the traction-free boundary conditions: 

A𝑓
02𝑖𝑙𝑚𝑢

𝑓
𝑚,𝑙 = 0, 𝑦 = ℎ, (10a)

and the continuity conditions: 
A𝑓

02𝑖𝑙𝑚𝑢
𝑓
𝑚,𝑙 = A𝑠

02𝑖𝑙𝑚𝑢
𝑠
𝑚,𝑙 , 𝑢𝑓𝑖 = 𝑢𝑠𝑖 , 𝑦 = 0, (10b)

we obtain six homogeneous equations for {U1,U2,V1,… ,V4}. The bifurcation condition is then given by equating the determinant 
of a 6 × 6 coefficient matrix to 0. This condition provides the foundation for the following asymptotic analysis.

2.3. Asymptotic analysis

Prior studies have predominantly examined the wrinkling of elastic bilayers subjected to uniaxial tension in the context of linear 
elasticity. To derive expressions for the critical strain 𝜀𝑐 and critical wavenumber 𝑘𝑐 (Biot, 1937; Timoshenko et al., 1959), a two-step 
approach was adopted.

First, the critical compressive strain for a linear elastic bilayer system is derived by imposing the plane-strain condition. This 
derivation follows the classical ordinary differential equation governing the bending of a thin elastic beam, modeled under plane-
stress conditions, on a semi-infinite elastic foundation subjected to a compressive load (Allen, 1969b; Cai and Fu, 2000). Second, 
the difference in lateral contraction between the substrate and film layers is used to approximate the critical strain under applied 
tensile loading.

This approach resulted in the following expressions, derived by Volynskii et al. (2000), Chung et al. (2011), and Nikravesh et al. 
(2019a): 

𝜀𝑐 =
1

(

3
𝜇𝑠 1 − 𝜈𝑓

)2∕3

, 𝑘𝑐ℎ =
(

3
𝜇𝑠 1 − 𝜈𝑓

)1∕3

, (11)

4(𝜈𝑠 − 𝜈𝑓 ) 𝜇𝑓 1 − 𝜈𝑠 𝜇𝑓 1 − 𝜈𝑠

5 
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for linearly elastic bilayers under uniaxial tension. These expressions are used in buckling-based metrology applications to calculate 
the Young modulus of the film, but they are only valid for low strains (≪ 10%) and under the assumption of plane strain Stafford 
et al. (2004).

However, it is important to note that the plane-strain assumption used in the derivation of Eq. (11) is not valid for a bilayer 
system under uniaxial tension. To address this gap, we follow Cai and Fu (2000, 2019) and assume that the shear modulus ratio 
𝑟 = 𝜇𝑠∕𝜇𝑓  is of the order (𝑘𝑐ℎ)3 to derive asymptotic expressions for the critical strain and wavenumber. For simplicity, we set 
𝛼𝑠 = 𝛼𝑓 = 1 in Eq. (1) and focus on the compressible neo-Hookean strain energy function for both the film and substrate layers: 

𝑊 nH =
𝜇
2

[

𝐼1 − 3 + 1 − 2𝜈
𝜈

(

𝐼
− 𝜈

1−2𝜈
3 − 1

)]

. (12)

To derive the asymptotic expressions for the critical strain and wavenumber, we introduce the following ansatz: 

𝑘𝑐ℎ =
5
∑

𝑖=1
𝑑𝑖𝛿

𝑖 +O(𝛿6), 𝜆𝑐 = 1 +
6
∑

𝑖=1
𝑖≠2

𝑐𝑖𝛿
𝑖 +O(𝛿7), 𝛿 =

(

𝜇𝑠
𝜇𝑓

)1∕3
= 𝑟1∕3. (13)

From Eq. (4), the component 𝐹 𝑓
22 can be expanded as a series in terms of 𝛿, as: 

𝐹 𝑓
22 = 𝜆𝜈1 = 1 +

8
∑

𝑖=1
𝑑𝑖𝛿

𝑖 +O(𝛿9). (14)

Similarly, the attenuation coefficients for the film layer 𝛾1,… , 𝛾4 and their squares can be expressed as series expansions in terms 
of 𝛿 up to eight terms. These approximations significantly reduce computational complexity.

Next, we substitute the expressions for the attenuation coefficients (𝛾1,… , 𝛾4), 𝑘𝑐ℎ, 𝜆𝑐 , and 𝐹 𝑓
22 into the bifurcation equation and 

its derivative with respect to 𝑘𝑐ℎ, then expand both in terms of 𝛿. These expansions are truncated to 12 and 11 terms, respectively, 
with higher-order terms omitted for simplicity.

Finally, to determine the unknown parameters, we impose the condition that the coefficients of 𝛿𝑖 and 𝛿𝑖−1 in the bifurcation 
equation and its derivative (for all 𝑖 ≥ 8) vanish simultaneously. This yields recursive relations for 𝑐𝑗+1 and 𝑑𝑗 for 𝑗 ≥ 1.

Using this procedure, we obtain the asymptotic expressions for the critical stretch and wavenumber:

𝜆𝑐 = 1 +

[

(1 − 𝜈𝑓 )(1 − 𝜈𝑠)
]2∕3

(𝜈𝑠 − 𝜈𝑓 )
(

8𝜈𝑠∕3 − 2
)2∕3

𝑟2∕3 +
(1 − 𝜈𝑓 )(2𝜈𝑠 − 1)
(𝜈𝑠 − 𝜈𝑓 )(4𝜈𝑠 − 3)

𝑟 + 𝑐4𝑟
4∕3 + 𝑐5𝑟

5∕3 + 𝑐6𝑟
2 +O(𝑟7∕3),

𝑘𝑐ℎ =
[4(1 − 𝜈𝑓 )(1 − 𝜈𝑠)

1 − 4𝜈𝑠∕3

]1∕3

𝑟1∕3 + 𝑑3𝑟 + 𝑑4𝑟
4∕3 + 𝑑5𝑟

5∕3 +O(𝑟2), (15)

where the coefficients 𝑐4,… , 𝑐6, 𝑑3,… , 𝑑5 are provided in Appendix  B.
The asymptotic expressions in Eq. (15) will be employed to compute the critical stretch ratio and critical wavenumbers for 

compressible neo-Hookean bilayer systems, as discussed in Section 3.4.

2.4. Homogenization and inverse analysis

Within a small-strain framework, the homogenized elastic stiffness C is defined as 

C = 𝜕𝑻
𝜕𝜺

, (16)

where 𝑻  and 𝜺 denote the homogenized Cauchy stress and homogenized small-strain tensors, respectively. These quantities are 
obtained by averaging the local stress 𝑻  and strain 𝜺 over the volume of the unit cell 𝛺: 

𝑻 = 1
𝛺 ∫𝛺

𝑻 d𝛺, 𝜺 = 1
𝛺 ∫𝛺

𝜺 d𝛺. (17)

The homogenized stiffness in Eq. (16) can be computed using various approaches, such as FE-based periodic homogeniza-
tion (Hassani and Hinton, 1998) or FFT-based techniques (Moulinec and Suquet, 1998). However, in inverse analysis, the iterative 
nature of the inverse design procedure makes it impractical to directly use these homogenization schemes. An alternative approach 
is to construct machine learning surrogate models using datasets generated from the aforementioned physics-based methods, thereby 
enabling the inverse design process.

Danesh et al. (2024) adopted this latter approach for the inverse design of auxetic unit cells, where, first, the forward surrogate 
models  are generated to predict the homogenized elastic stiffness constants 𝐶 𝑖𝑗𝑘𝑙 = (𝐠,𝐦) as functions of the vectors 𝐠 and 𝐦, 
denoting the geometric and material input parameters, respectively. Then, the inverse problem is solved to obtain the unit cell’s 
geometric parameters by minimizing the loss between the target homogenized stiffness component 𝐶̂ 𝑖𝑗𝑘𝑙 and its counterpart predicted 
by the surrogate model 𝐶 𝑖𝑗𝑘𝑙. The loss function is defined as a weighted sum of squared differences between the predicted and target 
homogenized stiffness components: 

inv =
1

𝑛ind
∑

𝑤𝑚

(

𝐶 𝑖𝑗𝑘𝑙 − 𝐶̂ 𝑖𝑗𝑘𝑙

)2
. (18)
𝑛𝑐 𝑚=1
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The index 𝑚 enumerates the 𝑛ind independent components of the stiffness tensor C. Each independent component 𝐶 𝑖𝑗𝑘𝑙 corresponds 
to a specific 𝑚, and the Boolean variable 𝑤𝑚 determines whether that particular component is included in the loss calculation 
(𝑤𝑚 = 1) or ignored (𝑤𝑚 = 0). The normalization factor 𝑛𝑐 =

∑𝑛ind
𝑚=1 𝑤𝑚 ensures that the loss is averaged over only the selected 

components. Although the summation is formally written over 𝑚, it implicitly accounts for all relevant 𝐶𝑖𝑗𝑘𝑙 components through 
their indexing. For orthogonal void auxetic unit cells, the presence of symmetry axes results in orthotropic stiffness characterized 
by three independent elastic constants (i.e. 𝑛ind = 3).

Minimizing the loss function in Eq. (18) using gradient-based optimization (Zheng et al., 2021) or grid search algorithms (Danesh 
et al., 2024) yields the optimal geometric parameters that achieve the desired homogenized stiffness. We use this approach in 
Section 3.5 to determine the geometric parameters of auxetic unit cells with the desired Poisson ratios.

3. Finite element simulations: 3D models

This section presents our FE approach using 3D models to study wrinkling in homogenized bilayers and those with microstruc-
tured films of different material properties. Initially, we establish and validate our numerical setup. We then explore two case studies: 
one that examines bilayers with nearly incompressible substrates and the other with highly auxetic films. Our analysis concludes 
with predictions from asymptotic expressions and the application of inverse analysis techniques, followed by a comparison of the 
buckling behavior of bilayers with microstructured films with predictions from homogenized models.

3.1. Numerical setup and validation

To validate the accuracy of our implementation of periodic boundary conditions (PBCs) using a Python script, we conducted a 
preliminary study using a linear buckling analysis for an incompressible neo-Hookean bilayer under 2D (plane-strain) compression. 
The bilayer was periodic along the 𝑋−direction (see Appendix  A), and we successfully recovered the results reported by Cao and 
Hutchinson (2012b), confirming the reliability of our approach.

Following this validation, we performed a series of FE simulations to investigate wrinkling in 3D bilayers subjected to uniaxial 
tension. The bilayers were modeled using the Blatz–Ko strain energy function, considering two primary configurations: one with a 
nearly incompressible substrate and the other with a highly auxetic film.

The depth of the bilayer (in the 𝑍−direction) was set as an integer multiple of the predicted wrinkling wavelength, calculated 
using semi-analytical results from Mathematica, for the cases: (𝜈𝑓 , 𝜈𝑠) = {0.3, 0.495} and {−0.95,−0.8}. For other pairs of Poisson 
ratios, small variations in depth were observed to have a negligible effect on the critical stretch values, with changes only in the 
third decimal place.

To optimize computational efficiency without compromising accuracy, we used the following dimensions. For the nearly 
incompressible substrate case, the bilayer structure had dimensions (𝑋, 𝑌 ,𝑍) of 15 × 45 × 5.684 units, with a thickness ratio of 
ℎ𝑠∕ℎ𝑓 = 299 (Section 3.2). In the case of the highly auxetic film, the dimensions were 15 × 80 × 4.504 units, with a thickness ratio 
of ℎ𝑠∕ℎ𝑓 = 399 (Section 3.3). For the neo-Hookean bilayers (𝛼𝑓 = 𝛼𝑠 = 1), the dimensions were 6 × 45 × 1.85 units, with a thickness 
ratio of ℎ𝑠∕ℎ𝑓 = 299 (Section 3.4).

PBCs were applied on the extreme faces in the 𝑋− and 𝑍−directions of the domain using a user-defined Python script. Both the 
film and the substrate layers were modeled using a UHYPER subroutine with the Blatz–Ko strain energy function. FE discretization 
was performed using 20-node hexahedral elements with quadratic interpolation and reduced integration (C3D20R) for both the 
film and substrate layers. For the limiting case of incompressibility, C3D20RH elements were used. For the Blatz–Ko bilayers, the 
FE mesh consisted of 34,200 elements for the nearly incompressible substrate case (Section 3.2) and 17,130 elements for the highly 
auxetic film case (Section 3.3).

Cai and Fu (1999) demonstrated that the stability of a coated elastic half-space depends on the shear modulus ratio 𝑟 = 𝜇𝑠∕𝜇𝑓 . The 
system is less stable than half-space when 𝑟 < 1 and more stable when 𝑟 > 1. In the former case, there exists a critical wavenumber 
corresponding to a minimum critical compression. Physically, when the film is stiffer than the substrate (𝑟 < 1), it carries the 
majority of the load, resulting in the buckling of the film layer as an energetically favorable state. This occurs because the system 
minimizes its total energy by allowing the film to buckle rather than undergo uniform compression. In contrast, when the film is 
softer than the substrate (𝑟 > 1), the stability of the half-space increases, suppressing wrinkling and favoring homogeneous in-plane 
deformation.

For neo-Hookean bilayers, Cao and Hutchinson (2012b) observed that when the film is sufficiently stiff (𝑟 < 0.1), sinusoidal 
wrinkling remains the stable and preferred mode for relatively large compressions before the onset of period-doubling. However, 
when the film is relatively soft (𝑟 > 0.5), surface creases (nonlinear buckling) can emerge within the film before the bifurcation 
mode of wrinkling, as noted by Hong et al. (2009).

Based on these observations, we set the Blatz–Ko parameters to 𝛼𝑓 = 𝛼𝑠 = 0.4 and the shear modulus ratio to 𝜇𝑓∕𝜇𝑠 = 30 or 
𝑟 = 1∕30 in our FE simulations.

For 3D bilayer systems under large uniaxial tension, we found that wrinkles were observed only when the Poisson ratio of the 
film (𝜈𝑓 ) was lower than that of the substrate (𝜈𝑠). This result is consistent with the findings of Nikravesh et al. (2019a), which were 
obtained for linear-elastic bilayer systems.

It is also consistent with the observation that wrinkling is associated with the presence of compressive stress in the film, in the 
direction transversal to the applied tension, that is, along the 𝑍−direction. To visualize this intuition, we illustrate two possible 
7 
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Fig. 3. A bilayer under tension. (a) The film’s Poisson ratio is larger than that of the substrate (𝜈𝑓 ≥ 𝜈𝑠). If the two layers were free from any constraint, the 
film’s width would be less than that of the substrate. However, due to bonding, in the final deformed state of the bilayer, the film is under lateral tension and 
no wrinkles may develop. (b) The film’s Poisson ratio is smaller than that of the substrate (𝜈𝑓 < 𝜈𝑠). In an ideal unconstrained state, the film’s width would be 
greater than that of the substrate. Thus, in the final deformed state, the film is under lateral compression and wrinkles may develop.

scenarios in Fig.  3. We introduce a virtual unconstrained configuration, which represents the state that each layer of the bilayer 
would adopt under tension if it were not bonded to the other.

In Scenario (a), the film has a larger Poisson ratio than the substrate. In their unconstrained states under tension, the film’s 
lateral dimension would be less than that of the substrate. However, because the layers are bonded, the film is forced to expand 
laterally to match the substrate, resulting in tensile stresses perpendicular to the applied tension.

Conversely, Scenario (b) considers the opposite situation, when the film has a smaller Poisson ratio than the substrate. Then the 
film is forced to contract, leading to compressive stresses, and eventually, to wrinkles.

Following Fig.  3, we pick two cases along these two scenarios to study wrinkling in the layered system under uniaxial tension. 
We find that the numerical results obtained using different approaches in the software ABAQUS and Mathematica match well for 
a wide range of material parameters.

3.2. Nearly incompressible substrate

First, we assume that the substrate is nearly incompressible (𝜈𝑠 = 0.495), while the film’s Poisson ratio varies within the range 
𝜈𝑓 ∈ [−0.95, 0.495). When the substrate has a higher Poisson ratio than the film, it undergoes greater transverse compression 
(𝑍−direction) under uniaxial tension applied along the 𝑋−direction. This mismatch in deformation between the layers generates 
compressive stresses in the film, leading to wrinkle formation parallel to the 𝑋−direction (see Fig.  1).

Variations in the critical stretch for wrinkling 𝜆𝑐 and the corresponding critical wavenumber 𝑘𝑐 are plotted against 𝜈𝑓  in Fig. 
4(a–b). As shown in Fig.  4(a), the critical stretch values predicted by the semi-analytical analysis (Mathematica) and the FE buckling 
analysis (ABAQUS) align well for 𝜈𝑓 ≤ 0.35. However, beyond this threshold, ABAQUS ceases to predict wrinkles in the desired 
direction and instead returns negative eigenvalues. This suggests that the load direction must be reversed to obtain wrinkles, which 
is unphysical and indicates a breakdown of the numerical predictions.

For an auxetic film (𝜈𝑓 < 0), expansion occurs in all directions under tension, while the nearly incompressible substrate contracts 
along the 𝑍−direction, generating compressive stress in the film. Consequently, wrinkles form at lower critical stretch values. As 
the Poisson ratio of the film approaches that of the substrate, the critical stretch required for wrinkling increases sharply.

3.3. Highly auxetic film

To examine the effect of a highly auxetic film, we consider a film layer with a negative Poisson ratio, 𝜈𝑓 = −0.95, while varying 
the Poisson ratio of the substrate within the range 𝜈𝑠 ∈ (−0.95, 0.495].

Fig.  4(c–d) displays the variations in the critical stretch 𝜆𝑐 and the wavenumber 𝑘𝑐 as a function of 𝜈𝑠. Our numerical results 
from ABAQUS and semi-analytical predictions from Mathematica show strong agreement in the range −0.7 ≤ 𝜈𝑠 ≤ 0.495. However, 
for 𝜈 < −0.8, ABAQUS fails to provide meaningful predictions.
𝑠

8 



S. Pamulaparthi Venkata et al. Journal of the Mechanics and Physics of Solids 204 (2025) 106301 
Fig. 4. Numerical simulations using Blatz–Ko material model (Eq. (1)). Variations of the critical stretch of wrinkling 𝜆𝑐 and corresponding critical wavenumber 
measure 𝑘𝑐𝐻 with the Poisson ratio of one layer (𝑘𝑐 is the critical wavenumber and 𝐻 is the film initial thickness). We set the shear modulus ratio to 𝜇𝑓 ∕𝜇𝑠 = 30, 
i.e. 𝑟 = 1∕30. (a–b): The substrate is nearly incompressible (𝜈𝑠 = 0.495). (c–d): The film is highly auxetic (𝜈𝑓 = −0.95). Results from ABAQUS: black dots, results 
from Mathematica: solid line with square markers.

The results indicate that buckling generally occurs at lower stretch values for highly auxetic films. However, when 𝜈𝑠 approaches 
𝜈𝑓 , the film and substrate exhibit similar levels of transverse contraction. As a result, the compressive stress developed in the film 
layer is insufficient to induce wrinkle formation.

Typically, the wavelength of wrinkles increases as the Poisson ratios of the film and substrate approach each other and decreases 
as they diverge, as shown in Fig.  4(b,d). However, when the film and substrate are highly compressible (𝜈𝑓 = −0.95 and 𝜈𝑠 ≤ −0.7), 
this trend reverses, and the wavelength decreases, as illustrated in Fig.  4(d).

Notably, this behavior is not observed in compressible neo-Hookean bilayers (Eq. (12)). This can be verified by plotting the 
asymptotic expression for the critical wavenumber (Eq. (15)), which remains a monotonically decreasing function as the Poisson’s 
ratios of the film and substrate approach each other. The distinct behavior observed in Blatz–Ko-type materials for 𝜈𝑠 ≤ −0.7 deviates 
from expected trends and can be further explored in future work.

In summary, we found that to ensure early wrinkling in a bilayer subjected to uniaxial tension, a large contrast in the Poisson 
ratio between the film and the substrate is required. This effect is particularly pronounced when one material is auxetic and the 
other is non-auxetic, highlighting the critical role played by the Poisson ratio contrast in governing instabilities in bilayer systems.

3.4. Asymptotic solution: Compressible bilayer system

To further analyze the influence of material nonlinearity and Poisson ratio contrast, we compare the predictions from linear 
(Eq. (11)) and hyperelastic models (Eq. (15)).

When strains are small, the asymptotic expressions for compressible neo-Hookean bilayers (Eq. (12)) recover the predictions 
of the linear elastic model. However, as 𝜈𝑓  approaches 𝜈𝑠, the critical strain increases significantly and the linear elastic model 
(Eq. (11)) fails to capture accurate behavior due to the breakdown of the plane-strain assumption and the effects of non-linearities 
9 
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Fig. 5. Numerical simulations for a bilayer made of compressible neo-Hookean materials (𝛼𝑠 = 𝛼𝑓 = 1 in Eq. (1)). The substrate is nearly incompressible 
(𝜈𝑠 = 0.495). We set the shear modulus ratio to 𝜇𝑓 ∕𝜇𝑠 = 30, i.e. 𝑟 = 1∕30. (a–b): Variations of the critical stretch of wrinkling 𝜆𝑐 and corresponding critical 
wavenumber measure 𝑘𝑐ℎ (𝑘𝑐 : critical wavenumber, ℎ: current film thickness) with the Poisson ratio of film layer 𝜈𝑓 . ABAQUS: black dots, Mathematica: solid 
line with square markers, Asymptotic expressions (Eq. (15)): star markers, Linear-elastic expressions (Eq. (11)): dash-dotted line.

Fig. 6. Using the asymptotic expressions Eq. (15) for compressible neo-Hookean materials (𝛼𝑠 = 𝛼𝑓 = 1 in Eq. (1)). The substrate is nearly incompressible 
(𝜈𝑠 = 0.495). (a–b): Variations of the critical stretch of wrinkling 𝜆𝑐 and corresponding critical wavenumber measure 𝑘𝑐ℎ with the Poisson ratio of film layer (𝑘𝑐
is the critical wavenumber and ℎ is the deformed film thickness) and for contrast in shear moduli between the layers (𝜇𝑓 ∕𝜇𝑠 = {50, 100, 500, 1000}).

in geometric and material parameters. Consequently, linear elastic expressions substantially underestimate numerical results from
ABAQUS and Mathematica, whereas the hyperelastic model remains in good agreement.

When the film layer is highly auxetic (𝜈𝑓 → −0.95), the plane-strain condition remains approximately valid as 𝜆𝑐 → 1. In this 
regime, the linear elastic model aligns well with numerical results and the asymptotic solution. This behavior is illustrated in Fig. 
5(a), which shows the variation of 𝜆𝑐 with 𝜈𝑓  for a nearly incompressible substrate (𝜈𝑠 = 0.495).

In Fig.  5(b), although a similar trend is observed in both linear and nonlinear models, we see that the linear elastic model 
consistently underpredicts the critical wavenumber compared to numerical and asymptotic results. In particular, when the Poisson 
ratio contrast is high (low), wrinkles exhibit shorter (longer) wavelengths, as seen in Fig.  4.

Fig.  6 illustrates the dependence of 𝜆𝑐 and 𝑘𝑐ℎ on 𝜈𝑓  for different shear modulus contrasts 𝜇𝑓∕𝜇𝑠. According to Eq. (15), with 
𝑟 assumed to be on the order of (𝑘𝑐ℎ)3, an increase in 𝜇𝑓∕𝜇𝑠 or a decrease in 𝑟 results in a lower critical stretch and wavenumber, 
leading to early buckling and long-wavelength wrinkles.

For compressible neo-Hookean bilayers, the critical stretch ratio for buckling and the wrinkle wavelength increase as the Poisson 
ratios of the film and substrate approach each other. Asymptotic expressions generate curves instantly, offering a computationally 
efficient alternative to the ABAQUS simulations. Building on these findings, we extend our analysis to homogenization and inverse 
techniques, with the aim of tailoring auxetic microstructures to achieve desired material properties.
10 



S. Pamulaparthi Venkata et al. Journal of the Mechanics and Physics of Solids 204 (2025) 106301 
Fig. 7. (a) Influence of microstructural geometry on the effective Poisson ratio (𝜈eff𝑓 ) in auxetic films with orthogonal-oval and rectangular-void patterns. Films 
with desired effective Poisson’s ratios are obtained using inverse analysis. (b) Comparison of undeformed and deformed configurations in bilayers with distinct 
auxetic microstructures, each designed to achieve specific Poisson’s ratios in the small-strain regime. Film and substrate base materials exhibit compressible 
(𝜈𝑓 = 0.1) and nearly incompressible (𝜈𝑓 = 0.495) properties, respectively. Periodic boundary conditions are applied on the lateral faces of the domain along 𝑋
and 𝑍 and the system is subjected to uniaxial tension along 𝑋. We observe that the wrinkles are generated parallel to the direction of tension. The bottom of (b) 
shows the percentage relative error in critical stretch between homogenized bilayers (Fig.  4(a)) and those with microstructural patterns, obtained in ABAQUS
with the Blatz–Ko model.

3.5. Inverse design and homogenization: Application

Based on the surrogate models developed by Danesh et al. (2024) for orthogonal void auxetic structures in the small-strain 
regime, we use an inverse design approach to efficiently determine the geometric parameters of a chosen auxetic unit cell. This 
method precisely tailors the unit cell to achieve specific components of effective elastic stiffness based on the material properties 
of the base constituent. Using the Voigt notation, Danesh et al. (2024) reported that, due to the inherent orthogonal symmetry of 
these auxetic unit cells with orthogonal voids, the effective stiffness tensor simplifies to an orthotropic form characterized by only 
three distinct elastic constants: 𝐶11(= 𝐶22), 𝐶12(= 𝐶21), and 𝐶33. This symmetry leads to the following linear relationship between 
the in-plane effective stress and strain: 
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Here, the notation (∙) refers to the homogenized average value of a quantity, including stress, strain, and elastic stiffness 
components, as described in Section 2.4. Therefore, if we define the components of the effective stiffness 𝐶11 and 𝐶12, we can 
obtain the desired effective Poisson’s ratio 𝜈eff𝑓 = 𝐶12∕𝐶11.

We now demonstrate how our analysis can be used to predict wrinkling instabilities in bilayers with auxetic patterns. In fact, 
auxetic properties can be obtained at a continuum level with a careful design of holes or voids at the microscale (Lakes, 1993; 
Bertoldi et al., 2017).

Fig.  7(a) illustrates how the geometric parameters of orthogonal-oval and rectangular voids influence the effective Poisson ratio 
(𝜈eff𝑓 ). Using the inverse design approach described by Danesh et al. (2024), we designed a set of auxetic structures with the desired 
effective Poisson ratios (𝜈eff𝑓 ) in the small-strain regime.

To validate the effective properties of these structures generated from the inverse design, we used the FE code FEAP (Taylor, 
2014). For this purpose, we discretized the unit cells with linear quadrilateral elements and performed homogenization to compute 
the effective elastic stiffness. Periodic boundary conditions were applied by enforcing symmetric nodes on opposing boundaries. 
After computing the effective elastic stiffness of each unit cell, we confirmed that the designed unit cells accurately recovered the 
target effective Poisson ratios with high precision.

After understanding the effect of geometric parameters of voids on the effective Poisson ratio, we consider an isotropic material 
with base properties of Young’s modulus 𝐸𝑓 = 110 GPa and Poisson’s ratio 𝜈𝑓 = 0.1. Using the inverse design approach, we generated 
auxetic structures with targeted effective Poisson’s ratios. Specifically, we designed film layers with orthogonal-oval, rectangular, 
and sinusoidal voids to achieve 𝜈eff𝑓 = −0.02,−0.18, and −0.48, respectively, in the small-strain regime. These structures were then 
used to analyze wrinkling behavior, as shown in Fig.  7(b).

Linear perturbation procedure is carried out using the BUCKLE function in ABAQUS to evaluate the critical stretch ratio 
corresponding to the onset of instability in bilayers with embedded microstructural patterns (Cao and Hutchinson, 2012b). This 
procedure involves a linearized eigenvalue analysis based on the global stiffness matrix, identifying the loading condition at which 
instability occurs. The critical stretch ratios obtained from the eigenvalue analysis show close agreement with the predictions of the 
11 
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homogenized model presented in Fig.  4(a), with a maximum relative error of 6.3%. This agreement demonstrates the accuracy of 
our numerical method in predicting wrinkling instabilities in bilayers with engineered microstructures.

However, it is important to note that the ratio between the wrinkling wavelength and the characteristic size of the unit cell 
plays a crucial role in determining the validity of the homogenization approach. When the wrinkling wavelength is much larger 
than the microstructural length scale, classical homogenization yields accurate predictions because of clear scale separation. In Fig. 
7(b), this scale separation is reduced for the sinusoidal void configuration, and two wrinkles are observed within a single unit cell, 
leading to a wavelength-to-unit-cell ratio of approximately 0.5. This limited separation results in increased discrepancies between 
the homogenized predictions and the full microstructural simulations. In contrast, for the oval and rectangular void configurations, 
a single wrinkle spans the entire unit cell, corresponding to a wavelength-to-unit-cell ratio of 1. In these cases, the homogenized 
model provides predictions with comparatively lower error.

Although the observed errors remain within a reasonable range, the results underscore a key limitation of classical first-order 
homogenization in regimes with weak scale separation. To address this limitation, higher-order homogenization techniques (Guo 
et al., 2025) or nonlocal continuum models (Maraghechi et al., 2024) are more appropriate when the wrinkling wavelength is 
smaller than the unit cell size.

4. Conclusions

Our study explores the possibility of harnessing wrinkles parallel to the direction of applied tension in 3D isotropic compressible 
bilayers subject to finite deformations. Particular emphasis was placed on configurations where the substrate is nearly incompressible 
and when the film is highly auxetic.

We adopted a semi-analytical approach using Mathematica to predict the onset of wrinkling. For the finite element aspect of our 
study, we developed a new UHYPER subroutine tailored for Blatz-Ko material models, along with custom Python scripts designed 
to simulate wrinkling in compressible bilayers under periodic boundary conditions. These scripts facilitate linear buckling analysis 
in FE simulations with ABAQUS.

For compressible neo–Hookean bilayer systems, we derived asymptotic expressions for the critical stretch ratio and critical 
wavenumber, which can be used under finite strains to determine the Young modulus of the film layer for buckling-based metrology 
applications.

We found that wrinkles can be obtained only when the Poisson ratio of the substrate is greater than that of the film. As the 
Poisson ratios of the film and substrate converge to a common value, the critical stretch ratio for buckling increase rapidly along 
with the wavelength of wrinkles. In the limiting case where the Poisson ratios of the film and substrate are equal, no wrinkling 
occurs, as the mismatch in in-plane deformation between the layers is not sufficient to generate the compressive stresses in the 
film required to trigger instability. Through multiple simulations, we showed that we can harness or delay the onset of wrinkles by 
varying the material properties.

Furthermore, using inverse analysis, we designed film microstructures to achieve desired effective Poisson ratios, validated with 
the FE code FEAP. The critical stretch ratio for buckling in auxetic structures with microstructural patterns aligns closely with 
predictions from homogenized models.

Some of the limitations of our work include the consideration of isotropic strain energy functions for auxetic structures and 
deformation-independent effective material properties.

Functional-grading of auxetics could also be explored with the methods presented in this study, see some preliminary works 
on harnessing instabilities in functionally-graded auxetic materials using tension-field theory (Venkata et al., 2023; Pamulaparthi 
Venkata et al., 2024) and their applications (Zhao et al., 2018; Zahoor et al., 2020; Babič et al., 2021).

Ultimately, the method developed in this work could play a critical role in the manufacturing and testing of auxetic hydrogel 
organ patches (Chansoria et al., 2022) and skin grafts (Gupta and Chanda, 2023). This approach could specifically guide the design 
of graft microstructures to prevent undesired wrinkling.
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Appendix A. Validation of pbcs code – 2d incompressible neo-hookean bilayer model

Under uniaxial, plane-strain compression, the theoretical critical strain is 𝜀𝑐 = 1∕4
(

3𝜇𝑠∕𝜇𝑓
)2∕3 (Cao and Hutchinson, 2012b).

In Fig.  A.1, we applied PBCs on the left and right edges of the domain, roller support on the bottom edge of the substrate, 
perfect bonding between film and substrate layers, and traction-free condition on the top surface of the film in the two cases 
𝜇𝑓∕𝜇𝑠 = 30, 1000. We find 𝜀𝑐 = 0.053, 0.0052, respectively, matching well with the theoretical solutions.

Having validated our 1D PBCs script along the 𝑋−direction on a 2D model, we then extended the PBCs to two dimensions, along 
the 𝑋− and 𝑍−directions, to perform a linear buckling analysis on 3D bilayer systems under uniaxial tension.

The height ratio of substrate to film layers was taken as ℎ𝑠∕ℎ𝑓 = 163, with the width of layers being 30.457 units. We modeled 
both film and substrate with the incompressible neo-Hookean model.

We used a hybrid 8-node plane strain quadrilateral element with quadratic interpolation and reduced integration (CPE8RH) for 
both film and substrate layers. We also applied periodic boundary conditions on the left and right edges of the domain. The minimum 
size of the mesh element is lower than the height of the film. We took 12,800 elements, and the numerical results converged and 
were consistent with the theoretical solutions.

Appendix B. Coefficients in asymptotic expressions

The coefficients of the higher-order terms in Eq. (15) are given below:

𝑐4 =
C
(

45 + 𝜈𝑠𝑐4𝑎 + 𝜈𝑓 𝑐4𝑏 + 𝜈2𝑓 𝑐4𝑐
)

20 × 21∕3 × 32∕3(𝜈𝑓 − 𝜈𝑠)2(−1 + 𝜈𝑠)(−3 + 4𝜈𝑠)4∕3
, 𝑐5 =

C2(−1 + 𝜈𝑓 )(−1 + 2𝜈𝑠)(−3 − 4𝜈𝑓 + 4𝜈𝑠)

22∕3 × 31∕3(𝜈𝑓 − 𝜈𝑠)2(−3 + 4𝜈𝑠)5∕3
,

𝑐6 =
4725 − 2𝜈4𝑓 𝑐6𝑎 − 𝜈𝑠𝑐6𝑏 + 𝜈3𝑓 𝑐6𝑐 + 𝜈2𝑓 𝑐6𝑑 + 2𝜈𝑓 𝑐6𝑒

12600(3 − 4𝜈𝑠)2(−1 + 𝜈𝑠)2(−𝜈𝑓 + 𝜈𝑠)3
, C =

(

(1 − 𝜈𝑓 )(𝜈𝑠 − 1)
)1∕3 ,

(B.1a)

and 
𝑐4𝑎 = −64 + (13 − 4𝜈𝑠)𝜈𝑠, 𝑐4𝑏 = −71 + 𝜈𝑠(66 + (51 − 26𝜈𝑠)𝜈𝑠), 𝑐4𝑐 = 56 − 92𝜈𝑠 + 26𝜈2𝑠 ,

𝑐6𝑎 = 33727 + 2𝜈𝑠(−73474 + 𝜈𝑠(122601 + 𝜈𝑠(−92584 + 26681𝜈𝑠))),

𝑐6𝑏 = 4410 + 𝜈𝑠(82574 + 𝜈𝑠(−288226 + 𝜈𝑠(399999 − 260716𝜈𝑠 + 67034𝜈2𝑠 ))),

𝑐6𝑐 = 95848 + 2𝜈𝑠(−138872 + 𝜈𝑠(46253 + 𝜈𝑠(235988 + 𝜈𝑠(−297317 + 106724𝜈𝑠)))),

𝑐6𝑑 = −3509 + 𝜈𝑠(−202720 + 𝜈𝑠(841376 + 𝜈𝑠(−1218634 + 𝜈𝑠(643241 + 2(22435 − 53362𝜈𝑠)𝜈𝑠)))),

𝑐6𝑒 = −11970 + 𝜈𝑠(78479 + 𝜈𝑠(−137927 + 𝜈𝑠(−12652 + 𝜈𝑠(271583 + 𝜈𝑠(−276527 + 89714𝜈𝑠))))).

(B.1b)

Similarly, the coefficients of higher-order terms in the asymptotic expression for critical wavenumber (Eq. (15)) are 

𝑑3 =
4 + 2𝜈𝑠 − 11𝜈2𝑠 + 𝜈𝑓

(

11 − 32𝜈𝑠 + 26𝜈2𝑠
)

15
(

3 − 7𝜈𝑠 + 4𝜈2𝑠
) , 𝑑4 =

(

2
3

)2∕3
C(1 + 2𝜈𝑓 )(−1 + 2𝜈𝑠)

(−3 + 4𝜈𝑠)4∕3
,

𝑑5 =
C2

(

−6761 + 𝜈𝑠𝑑5𝑎 + 4𝜈2𝑓𝑑5𝑏 − 2𝜈𝑓𝑑5𝑐
)

3150 × 22∕3 × 31∕3(−1 + 𝜈𝑓 )(−1 + 𝜈𝑠)3(−3 + 4𝜈𝑠)5∕3
,

(B.2a)

and 
𝑑5𝑎 = 21724 + 𝜈𝑠(−19146 + 𝜈𝑠(−2636 + 7519𝜈𝑠)), 𝑑5𝑏 = 646 + 𝜈𝑠(−4964 + 𝜈𝑠(12906 + 𝜈𝑠(−14204 + 5791𝜈𝑠))),

𝑑5𝑐 = −3821 + 𝜈𝑠(7864 + 𝜈𝑠(5844 + 𝜈𝑠(−22796 + 13609𝜈𝑠))).
(B.2b)

Data availability

No data was used for the research described in the article.
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Fig. A.1. (a) Schematic representation of an incompressible neo-Hookean stiff film/soft substrate bilayer system under uniaxial compression. On the left edge of 
the domain, displacement and shear traction are set at zero. On the bottom edge of the domain, roller support restricts vertical displacement and shear traction, 
and the top surface of the film is traction-free. (b) Linear buckling solutions with critical strains 𝜀𝑐 when 𝜇𝑓 ∕𝜇𝑠 = 30, 1000, in line with the predictions of Cao 
and Hutchinson (2012b).
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