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Abstract. The propagation of nonlinear and dispersive waves in various materials can be de-
scribed by the well-known Kadomtsev--Petviashvili (KP) equation, which is a (2+1)-dimensional
partial differential equation. In this paper, we show that the KP equation can be used to describe
the in-plane motion of compressible elastic solids with dispersion. Furthermore, a modified KP equa-
tion with cubic nonlinearity is obtained in the case of incompressible solids with dispersion. Then,
several solutions of these partial differential equations are discussed and computed using a Fourier
spectral method. In particular, both equations admit solitary wave solutions.
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1. Introduction. The asymptotic limits of many nonlinear wave phenomena
are universally and canonically described by a small number of model equations, such
as the Burgers equation, the Korteweg--De Vries (KdV) equation, or the nonlinear
Schr\"odinger equation [9]. These models provide a common playground to study non-
linear waves in a disparate ensemble of widely different physical systems.

It is not entirely surprising that only a few canonical and universal asymptotics
equations occur over and over again. For example, in classical mechanics, studying
small oscillations about a stable equilibrium is an asymptotic method that works for
all Lagrangian systems and always provides a second-order linear system of differen-
tial equations. Hence, for any discrete Lagrangian system we obtain the ``same"" set
of differential equations, up to different numerical values in the mass and stiffness
matrices [5].

In general, model equations exist in a nonlinear framework and their deriva-
tion requires more sophisticated perturbative methods than a regular perturbation
scheme. Hence, to provide a uniformly valid approximation for small-amplitude non-
linear waves over long times and long spaces, we have to turn to the method of multiple
scales [36].

In fluid mechanics, the rigorous derivation of model equations from basic princi-
ples is a well-established field, and it is presented and analyzed in many textbooks and
survey articles such as, for example, those by Crighton [8] or Johnson [22]. In solid
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THE KP EQUATION OF PLANE ELASTODYNAMICS 1459

mechanics, the situation is not, as yet, as well defined. Insightful information can be
obtained from the book [26] and survey [27] by Maugin as well as the monographs by
Samsonov [34] and Porubov [30], but some big pieces of the puzzle are still missing.

One example of model equation is the classical Kadomtsev--Petviashvili (KP)
equation [23], a (2+1)-dimensional (two space variables, one time variable) version
of the KdV equation, characterised by a very rich structure, and which might be
considered as the most fundamental integrable system. In standard form it reads
[20, 10, 21]

(Ut + 6UUx +Uxxx)x =\pm Uyy,(1.1)

where the sign on the right-hand side is determined by several factors, some of which
we will identify in our derivation below. Conventionally, the plus and minus signs
correspond to the so-called KP-I and KP-II equations, respectively.

The status of this equation is well recognized in fluid mechanics (see, for example,
[25]), but not so much in solid mechanics. It seems that the emergence of this equation
in the framework of a nonlinear theory related to solid mechanics can be traced back
to a handful of papers only.

Maugin [26] claims that a derivation of the KP equation may be found in a 1991
paper by Pouget [31]. Upon inspection, however, there we find an asymptotic equation
which differs from the KP model equation both in the nature of the nonlinearity and
in the higher-order derivatives involved. Indeed, its nonlinear terms are those of the
Gardner equation [28], while the third-order derivatives are of ``Zakharov--Kuznetsov
type modeling,"" according to Pouget. In a subsequent paper, Pouget [32] derives a
KP equation with second-/third-order mixed nonlinearity.

Maugin also references two papers published in the proceedings of the eighth
international symposium on Continuum Models and Discrete Systems [42], which took
place in Bulgaria in 1995. The first paper, by Collet and Pouget, is about a thin plate
resting on elastic foundations, with an asymptotic procedure leading, not to a KP
equation, but to a (2+1)-dimensional nonlinear Schr\"odinger equation. The second
paper, by Erbay, presents a system of coupled modified KP equations in the framework
of micropolar elasticity [18]. From this brief survey we conclude that a simple and
clear derivation of the classical KP equation in the framework of isotropic nonlinear
elasticity seems to be missing.

In the next section (section 2) we use the fundamental asymptotic scheme pro-
posed by Zabolotskaya [40] to obtain a two-dimensional asymptotic equation from the
general equations of motion in plane isotropic elasticity. As expected, this equation is
similar to the one obtained by Zabolotskaya [40], but our derivation is different, and
to some extent, more general. Here, we derive the equation for an arbitrary strain-
energy density function and then specialize it to that of third-order weakly nonlinear
elasticity. In contrast, Zabolotskaya starts from the governing equations of third-order
elasticity to arrive at the asymptotic equation. We then introduce a model of disper-
sive elasticity [14] to arrive at a two-dimensional Burgers equation and a KP equation.

A similar approach was followed in [11] for the study of antiplane shearing motions
in incompressible solids. The main difference from the present study is the type of
two-dimensional motion that is considered. In the present case of plane elasticity,
the motion of particles is restricted to a given plane of interest. In antiplane shear,
there is no in-plane particle motion; instead, particles are only allowed to move along
the direction perpendicular to the plane of interest. Based on suitable asymptotic
expansions, a modified KP equation with cubic nonlinearity is obtained in this case.
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1460 H. BERJAMIN, M. DESTRADE, AND G. SACCOMANDI

In section 3, we discuss the incompressible case. Although it can be derived from
the equations in the compressible case as a limit, it brings out significant differences
in the treatment. Hence the asymptotic scalings must be adjusted and the resulting
KP equation has cubic nonlinearity. This is an interesting development, because it is
rare to see the cubic KP equation emerge from the equations of elastodynamics: it
seems that the only instances are works by Pouget [31] using the continuum limit of
a lattice model, and by Erbay [18] and Babaoglu and Erbay [3], using micromorphic
elasticity. Here we derive it from the equations of nonlinear elasticity (incorporating
dispersion), with no assumptions made on the microstructure of the continuum---see
also [11] for the case of antiplane shear. Note in passing that the KP equation with
cubic nonlinearity is sometimes referred to as the modified KP (mKP) equation in
other works [17].

Section 4 is devoted to the study of some particular solutions to the quadratic
and cubic KP equations. In particular, computational results were obtained by using
a Fourier spectral method. In the final section, we present concluding remarks. An
alternative derivation of the results obtained in the incompressible case (section 3) is
provided in Appendix A.

2. Plane motions in compressible solids.

2.1. Governing equations. We start with the classical general theory of iso-
tropic hyperelasticity. In this framework the strain-energy density, W , is a function
of three scalars, W =W (I1, I2, J), where

I1 = tr(\bfitF T\bfitF ), J =det\bfitF , I2 = J2 tr(\bfitF  - 1\bfitF  - T ),(2.1)

and \bfitF = \partial \bfitx /\partial \bfitX is the deformation gradient.
We restrict our attention to the family of plane motions

x=X + u(X,Y, t), y= Y + v(X,Y, t), z =Z,(2.2)

where \bfitx = (x, y, z) and \bfitX = (X,Y,Z) are the Cartesian coordinates in the current
and reference configurations, and u and v are the in-plane displacements. We then
find

\bfitF =

\left[  1 + uX uY 0
vX 1 + vY 0
0 0 1

\right]  , J\bfitF  - 1 =

\left[  1 + vY  - uY 0
 - vX 1 + uX 0
0 0 J

\right]  ,(2.3)

where the subscripts denote partial differentiation. Then we readily compute the
quantities

I1 = 1+ v2X + u2Y + (1+ uX)2 + (1+ vY )
2, J = 1+ uX + vY + uXvY  - uY vX .

(2.4)

We also find that I2 = I1 + J2  - 1, so that there are only two independent invariants,
say I1 and J .

For the in-plane components of the elastic nominal stress tensor \bfitS e, we may use
the following representation formula [37],

[\bfitS e]ij = J\alpha [\bfitF  - 1]ij + \gamma [\bfitF T ]ij ,(2.5)

where the subscripts i and j run over 1 and 2 and the constitutive coefficients \alpha , \gamma 
are defined as

\alpha = 2J

\biggl( 
\partial W

\partial I2
+
\partial W

\partial I3

\biggr) 
, \gamma = 2

\biggl( 
\partial W

\partial I1
+
\partial W

\partial I2

\biggr) 
,(2.6)
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THE KP EQUATION OF PLANE ELASTODYNAMICS 1461

with I3 = J2. We also have Se
13 = Se

23 = 0 and Se
33 = Se

33(X,Y, t) only.
Now, the first two lines of the equations of motion, Div\bfitS e = \rho 0\bfitx tt, read

[\alpha (1 + vY ) + \gamma (1 + uX)]X + [ - \alpha vX + \gamma uY ]Y = \rho 0utt,

[ - \alpha uY + \gamma vX ]X + [\alpha (1 + uX) + \gamma (1 + vY )]Y = \rho 0vtt,
(2.7)

where \rho 0 is the mass density in the reference configuration, and the third line reduces
to \partial Se

33/\partial Z = 0, which is an identity because Se
33 is independent of Z. We expand

the two equations as

\alpha X(1 + vY ) - \alpha Y vX + \gamma (uXX + uY Y ) + \gamma X(1 + uX) + \gamma Y uY = \rho 0utt,(2.8a)

 - \alpha XuY + \alpha Y (1 + uX) + \gamma (vXX + vY Y ) + \gamma XvX + \gamma Y (1 + vY ) = \rho 0vtt.(2.8b)

2.2. Asymptotic analysis. The full system (2.8) is clearly too complex to be
solved analytically. One way to make progress is to introduce a small parameter \epsilon 
and to implement a perturbative scheme. This approach may give some insight into
the nonlinear phenomena associated with the equations but, as already pointed out,
only under the assumption that the perturbation is small and that the propagation
distance and time are not too large. To provide a uniformly valid approximation for
small amplitude nonlinear waves over long times and large spaces we have to use the
method of multiple scales.

For nonlinear elastic waves, this means that we have to introduce new, dimen-
sionless, amplitude functions \~u, \~v, such that

u= \epsilon L\~u, v= \epsilon 3/2L\~v,(2.9)

where L is a characteristic length, and new, dimensionless, space and time variables

\chi = \epsilon 
X

L
, \eta =

\surd 
\epsilon 
Y

L
, \tau =

1

L
(ct - X),(2.10)

where c is a constant with the dimensions of a speed. The time variable \tau describes
the evolution of the particle displacement in the moving frame following the wave dur-
ing its propagation in the X direction at the speed c. We note that the leading-order
displacement component is that along the X-axis, u, which is of order \scrO (\epsilon ). Fur-
thermore, its leading-order gradient is that along the X-axis, uX ; see the calculations
below. Thus, this scaling gives a quasi-one-dimensional system because the signal is
localized in the direction transverse to the direction of wave propagation, in line with
what we observe in many nonlinear wave propagation phenomena.

We stop expansions at order \scrO (\epsilon 2). First, we find

uX = - \epsilon \~u\tau + \epsilon 2\~u\chi , uY = \epsilon 3/2\~u\eta , uXX + uY Y =
1

L
(\epsilon \~u\tau \tau  - 2\epsilon 2\~u\chi \tau + \epsilon 2\~u\eta \eta ),

vX = - \epsilon 3/2\~v\tau , vY = \epsilon 2\~v\eta , vXX + vY Y =
1

L
\epsilon 3/2\~v\tau \tau (2.11)

and, then,

I1  - 3 = - 2\epsilon \~u\tau + \epsilon 2
\bigl[ 
2(\~u\chi + \~v\eta ) + (\~u\tau )

2
\bigr] 
, J  - 1 = - \epsilon \~u\tau + \epsilon 2(\~u\chi + \~v\eta ).(2.12)

Now, recalling that here the strain energy depends on two scalars only, I1 and J ,
say, we may expand the coefficients \alpha and \gamma into Taylor series, as

\alpha =

2\sum 
i=0

2\sum 
j=0

\alpha ij(I1  - 3)i(J  - 1)j , \gamma =

2\sum 
i=0

2\sum 
j=0

\gamma ij(I1  - 3)i(J  - 1)j ,(2.13)
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1462 H. BERJAMIN, M. DESTRADE, AND G. SACCOMANDI

where \alpha ij , \gamma ij are constants. Using the expansions (2.12), we obtain, up to order \epsilon 2,

\alpha = \alpha 0  - \epsilon \alpha 1\~u\tau + \epsilon 2
\bigl[ 
\alpha 1(\~u\chi + \~v\eta ) + \alpha 2(\~u\tau )

2
\bigr] 
,

\gamma = \gamma 0  - \epsilon \gamma 1\~u\tau + \epsilon 2
\bigl[ 
\gamma 1(\~u\chi + \~v\eta ) + \gamma 2(\~u\tau )

2
\bigr] 
,

(2.14)

where

\alpha 0 = \alpha 00, \alpha 1 = 2\alpha 10 + \alpha 01, \alpha 2 = \alpha 10 + 4\alpha 20 + 2\alpha 11 + \alpha 02,

\gamma 0 = \gamma 00, \gamma 1 = 2\gamma 10 + \gamma 01, \gamma 2 = \gamma 10 + 4\gamma 20 + 2\gamma 11 + \gamma 02
(2.15)

and, then,

\alpha X =
\epsilon 

L
\alpha 1\~u\tau \tau  - 

\epsilon 2

L
[\alpha 1(2\~u\chi \tau + \~v\eta \tau ) + \alpha 2

\bigl( 
\~u2\tau 

\bigr) 
\tau 
], \alpha Y = - \epsilon 

3/2

L
\alpha 1\~u\eta \tau ,

\gamma X =
\epsilon 

L
\gamma 1\~u\tau \tau  - 

\epsilon 2

L
[\gamma 1(2\~u\chi \tau + \~v\eta \tau ) + \gamma 2

\bigl( 
\~u2\tau 

\bigr) 
\tau 
], \gamma Y = - \epsilon 

3/2

L
\gamma 1\~u\eta \tau .

(2.16)

Now we substitute these expansions into the equations of motion (2.8) and stop
at order \epsilon 2. Writing (2.8a) at order \epsilon gives

(\alpha 1 + \gamma 0 + \gamma 1  - \rho 0c
2)\~u\tau \tau = 0(2.17)

and, at order \epsilon 2,\bigl[ 
(\alpha 1 + \gamma 1)\~v\eta + 2(\alpha 1 + \gamma 0 + \gamma 1)\~u\chi + (\alpha 2 + \gamma 1 + \gamma 2)(\~u\tau )

2
\bigr] 
\tau 
 - \gamma 0\~u\eta \eta = 0.(2.18)

And writing (2.8b) up to order \epsilon 2 yields a single equation, at order \epsilon 3/2, which is

(\alpha 1 + \gamma 1)\~u\eta \tau + (\rho 0c
2  - \gamma 0)\~v\tau \tau = 0.(2.19)

Taking (2.17) into consideration, we see that the following identity holds, \rho 0c
2 - \gamma 0 =

\alpha 1 + \gamma 1, which helps simplify (2.18) and (2.19) into\biggl[ \biggl( 
c2\ell 
c2t

 - 1

\biggr) 
\~v\eta + 2

c2\ell 
c2t

\~u\chi + 3
c2\ell 
c2t
\beta (\~u\tau )

2

\biggr] 
\tau 

 - \~u\eta \eta = 0(2.20)

and

\~v\tau \tau + \~u\eta \tau = 0,(2.21)

respectively, where

c\ell = c, ct =
\sqrt{} 
\gamma 0/\rho 0, \beta =

c2t
c2\ell 

\alpha 2 + \gamma 2 + \gamma 1
3\gamma 0

.(2.22)

To interpret c\ell and ct, we recall that the equations of linear elastodynamics are
\mu ui,jj + (\lambda + \mu )uj,ij = \rho 0ui,tt, where \lambda , \mu are the Lam\'e constants. Hence, for a
linear homogenous longitudinal wave \bfitu = u(X, t)\bfiti , we have (\lambda + 2\mu )uXX = \rho 0utt.
The changes of amplitude function (2.9) and variables (2.10) then give (\lambda +2\mu )\~u\tau \tau =
\rho 0c

2\~u\tau \tau , showing that

c= c\ell =
\sqrt{} 

(\lambda + 2\mu )/\rho 0,(2.23)
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THE KP EQUATION OF PLANE ELASTODYNAMICS 1463

the speed of the linear longitudinal wave. Also, we see from (2.6) that

\gamma 0 = \gamma 00 = 2

\biggl( 
\partial W

\partial I1
+
\partial W

\partial I2

\biggr) \bigm| \bigm| \bigm| \bigm| 
I1=I2=3,J=1

(2.24)

is the infinitesimal shear modulus, i.e., \mu , the second Lam\'e constant, showing that

ct =
\sqrt{} 
\mu /\rho 0,(2.25)

the speed of the linear transverse wave.
Equations (2.20)--(2.21) are of the same nature as the ones obtained by Zabolot-

skaya [40]. Zabolotskaya goes on to integrate (2.21) with respect to \tau and then to
neglect the arbitrary integration function \phi (\chi ,\eta ) that arises (denoted the static part
of the displacement), which is justified under certain further assumptions. However,
that step is not necessary. Indeed, we may first differentiate (2.20) with respect to \tau 
and (2.21) with respect to \eta , to eliminate \~v\eta \tau \tau . Then we introduce the new (dimen-
sionless) variable U = \~u\tau to obtain

(U\chi + 3\beta UU\tau )\tau =
1

2
U\eta \eta .(2.26)

Equation (2.26) is a Khokhlov--Zabolotskaya--Kuznetsov (KZK)-type equation in
two-dimensional space, which describes the propagation and diffraction of directional
sound beams [29]. It reduces to the inviscid Burgers equation for one-dimensional
problems where the longitudinal particle velocity does not vary in the transverse
direction (U\eta = 0). In this special case, discontinuities in the particle velocity can
develop at a given propagation distance from a moving boundary, which is the shock
formation distance.

2.3. Dispersion. To introduce dispersion, we follow the procedure developed
in [14]. Hence we consider that the Cauchy stress is split additively in an elastic part
and in a part depending on the first and second Ericksen--Rivlin tensors, as

\bfitT = \bfitT e + \nu (\bfitA 2  - \bfitA 2
1),(2.27)

where \bfitT e = J - 1\bfitF \bfitS e is the elastic stress contribution,

\bfitA 1 =\bfitL +\bfitL T , \bfitA 2 = \.\bfitA 1 +\bfitA 1\bfitL +\bfitL T\bfitA 1,(2.28)

and \bfitL = \.\bfitF \bfitF  - 1 is the velocity gradient (in other words, \bfitA 1 = 2\bfitD , where \bfitD is the
stretching tensor). Here the parameter \nu is positive, and its factor (\bfitA 2  - \bfitA 2

1) is a
gyroscopic term, as discussed in details in [14] and [16]. Note also that \nu /(\rho 0L

2) is
dimensionless [15].

For consistency of the expansions, we consider that the parameter \nu is of order \epsilon ,

\nu = \epsilon \rho 0L
2\nu 0,(2.29)

say, where \nu 0 is dimensionless. Then it suffices to expand \bfitL , \bfitA 1, and \.\bfitA 1 to order \epsilon 
using

J\bfitL = - \epsilon c\ell 
L

\left[  \~u\tau \tau 0 0
0 0 0
0 0 0

\right]  =
J

2
\bfitA 1, J \.\bfitA 1 = - 2\epsilon c2\ell 

L2

\left[  \~u\tau \tau \tau 0 0
0 0 0
0 0 0

\right]  ,(2.30)
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1464 H. BERJAMIN, M. DESTRADE, AND G. SACCOMANDI

ending up with

\nu (\bfitA 2  - \bfitA 2
1) = - 2\epsilon 2\rho 0c

2
\ell \nu 0

\left[  \~u\tau \tau \tau 0 0
0 0 0
0 0 0

\right]  ,(2.31)

and neglecting higher-order terms.
Then we compute the nominal stress \bfitS = J\bfitF  - 1\bfitT and write the first equation of

motion using results above for \bfitS e. After some algebra, we obtain the modified version
of (2.20) as \biggl[ \biggl( 

c2\ell 
c2t

 - 1

\biggr) 
\~v\eta + 2

c2\ell 
c2t

\~u\chi + 3
c2\ell 
c2t
\beta (\~u\tau )

2  - 2
c2\ell 
c2t
\nu 0\~u\tau \tau \tau 

\biggr] 
\tau 

= \~u\eta \eta ,(2.32)

while (2.21) remains unchanged. Using again that equation, and the function U , we
now end up with

(U\chi + 3\beta UU\tau  - \nu 0U\tau \tau \tau )\tau =
1

2
U\eta \eta (2.33)

by following the same steps as for the derivation of (2.26). The changes of variables
from (\chi , \tau , \eta ) to (x, y, t) (where the latter is not the original time variable), defined by

t= - | \beta | 3/2\surd 
8\nu 0

\chi , x=
| \beta | 1/2\surd 
2\nu 0

\tau , y=
| \beta | \surd 
2\nu 0

\eta ,(2.34)

show that this is indeed the KP-II equation,

(Ut \mp 6UUx +Uxxx)x = - Uyy,(2.35)

where the minus (or plus) sign is obtained for positive (or negative) \beta , respectively.
This result is comparable to that obtained in antiplane shear [11], except for the
nonlinear term.

Finally, reverting (2.33) to physical quantities (2.9) and physical coordinates
(2.10) yields the equation determining u as\biggl( 

c\ell utX + utt + 3
\beta 

c\ell 
ututt  - 

\nu 

\rho 0c2\ell 
utttt

\biggr) 
t

=
1

2
c2\ell utY Y ,(2.36)

where we have used the relationship U = \~u\tau in (2.33). Then v is found from

vtt + c\ell utY = 0,(2.37)

which is a consequence of (2.21).

3. Plane motions in incompressible solids. The equations in the incom-
pressible case may be derived from the above analysis by replacing the constitutive pa-
rameter \alpha with an arbitrary Lagrange multiplier p= p(X,Y, t) in (2.7) and (2.8). This
Lagrange multiplier is introduced to enforce the internal constraint of isochoricity:
J  - 1 = 0 and, if needed, it is to be determined from initial/boundary conditions. All
the constitutive information is now concentrated in the parameter \gamma , defined in (2.6).

However, here the asymptotic analysis is completely different from the compress-
ible case. First, we find that for asymptotic consistency, the scaling of the amplitudes
and coordinates (2.9)--(2.10) must be replaced by
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THE KP EQUATION OF PLANE ELASTODYNAMICS 1465

u= \epsilon 2L\~u, v= \epsilon L\~v, p= \rho 0c
2
t \~p,(3.1a)

\chi = \epsilon 2
X

L
, \eta = \epsilon 

Y

L
, \tau =

1

L
(ctt - X),(3.1b)

where ct is the speed of the linear shear wave, such that \rho 0c
2
t = \gamma 0 = \mu . Here, the

leading-order displacement component is that along the Y axis, v, which is of order
\scrO (\epsilon ). From now on, the Lagrange multiplier p replaces the material response function
\alpha in the equations of motion (2.8).

For these scalings, we find

I1  - 3 = \epsilon 2[(\~v\tau )
2 + 2(\~v\eta  - \~u\tau )], J  - 1 = \epsilon 2(\~v\eta  - \~u\tau ),(3.2)

at leading order, instead of (2.12). Enforcement of the incompressibility constraint
J = 1 then entails a simplified expression for I1  - 3. Furthermore, there is a coupling
between the longitudinal and transverse displacement components, \~v\eta = \~u\tau .

The strain energy and other quantities now depend on only one variable, I1, and
we may expand \gamma in powers of I1  - 3 up to terms in \epsilon 3, as

\gamma = \gamma 0 + \gamma 1(I1  - 3) = \gamma 0 + \epsilon 2\gamma 1\~v
2
\tau ,(3.3)

where \gamma 0 and \gamma 1 are constants. It then follows that

\gamma X = - \epsilon 2 \gamma 1
L
(\~v2\tau )\tau , \gamma Y = \epsilon 3

\gamma 1
L
(\~v2\tau )\eta ,(3.4)

so that the governing equations reduce to

\~p\tau = 0, \epsilon \~p\eta \~v\tau \tau = 0,(3.5)

at leading order, where we have used the identity \gamma 0 = \rho 0c
2
t .

From (3.5), we deduce the identities \~p\tau = \~p\eta = 0. This way, the governing
equations (2.8) reduce to

\~p\chi =
2

3
\beta 3(\~v

2
\tau )\tau ,

1

3
\beta 3[(\~v

3
\tau )\tau + (\~v2\tau )\eta ] - \~v\chi \tau +

1

2
\~v\eta \eta = 0(3.6)

at the orders \epsilon 2 and \epsilon 3, respectively. Here, we have introduced the constant \beta 3 such
that

\beta 3 =
3

2

\gamma 1
\gamma 0

=
3

\mu 

\biggl( 
\partial 2W

\partial I21
+ 2

\partial 2W

\partial I1\partial I2
+
\partial 2W

\partial I22

\biggr) 
I1=I2=3

,(3.7)

recalling that \gamma 1 = \partial \gamma /\partial I1 when I1 = I2 = 3. Now, in (3.6), differentiation of the first
identity with respect to \eta and of the second one with respect to \tau yields

(V\chi  - \beta 3V
2V\tau )\tau =

1

2
V\eta \eta ,(3.8)

where we have introduced V = \~v\tau . To reach this result, we have used the fact that \~p
is a function of \chi only.

Equation (3.8) is a spatially two-dimensional KZK-type equation with cubic non-
linearity, which is used to describe the propagation and diffraction of directional
sound beams in incompressible solids [41]. Here too, shock waves can form in one-
dimensional problems where the shearing velocity does not vary in the transverse
direction (V\eta = 0). Numerical simulations that illustrate the diffraction of the sound
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1466 H. BERJAMIN, M. DESTRADE, AND G. SACCOMANDI

beam, the formation of shear shock waves and the generation of higher harmonics can
be found in [4].

The coefficient of cubic nonlinearity above is the same as that introduced by
Zabolotskaya and collaborators [41, 39]. In the context of weakly nonlinear elasticity,
it requires an expansion of the strain energy density up to the fourth order, as [41, 12]

W = \mu tr(\bfitE 2) + (A/3) tr(\bfitE 3) +D tr(\bfitE 2)2,(3.9)

where \bfitE = (\bfitF T\bfitF  - \bfitI )/2 is the Green--Lagrange strain tensor, and A, D are the third-
and fourth-order nonlinear Landau constants, respectively. Then we find that [13]

\beta 3 =
3

2

\biggl( 
1 +

A/2 +D

\mu 

\biggr) 
.(3.10)

Adding a dispersive term as in the compressible case also requires a different
scaling for the parameter \nu , which must now be of order \epsilon 2,

\nu = \epsilon 2\rho 0L
2\nu 0;(3.11)

see [11] for the justification. We then find that

\nu (\bfitA 2  - \bfitA 2
1) = - \epsilon 3\rho 0c2t\nu 0

\left[  0 \~v\tau \tau \tau 0
\~v\tau \tau \tau 0 0
0 0 0

\right]  .(3.12)

Introducing this term into the governing equations and following the above steps
yields the modified wave equation\biggl( 

V\chi  - \beta 3V
2V\tau  - 

1

2
\nu 0V\tau \tau \tau 

\biggr) 
\tau 

=
1

2
V\eta \eta (3.13)

instead of (3.8).
The changes of variables from (\chi , \tau , \eta ) to (x, y, t) defined by

t= - | \beta 3| 3/2

6
\surd 
3\nu 0

\chi , x=
| \beta 3| 1/2\surd 

3\nu 0
\tau , y=

| \beta 3| 
3
\surd 
\nu 0
\eta ,(3.14)

show that this is indeed the KP-II equation with cubic nonlinearity,

(Vt \pm 6V 2Vx + Vxxx)x = - Vyy,(3.15)

where the plus (or minus) sign is obtained for positive (or negative) \beta 3, respectively.
For an alternative derivation of the above result, the interested reader is referred to
Appendix A.

In a similar fashion to the compressible case (2.36)--(2.37), the equation (3.13)
with V = \~v\tau can then be rewritten in terms of physical variables and coordinates; see
(3.1). Doing so, we find\biggl( 

ctvtX + vtt  - 
\beta 3
c2t
v2t vtt  - 

\nu 

2\rho 0c2t
vtttt

\biggr) 
t

=
1

2
c2t vtY Y ,(3.16)

and then u is found from \~v\eta = \~u\tau , i.e.,

utt  - ctvtY = 0,(3.17)

which is a consequence of incompressibility (3.2).
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THE KP EQUATION OF PLANE ELASTODYNAMICS 1467

4. Examples. We presented a consistent asymptotic derivation of the KP equa-
tion (2.33) in plane elasticity and of its incompressible counterpart (3.13). Using a
suitable scaling transformation, these equations may be recast in canonical forms,
leading to the KP-II equations (2.35)--(3.15), which we recall here:

(Ut \mp 6UUx +Uxxx)x = - Uyy,(4.1)

(Vt \pm 6V 2Vx + Vxxx)x = - Vyy.(4.2)

The list of the remarkable mathematical properties of these equations is too long to
review here and relevant references may be found in the papers [25, 35, 38]. A brief
overview of the properties of the KP-II equation can be found in the book by Ablowitz
and Clarkson [1]. Note in passing that specific solutions of the KP equation (4.1) can
be deduced from solutions of the modified KP equation (4.2) by means of the Miura
transformation [17].

4.1. Traveling waves. One remarkable property of the KP-II equation is the
existence of traveling wave solutions (line solitons). These particular waveforms travel
at an angle to the y-axis with a constant speed and no distortion. For the quadratic
KP equation (4.1) describing compression waves, such a solution takes the form

U(t, x, y) =\mp 2\kappa 2 sech2[\kappa (x+ \theta y - \upsilon t+ x0)],(4.3)

where the wave speed is given by \upsilon = 4\kappa 2 + \theta 2, and sech is the hyperbolic secant
function. In contrast, for the incompressible case (4.2) we obtain the solution

V (t, x, y) =\pm \kappa sech[\kappa (x+ \theta y - \upsilon t+ x0)](4.4)

with the wave speed \upsilon = \kappa 2 + \theta 2. While the wave velocity is a linear function of
the wave amplitude in the former case (4.3), a quadratic function is obtained in the
latter one (4.4). Illustrations are provided in Figure 1 where the above waveforms are
represented for \kappa = 1 and \theta = 0 (subsection 4.2).

Let us revisit these results by highlighting a connection between the KP equations
and the Boussinesq equations. Introducing the new variables

t= y, s= x - \upsilon t,(4.5)

and considering the reductions

U(t, x, y) =U(t, s), V (t, x, y) = V (t, s)(4.6)

for (4.1) and (4.2), the canonical forms of the KP equation in the compressible and
incompressible cases, we arrive at

Utt  - \upsilon Uss \mp 3(U2)ss +Ussss = 0,(4.7)

Vtt  - \upsilon Vss \pm 2(V 3)ss + Vssss = 0.(4.8)

The former is a Boussinesq equation [7], whereas the latter is a modified Boussinesq
equation with cubic nonlinearity. The traveling wave solutions (4.3)--(4.4) can be
obtained from the above partial differential equations as well.

4.2. Numerical results. The numerical resolution of the KP equation has been
approached based on a Fourier spectral method by Klein and coauthors [24], which
is adapted from Trefethen's code for the KdV equation---a similar algorithm was
implemented in [19, 2]. The method is based on the use of a two-dimensional Fourier
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-5 0 5 10

0

0.5

1

1.5

2

Fig. 1. Solitary waves. Thick solid lines: initial conditions (4.10) for the nonlinear wave equa-
tions (4.1) and (4.2). Thin solid lines: exact solution (4.3)--(4.4) at t= 2. Dashed lines: waveforms
obtained along the line y = 0 at t = 2 using a Fourier spectral method. Integration was performed
for 256\times 256 points (x, y) in [ - 4\pi ,4\pi ]2, and a time step of 10 - 4. Note: color appears only in the
online article.

transform in space and of an integrating factor, so that the KP equation (4.1) can be
rewritten as a differential equation in time,

\bigl( 
et

\widehat \scrL \widehat U\bigr) 
t
=\pm 3ikxe

t \widehat \scrL \widehat U2, \widehat \scrL =
ik2y

kx  - 0i
 - ik3x,(4.9)

where \widehat U denotes the spatial Fourier transform of U , `i' is the imaginary unit, and
(kx, ky) are the wavenumbers (i.e., the spatial coordinates in Fourier space). The spa-
tial Fourier transforms are evaluated by means of the Matlab fast Fourier transform
algorithm fft2, and integration in time is performed using a fourth-order Runge--
Kutta scheme. The same method can be used for the numerical resolution of the
modified KP equation (4.2) up to minor changes. Most notably, the Fourier transform
of U2 in (4.9) needs to be replaced by the Fourier transform of V 3, and coefficients
need to be adjusted.

For the KP equations in canonical form, we select the initial conditions

U(0, x, y) = 2sech2(x), V (0, x, y) = sech(x),(4.10)

which correspond to the initial waveform of a solitary wave solution to the nonlinear
wave equations (4.1) and (4.2) with the appropriate signs; see (4.3) and (4.4). These
waves propagate along increasing x with an invariant waveform at a constant speed
equal to 4 and 1, respectively. The initial conditions (4.10) correspond to the special
values \kappa = 1 and \theta = 0 in both cases.

We have represented these initial conditions in Figure 1, as well as the waveforms
at t\simeq 2 after sufficient iterations of the spectral method (4.9). Here, the results were
obtained by using 256 \times 256 points for (x, y) within the domain [ - 4\pi ,4\pi ]2, while
the iterations in time were performed with a time step of 10 - 4. The null imaginary
number 0i in the denominator of (4.9) is replaced by a small imaginary number near
10 - 16i to avoid singularity. As expected, we observe that the solitary waves computed
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THE KP EQUATION OF PLANE ELASTODYNAMICS 1469

numerically propagate with a constant shape at a speed of 4 and 1 units, respectively.
Thus, the spectral method provides an accurate computational solution to the initial-
value problems (4.10).

Using the same algorithm, we now select the initial conditions

U(0, x, y) = - \partial 

\partial x
sech2(r), V (0, x, y) = - \partial 

\partial x
sech(r),(4.11)

where r =
\sqrt{} 
x2 + y2. These functions correspond to those in (4.10) with a smooth

envelope; see also Grava, Klein, and Pitton [19]. The results shown in Figure 2
were obtained by using 2048\times 1024 points for (x, y) within the domain [ - 16\pi ,16\pi ]\times 
[ - 8\pi ,8\pi ], while the iterations in time were performed with a time step of 0.5\times 10 - 4

up to the final time, t\simeq 0.2.
Qualitatively, the numerical solution obtained for (4.1) (left column in Figure 2) is

comparable to the one obtained for (4.2) (right column in the figure). In the bottom
row of Figure 2, the multiple oscillations that have formed along the x-axis result
from the interaction between nonlinearity and wave dispersion (left-hand side of (4.1)--
(4.2)), in a similar fashion to the formation of oscillations in the KdV equation [6].
The evolution of the wave fields along the y-axis is caused by the diffraction term
in the right-hand side of (4.1)--(4.2), in a similar fashion to the diffraction of sound
beams in the KZK equation [4]. For further physical interpretations, it is essential to
remember that the coordinates (t, x, y) defined in (2.34)--(3.14) are scaled versions of
a propagation distance (\propto X), a retarded time variable (\propto [t - X/c]), and a transverse
spatial coordinate (\propto Y ), respectively. Practical implications of the observed features
and of other properties shall become the scope of future research.

5. Conclusion. We have shown that the KP equation can be derived within the
context of plane compressible elasticity with dispersion, based on a suitable rescaling
of the equations of motion. Following similar steps, a modified KP equation with
cubic nonlinearity is obtained in the incompressible case, with some technical differ-
ences compared to the compressible case. These partial differential equations describe
nonlinear wave motion in solids with a preferred propagation direction.

Solutions to these partial differential equations include solitary waves and other
nonlinear waves. In fact, numerical simulations based on a Fourier spectral method
show that solutions to the KP equation and to its cubic counterpart are essentially
similar (at least qualitatively). In line with other works from the literature [2, 19],
a detailed analysis of the dispersive shock wave solutions might become the scope of
future works.

Appendix A. Stream function for the incompressible case. We present
an alternative derivation for the incompressible case. The main motivation for this
appendix is to address the slight mismatch of the asymptotic orders in section 3,
where the first equation of motion (2.8a) is solved up to order \epsilon 2 whereas the second
one (2.8b) is solved up to order \epsilon 3. Here, we assume that the scaling of the amplitude
is of order \epsilon for both u and v, in contrast to (2.9) and (3.1a):

u= \epsilon L\~u, v= \epsilon L\~v.(A.1)

We may then introduce a ``stream"" function \psi =\psi (X,Y, t), defined by \psi X = - v,
\psi Y = u, with nondimensional measure \~\psi defined by

\psi = \epsilon L2 \~\psi .(A.2)
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-10 0 10

-0.5

0

0.5

-10 0 10

-0.5

0

0.5

Fig. 2. Initial-value problems (4.11), where t = 0 in the first and second rows of figures. The
nonlinear wave equations (4.1) and (4.2) are solved in the left and right column, respectively. The
third and fourth rows of figures show the solutions obtained numerically at t = 0.2. Integration
was performed for 2048 \times 1024 points (x, y) in [ - 16\pi ,16\pi ] \times [ - 8\pi ,8\pi ], and a time step of 0.5 \times 
10 - 4. Note: color appears only in the online article.

It follows that the invariants I1 and J in (2.4) now read

I1  - 3 = \epsilon 2L4( \~\psi 2
XX + \~\psi 2

Y Y + 2 \~\psi 2
XY ), J  - 1 = \epsilon 2L4( \~\psi XX

\~\psi Y Y  - \~\psi 2
XY ).(A.3)

Similarly, the equations of motion (2.8) are rewritten in terms of \~\psi as
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THE KP EQUATION OF PLANE ELASTODYNAMICS 1471

pX(1 - \epsilon L2 \~\psi XY ) + pY \epsilon L
2 \~\psi XX + \gamma \epsilon L2( \~\psi XXY + \~\psi Y Y Y )

+ \gamma X(1 + \epsilon L2 \~\psi XY ) + \gamma Y \epsilon L
2 \~\psi Y Y = \rho 0\epsilon L

2 \~\psi Y tt,

 - pX\epsilon L2 \~\psi Y Y + pY (1 + \epsilon L2 \~\psi XY ) - \gamma \epsilon L2( \~\psi XXX + \~\psi XY Y )

 - \gamma X\epsilon L
2 \~\psi XX + \gamma Y (1 - \epsilon L2 \~\psi XY ) = - \rho 0\epsilon L2 \~\psi Xtt.

(A.4)

Next, we find that the scaling of the space and time coordinates is not of the form
(2.10); it should now be of the same form as in (3.1b). Then the relevant derivatives
of \~\psi up to order \epsilon 3 follow as

\~\psi XX =
1

L2
\~\psi \tau \tau  - 2

\epsilon 2

L2
\~\psi \chi \tau , \~\psi XY = - \epsilon 

L2
\~\psi \eta \tau +

\epsilon 3

L2
\~\psi \chi \eta , \~\psi Y Y =

\epsilon 2

L2
\~\psi \eta \eta ,

\~\psi XXX = - 1

L3
\~\psi \tau \tau \tau + 3

\epsilon 2

L3
\~\psi \chi \tau \tau , \~\psi XXY =

\epsilon 

L3
\~\psi \eta \tau \tau  - 2

\epsilon 3

L3
\~\psi \chi \eta \tau ,

\~\psi XY Y = - \epsilon 2

L3
\~\psi \eta \eta \tau , \~\psi Y Y Y =

\epsilon 3

L3
\~\psi \eta \eta \eta ,

\~\psi Xtt = - c2t
L3

\~\psi \tau \tau \tau + \epsilon 2
c2t
L3

\~\psi \chi \tau \tau , \~\psi Y tt = \epsilon 
c2t
L3

\~\psi \eta \tau \tau .

(A.5)

As a result, (A.3) expanded to order \epsilon 3 now yields I1  - 3 = \epsilon 2 \~\psi 2
\tau \tau , and the incom-

pressibility constraint J  - 1 = 0 is satisfied.
Next, we expand \gamma in powers of I1  - 3 up to terms in \epsilon 3. This way, we recover

(3.3)--(3.4) with \~v2\tau replaced by \~\psi 2
\tau \tau . Up to order \epsilon 3, the governing equations (A.4)

reduce to

(1 + \epsilon 2 \~\psi \eta \tau )pX + (\epsilon \~\psi \tau \tau  - 2\epsilon 3 \~\psi \chi \tau )pY = \epsilon 2
\gamma 1
L
( \~\psi 2

\tau \tau )\tau ,

 - \epsilon 3 \~\psi \eta \eta pX + (1 - \epsilon 2 \~\psi \eta \tau )pY =
\epsilon 3

L

\Bigl\{ 
\gamma 0(2 \~\psi \chi \tau \tau  - \~\psi \eta \eta \tau ) - \gamma 1[( \~\psi 

3
\tau \tau )\tau + ( \~\psi 2

\tau \tau )\eta ]
\Bigr\} 
.

(A.6)

We may now solve this system for pX and pY , as

pX =
\epsilon 2

L
\gamma 1( \~\psi 

2
\tau \tau )\tau ,

pY =
\epsilon 3

L

\Bigl\{ 
\gamma 0(2 \~\psi \chi \tau \tau  - \~\psi \eta \eta \tau ) - \gamma 1[( \~\psi 

3
\tau \tau )\tau + ( \~\psi 2

\tau \tau )\eta ]
\Bigr\} 
,

(A.7)

where higher-order terms have been neglected. Finally, writing that the cross deriv-
atives of p must be equal, pY X = pXY , we arrive at the following cubic nonlinear
equation in \Psi = \~\psi \tau \tau ,

(\Psi \chi  - \beta 3\Psi 
2\Psi \tau )\tau =

1

2
\Psi \eta \eta ,(A.8)

where the coefficient \beta 3 was introduced in (3.7).
Equation (A.8) is a special case of the generalized Zabolotskaya system [33, 13].

It can also be established from the results in [13], where in addition to the in-plane
motion described by u, v, an out-of-plane motion w(X,Y, t) was also considered. The
end result was a coupled system of nonlinear equations for \psi and w. Taking w = 0,
as here, in that system, leads to the single equation (A.8) for \Psi , albeit with a sign
mistake for the first term of the equation.

Adding a dispersive term requires the same scaling for the parameter \nu as in
(3.11), namely, \nu = \epsilon 2\rho 0L

2\nu 0. We then find that \nu (\bfitA 2  - \bfitA 2
1) is of the same form
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as (3.12) with \~v replaced by \~\psi \tau , at leading order. Introducing this term into the
governing equations (A.4) and solving for pX and pY now gives

pX =
\epsilon 2

L2
\gamma 1( \~\psi 

2
\tau \tau )\tau ,

pY =
\epsilon 3

L

\Bigl\{ 
\gamma 0(2 \~\psi \chi \tau \tau  - \~\psi \eta \eta \tau  - \nu 0 \~\psi \tau \tau \tau \tau \tau ) - \gamma 1[( \~\psi 

3
\tau \tau )\tau + ( \~\psi 2

\tau \tau )\eta ]
\Bigr\} (A.9)

instead of (A.7), and writing pY X = pXY leads to\biggl( 
\Psi \chi  - \beta 3\Psi 

2\Psi \tau  - 
1

2
\nu 0\Psi \tau \tau \tau 

\biggr) 
\tau 

=
1

2
\Psi \eta \eta (A.10)

instead of (A.8). This equation is of the exact same form as (3.13). Likewise, it can
be reduced to the canonical form (3.15) of the modified KP-II equation with cubic
nonlinearity.

The correspondence between the results in section 3 and in Appendix A can
be established based on the respective scaling assumptions (3.1a) and (A.1)--(A.2),
together with (3.1b). In fact, according to the definition of the stream function \psi , we
note that the following quantities are equal,

\psi X = - \epsilon L \~\psi \tau + \epsilon 3L \~\psi \chi ,

= - v= - \epsilon L\~v,
(A.11)

where the last equality holds for the derivations in section 3 and in the present ap-
pendix. We can therefore readily equate \Psi = \~\psi \tau \tau with V = \~v\tau to the same order of
approximation; see the notations used in (3.8) and (3.13).
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