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Abstract
We present and review several models of fractional viscous stresses from the literature, which generalise classical
viscosity theories to fractional orders by replacing total strain derivatives in time with fractional time derivatives.
We also briefly introduce Prony-type approximations of these theories. Here, we investigate the issues of material
frame-indifference and thermodynamic consistency for these models and find that on these bases, some are physically
unacceptable. Next, we study elementary shearing and tensile motions, observing that some models are more convenient
to use than others for the analysis of creep and relaxation. Finally, we compute the incremental stresses due to small-
amplitude wave propagation in a deformed material, with a view to establish acoustoelastic formulas for prospective
experimental calibrations.
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1. Introduction
Differential operators based on the Riemann–Liouville integral are commonly used to generalise differentiation
of integer order to fractional orders, thus laying the foundations of fractional calculus [1]. This branch has
found various applications over time [2, 3], most notably in electronics and in material rheology. In the latter
case [4, 5], fractional calculus provides accurate predictions of the time-dependent mechanical behaviour with a
limited number of parameters. Figure 1 lists a few materials whose stress relaxation response can be described
by such theories, e.g., xanthan gum, bread dough, and nylon. One property of these materials is the power-law
time evolution of the stress in response to a sudden deformation (see the review by Bonfanti et al. [6] for details).
A possible explanation of the micromechanical origins of fractional behaviour is provided by Brenner [7].
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Figure 1. Stress relaxation data sets show that the response of many materials follows a power-law behaviour. Source: Reproduced
from Bonfanti et al. [6] under the Creative Commons Attribution 3.0 Unported Licence.

Figure 2. Schematic representation of the fractional Kelvin–Voigt model.

Classical rheological models are described by an assembly of one-dimensional elements such as springs
and dashpots. Within this framework, fractional viscous elements are represented by springpots which are
intermediates between springs (accounting for elasticity) and dashpots (accounting for viscous dissipation),
see Mainardi [4] for an overview of the linear theory valid at small strains. The simplest such model is based
on a single springpot element, which can be found under the name of the “Kjartansson constant-Q model” in
geophysics [8].

The mechanical analogue of Newtonian or Kelvin–Voigt viscoelastic materials is a dashpot connected to a
spring in parallel. In this case, elastic stresses are proportional to the scalar strain ε, whereas viscous stresses are
proportional to the velocity gradient or strain rate ε̇ (in what follows, ε̇ denotes the material time derivative of ε).
The strain rate can be generalised to fractional differential orders α ∈ ]0, 1[ based on the Caputo time-derivative
Dα defined by:

Dαε(t) = 1

�(1 − α)

∫ t

0

ε̇(s)

(t − s)α
ds, (1)

where ε is causal and �(z) = ∫ ∞
0 tz−1e−tdt defines Euler’s Gamma function. This step amounts to replacing the

dashpot with a springpot in the diagram (see Figure 2).
With the above definition of the fractional derivative, we have the limits D0ε = ε and, by differentiation,

D1ε = ε̇. Thus, α = 0 corresponds to an elastic model, whereas α = 1 recovers the classical Kelvin–Voigt
theory. Generalisation of equation (1) to arbitrary orders α ≥ 0 can be carried out [9], as well as generalisation
to non-causal functions (e.g., periodic ones [10]). In this latter case, the Caputo derivative may be replaced by
the Weyl derivative, which amounts to evaluating the integral (1) from −∞ to t.
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Fractional calculus has also been used to model the time-dependent mechanical response of highly de-
formable soft materials for which the small strain assumption is no longer valid. Examples of such materials
include amorphous polymers, organic glasses [11], rubber, elastomers [12, 13], tendons [14], liver tissue [15],
and other similar materials. While the generalisation of the spring to three-dimensional finite strain is rather
straightforward (see the textbook by Holzapfel [16] for a description of hyperelasticity), the crux of the matter
is a proper definition of the fractional viscous stress. In this study, we consider the finite motion of incom-
pressible viscous materials. More specifically, we describe nonlinear three-dimensional generalisations of the
fractional Kelvin–Voigt rheology depicted in Figure 2.

To describe their motion, we introduce F(t), the deformation gradient tensor at time t, which is defined as
the gradient ∂x/∂X of the current position x = x(t) of a particle with respect to its position X = x(0) in
the reference configuration. Incompressible materials do not allow for volume change. Hence, isochoricity is
enforced at all times (det F ≡ 1), and the mass density ρ is constant.

In a similar fashion to the linear scalar case, we assume that the second Piola–Kirchhoff stress tensor S and
the Cauchy stress tensor σ = FSFT can be split additively into elastic and viscous parts, i.e.,

S = −pC−1 + Se + Sv, σ = −pI + σ e + σ v, (2)

where C = FTF is the right Cauchy–Green deformation tensor, I is the identity tensor, and the scalar p is
a Lagrange multiplier accounting for the incompressibility constraint. The stresses with exponents e and v are
elastic and viscous contributions, respectively. Elastic contributions vanish in the fluid limit, which can therefore
be viewed as a special case of the present theories.

Up to a suitable redefinition of the pressure coefficient p, we note that the partial stress tensors S•, σ • in
equation (2) can be replaced with their deviatoric counterparts S•

D, σ •
d. Here, the deviators are denoted by the

subscripts “D” and “d,” such that:

(•)D = (•) − 1

3
tr[(•)C]C−1, (•)d = (•) − 1

3
tr(•)I , (3)

and tr is the trace. With these definitions, we note that the tensor (•)d is trace-free.
In classical Newtonian viscosity theories, the viscous Cauchy stress is typically expressed as σ v = 2ηD,

where η > 0 is the dynamic viscosity. The tensor D = 1
2 (L + LT) with L = ḞF−1 is the Eulerian strain rate

tensor, which is trace-free by virtue of incompressibility—in other words, σ v = σ v
d. In terms of the second

Piola–Kirchhoff stress, the Newtonian viscosity is then expressed by the relationship:

Sv = 2η�̇ = 2ηC−1ĖC−1, (4)

where

� = 1

2
(I − C−1), E = 1

2
(C − I), (5)

denote a Piola-type deformation tensor and the Green–Lagrange strain tensor E = C�, respectively. The
equality �̇ = C−1ĖC−1 used in equation (4) follows from differential rules.

As an alternative to Newtonian viscosity (4), one might define the viscous stress as:

Sv = 2ηĖ, (6)

which is proportional to the rate of Green–Lagrange strain. In Physical Acoustics, this viscous term is sometimes
preferred to the Newtonian viscous term, although care must be taken that it is added to the second, and not the
first, Piola–Kirchhoff stress tensor [17].

In terms of the Cauchy stress tensor, the viscous stress (6) reads σ v = 2ηBDB, where we have used the
identity Ė = FTDF and the definition B = FFT of the left Cauchy–Green deformation tensor. Here, we note
that the viscous Cauchy stress is not necessarily trace-free (the Cauchy–Schwarz inequality does not apply).
Nevertheless, the latter can still be replaced by its deviatoric part σ v

d up to a suitable redefinition of the arbitrary
Lagrange multiplier in equation (2).

Furthermore, it is worth pointing out that the viscosity theories (4)–(6) have fundamentally different mathe-
matical properties. In fact, contrary to the Newtonian viscosity case (4), viscoelastic shearing motions might be
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Table 1. Expression of the viscous Cauchy stress σ v = FSvFT for the Models A, B, and C, including the elastic limit α → 0 and the
viscous limit α → 1.

Model Fractional viscous stress σ v Elastic limit Viscous limit

A (8) 2ηαF(Dα�)FT μ(B − I) 2ηD
B (11) 2ηαF−T(DαE)F−1 μ(I − B−1) 2ηD
C (12) 2ηαF(DαE)FT μ(B2 − B) 2ηBDB

The fractional time derivative Dα is defined in equation (1) and the fractional viscosity ηα is expressed in Pa.sα .

limited to a finite time when using equation (6), which is potentially problematic for the purpose of experimental
characterisation involving long-time relaxation processes [18].

In the next section, we present straightforward generalisations of the viscous stresses (4)–(6) to fractional
orders (1) and establish connections with the literature (section 2). We briefly discuss approximations of the
fractional derivative to be used in computational applications (section 3). Then, we discuss the physical prop-
erties of the models at hand, more specifically in relation to the objectivity requirement and thermodynamic
consistency (section 4). It appears that some theories from the literature are physically unacceptable in those
respects. Furthermore, we study elementary shearing and tensile motions (section 5). Finally, we compute incre-
mental stresses via a “small-on-large” linearisation and obtain acoustoelastic formulas (section 6). The results
of this study might be used in experimental setups or in other applications.

2. Constitutive models
In this section, we introduce straightforward generalisations of the viscous stresses (4)–(6) to fractional
differential orders (1). A summary of these constitutive laws is given in Table 1.

2.1. Model A

We introduce a fractional time derivative (1) of the Piola strain � in the definition of the Newtonian viscous
Piola–Kirchhoff stress (4), as follows: Sv = 2ηα Dα�, where ηα > 0 is a fractional dynamic viscosity (in
Pa.sα). This expression involves only two independent parameters—the coefficient ηα and the differential order
α. For convenience, we introduce the redundant parameter μ = ηα/τ

α , where τ > 0 is a characteristic time.
In other words, we have Sv = 2μτα Dα�. Without loss of generality, the parameter μ can be chosen in such a
way that it equals the initial shear modulus in solid materials (in Pa).

According to the definition of the fractional derivative (1), this expression might be rewritten as a time-
domain convolution product with kernel κ:

Sv = 2μκ ∗ �̇, where κ(t) = (t/τ )−α

�(1 − α)
H(t), (7)

and H represents the Heaviside step function. In agreement with previous definitions, we thus have the
relationship κ ∗ �̇ = τα Dα�. In terms of the Cauchy stress tensor, we find:

σ v = 2μ F(κ ∗ �̇)FT = 2μκ ∗ (Ft|sDFT
t|s), (8)

due to the identity �̇ = F−1DF−T. Here, the tensor

Ft|s = F(t)F−1(s), (9)

is the relative deformation gradient from the configuration at the integration time s ∈ [0, t] to the configuration
at the current time t. We emphasise that other expressions for the convolution kernel are possible (see the review
by Freed and Diethelm [19] for alternatives).

With the above expressions of the viscous stress, we recover the Newtonian viscous stress Sv → 2η�̇, i.e.,
σ v → 2ηD, in the limit of integer differentiation α → 1, where η = μτ . In the limit of no differentiation
α → 0, we obtain the extra elastic contribution Sv → 2μ�, i.e., σ v → μ(B − I), which is of neo-Hookean
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type—this property can be inferred from a redefinition of the Lagrange multiplier in equation (2)b, see also the
expression (23) of the Mooney–Rivlin stress with the second Mooney parameter C− equal to zero. Therefore,
this model manages to cover and connect an elastic theory and a viscous theory.

The present theory is strongly related to other models found in the literature. Indeed, equation (8) matches
equation (2.43) of Shen [20], where it is linked to the theory by Drozdov [12] (cf. next paragraph). It is also
of the general form proposed in Capilnasiu et al. [15], equation (5) therein, although it does not match later
propositions from that study. Furthermore, the above expression is found in Palade et al. [11] as a special case
of equation (16) therein. It is also aligned with “Model A” of Haupt and Lion [13], see equation (5.12) therein.
In particular, if the kernel κ is chosen exponential instead of the power-law expression (7), then we recover
the “upper-convected” Maxwell model which involves the Oldroyd rate of Cauchy stress (also equivalent to the
Truesdell rate in the incompressible case).

Equations (27)–(32) of Drozdov [12] introduce a viscous stress based on a relative deformation gradient
tensor and the strain-rate tensor D. However, the conventions therein differ from the present ones. To reconcile
the two, we take the transpose of the deformation gradients in Drozdov [12], see also equation (4) and later
sections therein. Thus, equation (3) of Drozdov [12] becomes FT

t|s = F−T(s)FT(t) if our notations (9) are used,
and the viscous stress (32) proposed therein takes the form of equation (8)b.

2.2. Model B

We introduce a fractional time derivative (1) of the Green–Lagrange strain E in the definition of the viscous
stress (4) as follows: Sv = 2ηαC−1(DαE)C−1, i.e.,

Sv = 2μ C−1(κ ∗ Ė)C−1, (10)

σ v = 2μ F−T(κ ∗ Ė)F−1 = 2μκ ∗ (F−T
t|s DF−1

t|s ), (11)

where we have used the same notations as for Model A, as well as the identity Ė = FTDF. Thus, the Cauchy
stress has a similar expression as in equation (8), up to the fact that the relative deformation gradient tensor Ft|s
has been replaced with its inverse transpose.

With the above expression, we recover the same viscous limit as for Model A when α → 1. In the limit
of no differentiation α → 0, equation (10) yields the elastic stress Sv → 2μ�C−1, i.e., σ v → μ(I − B−1).
Thus, up to a redefinition of the Lagrange multiplier in equation (2)b, we observe that the elastic limit of this
theory corresponds to Mooney–Rivlin elasticity (23) with the first Mooney parameter C+ equal to zero. The
viscous stress (10) corresponds to Model B of the study by Haupt and Lion [13], see equation (5.22) therein.
In particular, if the kernel κ is chosen exponential instead of the power-law expression (7), then we recover the
“lower-convected” Maxwell model involving the Cotter–Rivlin rate of Cauchy stress.

2.3. Model C

We introduce a fractional time derivative (1) of the Green–Lagrange strain E in the definition of the second
form of viscous stress (6) as follows: Sv = 2ηα DαE, i.e.,

Sv = 2μκ ∗ Ė, σ v = 2μ F(κ ∗ Ė)FT, (12)

where we have used the same notations as for Model A. The only difference with respect to Model B is the
multiplication of the second Piola–Kirchhoff stress tensor by C−1 on the left and on the right in the latter case.

With the above expression, we recover Sv → 2ηĖ, i.e., σ v → 2ηBDB, in the limit of integer differentiation
α → 1. In the limit of no differentiation α → 0, equation (12) yields the elastic stress Sv → 2μE, i.e.,
σ v → μ(B2 − B). We note that the proposed viscous stress is of the general form found in Capilnasiu et al.
[15]. Using the identity Ė = FTDF, we observe that the viscous stress (12) is included in equation (18) of
Palade et al. [11] as a special case. In particular, if the kernel κ is chosen exponential instead of the power-law
expression (7), then we recover a Maxwell-type model involving the material rate of second Piola–Kirchhoff
stress. A scalar compressible model of this form was also proposed by Sugimoto [21], equation (3.7) therein.
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2.4. Other models

To facilitate comparisons, the viscous stresses for the Models A, B, and C are summarised in Table 1. Alternative
modelling approaches can lead to different definitions of the fractional viscous stress. In the following, we list
other propositions found in the literature:

• Freed and Diethelm [19] propose to exploit the K-BKZ hypothesis [22,23] (after Kaye, Bernstein, Kears-
ley, Zapas), which consists of a viscoelastic extension of elastic constitutive models based initially on
exponential relaxation kernels. Variations of this theory are provided by Coleman and Noll [24] (see equa-
tion (5.20) therein). Based on more general expressions of the stored viscous energy than for Model A,
see Rao and Rajagopal [25], these models can lead to rather complex expressions of the fractional viscous
stress.

• Another theory by Freed and Diethelm [9] includes formally similar viscous stresses to equation (8)b up
to the substitution of the relative deformation gradient Ft|s through the relative rotation Rt|s = R(t)RT(s),
where R is the proper orthogonal tensor in the polar decomposition of F (see, e.g., Holzapfel [16]).

• A given elastic stress Sr can be used to express the fractional viscous stress as Sv = κ ∗ Ṡr
D, which

involves the material time derivative of the deviator Sr
D, see [15, 26]. This way, we have the limit Sv → Sr

D
as α → 0. Here, the elastic stress Sr is not necessarily identical to the elastic response Se. For instance,
one might set Sr = μrI if this elastic stress is chosen neo-Hookean, where μr is a given shear modulus.
The present approach is further investigated in a recent preprint [27].

• Based on the same definition of the relative deformation gradient tensor Ft|s as in equation (9), Zhao et
al. [28] switch the position of the transposition symbols in equation (8)b to mimic Drozdov [12] (see
equations (2)–(10) of Zhao et al. [28] and also equations (6)–(8) of Gao et al. [29]).

• Delory et al. [30] introduce pseudo-Newtonian stresses based on a fractional rate of deformation gradient
Ḟ, invoking Zhang et al. [31] where fractional viscosity is incorporated in a linear fashion.

3. Approximation of the fractional derivative
For practical use, we represent the convolution kernel of equation (7) by a continuous sum of exponentials:

κ(t) = H(t)
∫ ∞

0
φ(ζ ) e−t/ζ dζ , φ(ζ ) = τα sin(απ )

π ζα+1
, (13)

with a suitable expression of the spectrum φ (see Lion [32] and Euler’s reflection formula). This particular form
of κ is a diffusive representation of the fractional derivative (see section 7.4.1 of Matignon [1] where the same
expression is proposed up to a change of variable in the integral).

In practice, the continuous spectrum of relaxation (13) might be approximated by a discrete one, which leads
to a Prony-type theory with exponential relaxation [26]. A straightforward discretisation of this kind is obtained
based on Gauss–Laguerre quadrature, which consists in evaluating the integrand of equation (13) at the roots
of the Laguerre polynomial of degree N with suitable weights. Faster convergence can be obtained based on a
change of variable followed by Gauss–Jacobi quadrature (see Diethelm [33] as well as Birk and Song [34] for
more elaborated techniques).

For the purpose of illustration, we consider a straightforward Prony series approximation here, and we
discuss its suitability. Thus, we write:

κ(t) = sin(πα)

πα
H(t)

∫ 1

0

e−t/ζ

θ
dθ � κN (t), (14)

where

κN (t) = H(t)
N∑

n=1

wne−t/ζn , wn = sin(πα)

παNθn
. (15)

Here, we have used the change of variables ζ = τ (− ln θ)−1/α in the integral (13) over the time coordinate ζ .
The resulting integral over θ = exp(−(ζ/τ )−α) was then approximated as a discrete sum based on the extended
midpoint rule with N points θn = 2n−1

2N for 1 ≤ n ≤ N , which correspond to the relaxation times ζn = ζ |θ=θn .
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(a) (b)

Figure 3. Exact convolution kernel (full line) and its diffusive Prony series approximation for α = 0.3 with N = 3 (dotted line) and
N = 6 terms (dashed lines). (a) Impulse response. (b) Fourier spectrum.

Such an approximation of the kernel κ as a finite sum of exponentials is rather accurate over a broad range of
times and frequencies provided a sufficient number N of relaxation mechanisms is included (see the example in
Figure 3 where we have used N = 3 and N = 6). Therein, we display also the modulus of the Fourier transform
κ̂(ω) = ∫

κ(t)e−iωtdt of κ and κN , which satisfies:

κ̂(ω)/τ = (iωτ )α−1, κ̂N (ω) =
N∑

n=1

wnζn

1 + iωζn
. (16)

In particular, the figure illustrates the error introduced by the bounded Prony series approximation (15) at
short times where κ is singular. Nevertheless, the figure shows that the Prony series approximation obtained for
N = 6 relaxation mechanisms is much more accurate than that obtained for N = 3 relaxation mechanisms at
long times, despite the singularity of κ̂ at low frequency.

Based on a representation of the form (13)–(14), the following identity holds for any causal tensor field T:

κ ∗ Ṫ =
∫ ∞

0
φ(ζ ) Tv

ζ dζ �
N∑

n=1

wnTv
ζn

. (17)

The tensors:

Tv
ζ =

∫ t

0
e−(t−s)/ζ Ṫ(s) ds, (18)

are memory variables governed by a differential equation of the form:

Ṫ
v
ζ = Ṫ − Tv

ζ /ζ . (19)

This result can be obtained by application of the Leibniz integral rule to equation (18)b. Under this form,
evaluation of the fractional derivative amounts to solving a linear system of differential equations.

Such approximations of the fractional derivative are therefore convenient from a computational point of view
as they avoid the storage of the history of T to evaluate the current viscous stresses. Nevertheless, it is worth
pointing out that special care should be taken as the system (19) might become stiff. In fact, if we consider
the approximation (15) at large N , the smallest dimensionless relaxation time ζ1/τ = ln(2N )−1/α approaches
zero, whereas the largest relaxation time ζN/τ = ln( 2N

2N−1 )−1/α approaches infinity. Further improvements of the
approximation (15) can be obtained through optimisation of the 2N coefficients ζn, wn (see, for instance, Blanc
et al. [35]).
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4. Properties

4.1. Material frame-indifference

Here, we examine the acceptability of the above-mentioned models in terms of the material frame-indifference
principle, which stipulates that the mechanical response of a material should not be affected by a change of
observer (Holzapfel [16], sections 5.2–5.4). Doing so, we show that some of the presented models do not
comply with the material frame-indifference principle.

We consider the superimposed rigid-body motion defined by x+ = c + Qx, where c(t) is a vector and Q(t)
is a proper orthogonal tensor. Then, the deformation gradient tensor transforms according to F+ = QF. The
kinematic variables �, E and their material time-derivatives are unaffected by the rigid-body motion: � = �+,
E = E+, as are second Piola–Kirchhoff stresses: S+ = S. Using the product rule, we derive the change of
observer formula: Ḟ

+ = Q̇F +QḞ, leading to: L+ = �+QLQT, where � = Q̇QT is skew-symmetric, showing
that L is not an objective tensor. The Eulerian strain rate tensor and the Cauchy stress tensor are objective,
because they satisfy the change of observer formulas D+ = QDQT and σ+ = QσQT.

Now introduce the polar decomposition of the deformation gradient tensor: F = RU = VR, where the
stretch tensors U and V are positive definite and symmetric. The tensor R is a proper orthogonal tensor which
satisfies the transformation rule R+ = QR. Based on the definition of the relative deformation gradient tensor
Ft|s in equation (9) and of the relative rotation tensor Rt|s, we derive the following transformation rules for these
quantities: F+

t|s = Q(t)Ft|sQT(s) and R+
t|s = Q(t)Rt|sQT(s).

The viscous Piola–Kirchhoff stress Sv defined in equations (7)–(12) must remain invariant. Because �̇ and
Ė are unaffected by the superimposed rigid-body motion, the present constitutive laws are frame-indifferent. An
alternative proof for Models A and B is to use the transformation rule for Ft|s to show that equations (8)b and
(11)b are frame-indifferent.

Remark 1. Using the transformation rule for the relative deformation gradient tensor, one shows that the K-
BKZ viscous stress is frame-indifferent. The transformation rule for Rt|s yields the acceptability of the theory
by Freed and Diethelm [9] from the point of view of material frame-indifference. Given that the models found
in Capilnasiu et al. [15] and Zhang et al. [26] involve only invariant quantities (e.g., second Piola–Kirchhoff
stresses and their material rates), the material frame-indifference property is straightforwardly satisfied for these
theories.

Remark 2. Zhao et al. [28] propose σ v = 2μκ ∗ (FT
t|sDFt|s). Then, superimposition of the rigid-body motion

x+ = c + Qx provides:

σ v+ = 2μ Q
(
κ ∗ (�TFT

t|s�
TD �Ft|s�)

)
QT, � = QT(s)Q(t). (20)

Delory et al. [28] propose σ v = μ (l + lT) with l = (κ ∗ Ḟ)F−1. This way:

σ v+ = μ Q
(
κ ∗ (�TQTQ̇F−1

t|s − F−T
t|s QTQ̇�)

)
QT

+ μ Q
(
(κ ∗ �TḞ)F−1 + F−T(κ ∗ Ḟ

T
�)

)
QT,

(21)

where the skew-symmetry of � was used. As shown in the above computations, we note that σ v+ 
= Qσ vQT in
general, for both theories. Therefore, these constitutive laws are not frame-indifferent.

4.2. Thermodynamic consistency

Thermodynamic consistency of Models A and B was proved by Haupt and Lion [13]. For Model C, thermo-
dynamic consistency can be obtained in a similar way to the linear case [32]. To do so, we use the diffusive
representation (13) to rewrite the viscous stress (12)a as Sv = 2μ

∫
φ(ζ )Ev

ζ dζ by reversing the order of
integration, where Ev

ζ is a memory variable defined in equation (18) with T = E.
In an isothermal modelling framework, the free energy per unit of reference volume is then defined as:

� = �e + �v, (22)

where �e is the strain energy function associated with the elastic stress contribution, �v = μ
∫ ∞

0 φ(ζ )‖Ev
ζ ‖2dζ

corresponds to the viscous part, and ‖ · ‖ is the Frobenius norm. According to the first and second principles
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of thermodynamics, the dissipation D = S : Ė − �̇ per unit of reference volume must remain non-negative at
all times, where the colon symbol denotes the double contraction, aka the Frobenius inner product. Using the
above expression of �, the inequality D ≥ 0 is obtained straightforwardly (see section 6.3 of Holzapfel [16]
for the inclusion of incompressibility).

The dissipative behaviour of the discretised version (15) of this theory follows immediately. In fact, it suffices
to define the thermodynamic potential �v = μ

∑
n wn‖Ev

ζn
‖2 for the viscous part along with the stress Sv =

2μ
∑

n wnEv
ζn

. Under this form, similarities with Prony series theories from the literature can be identified [36].

Remark 3. The thermodynamic admissibility of the K-BKZ theory was studied by Bernstein et al. [37] (see
also Rao and Rajagopal [38]). Freed and Diethelm [9] leave thermodynamic consistency to the reader’s curiosity,
and Capilnasiu et al. [15] and Zhang et al. [26] do not provide the thermodynamic potentials related to their
model either.

5. Elementary motions
Various illustrations are provided in the following sections, including simple shear and uniaxial tensile motions.
The Cauchy stress tensor σ is deduced from equation (2)b with suitable constitutive assumptions for the elastic
and viscous parts. Here, we assume that the elastic response is of Mooney–Rivlin type, i.e.,

σ e = 2C+B − 2C−B−1, 2C± = 1
2μ(1 ± β), (23)

where B = FFT is the right Cauchy–Green strain tensor, μ > 0 is the shear modulus, and the parameters C±
are the Mooney coefficients. The parameter −1 ≤ β ≤ 1 is introduced in such a way that β = 1 entails neo-
Hookean material behaviour. For the sake of clarity, we now reduce the discussion to Models A, B, and C. Thus,
the viscous stress σ v is deduced from equations (8)–(12), respectively (see also the expressions in Table 1).

5.1. Simple shear

We consider general simple shear motions described by the deformation gradient tensor F = I + γ (ex ⊗
ez), where γ (z, t) is the shear strain, and the vectors ex, ey, ez form an orthonormal basis. With the present
assumptions, we obtain the corresponding stress–strain relationships:

� = ε + τα Dαε, � = ε + τα (Dαε + K2ε Dαε2), (24)

for Models A, B and for Model C, which correspond to equations (24)a and (24)b, respectively. Here, � =
σ13/(μK) is a non-dimensional measure of the shear stress, ε = γ /K is a rescaled shear strain, and K > 0 is a
given strain magnitude. We observe that Models A and B lead to a linear fractional Kelvin–Voigt rheology. Note
in passing that Models A, B, and C produce the same expression of the shear stress in the limit of infinitesimal
shear strains K → 0, namely, equation (24)a.

5.1.1. Shear creep. In a standard fashion [8], we now assume that the material is initially at rest and that it is
suddenly subjected to a step shear stress � = H(t) which entails a simple shear deformation. The evolution of
the strain is governed by the fractional differential equations resulting from the above constitutive relationships.

Models A and B. In this case, the relationship (24)a with � = H leads to the linear fractional differential
equation ε + τα Dαε = H. Solutions are given by the creep function [39]:

ε(t) = 1 − Eα(−(t/τ )α), Eα(z) =
∞∑

n=0

zn

�(αn + 1)
, (25)

where Eα is the one-parameter Mittag–Leffler function (see also Podlubny [2]). Illustrations are provided in
Figure 4(a) for several values of α. In the elastic limit α → 0, the creep response is a step shear strain (dotted
line), whereas in the viscous limit α → 1, we recover an exponential creep response [8] (dashed line).
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(a) (b)

Figure 4. Time-dependent shearing motion for Models A and B. (a) Creep function, i.e., evolution of the strain for a constant applied
stress. (b) Relaxation function, i.e., evolution of the stress for a constant applied strain.

Model C. Here, we obtain a nonlinear fractional differential equation deduced from equation (24)b with � =
H. In the present case, exact resolution of the creep problem seems hardly tractable. Approximate resolution
might be performed, for instance, based on the representation (13)–(14) of the fractional derivative or on a
perturbation approach involving the small parameter K (see, for instance, [40]).

5.1.2. Shear stress relaxation. Initially at rest, the material is suddenly subjected to a step shear strain ε = H(t).
The evolution of the stress is deduced from equation (24).

Models A and B. The stress–strain relationship (24)a produces � = ε + κ ∗ ε̇, where we have rewritten
the fractional derivative (1) in the form of a convolution product. At positive times, we therefore find � =
1 + κ , where the kernel κ(t) in equation (7) follows a power-law evolution. Note in passing that the first (unit)
term vanishes in fluid materials. Illustrations are provided in Figures 3 and 4(b), which can be compared to
experimental results from the literature (see Figure 1). In the elastic limit α → 0, the relaxation response is a
step shear stress (dotted line), whereas in the viscous limit α → 1, the relaxation response is singular (dashed
line). Unlike their fractional counterpart, classical Kelvin–Voigt models cannot account for stress relaxation [8].

Model C. Here, direct evaluation of the stress is not straightforward (the nonlinear term of equation (24)b
with ε = H seems not well-defined). Nevertheless, noting that H2 = H in the weak sense, one would obtain
� = 1+(1+K2) κ at positive times, provided that every step of this computation is mathematically meaningful.
This way, the curves displayed in Figure 4(b) undergo a vertical dilation as K is increased.

5.2. Uniaxial tension-compression

We consider a state of uniaxial tension described by the diagonal deformation gradient tensor F =
diag[λ, λ−1/2, λ−1/2] at all times. Consequently, the Cauchy stress tensor σ is diagonal and its lateral com-
ponents are equal, σ22 = σ33. By making these lateral stresses vanish, the constitutive law (2) yields an additive
decomposition of the tensile Cauchy stress:

σ11 = σ e
11 + σ v

11, (26)

where the elastic part σ e
11 = 2 (λC+ + C−) (λ − λ−2) follows from the Mooney–Rivlin model (23). The tensile

component of the viscous stress deduced from Models A, B, and C satisfies:

σ v
11/ηα = λ−1 Dαλ − λ2 Dαλ−2,

σ v
11/ηα = λ−2 Dαλ2 − λ Dαλ−1,

σ v
11/ηα = λ2 Dαλ2 − λ−1 Dαλ−1,

(27)

respectively.
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Figure 5. Acoustoelasticity. Combination of a large static deformation and a small incremental perturbation.

In the limit of small tensile strains ε = 3(λ − 1)/K � 0, we obtain the linearised expression (24)a of the
dimensionless tensile stress � = σ11/(μK) for all models. Therefore, the creep and relaxation behaviour in
shear and tension-compression are formally equivalent at small strain amplitudes (see illustrations in Figure 4).
Furthermore, we observe that σ v

11/η
α has identical limits for Models A and B as α → 0 or α → 1 (namely, 0 and

3λ̇/λ), but that Model C has different limits (namely, λ4 − λ−2 and (2λ3 + λ−3)λ̇). The above variability of the
tensile viscous stress for large stretches provides a potential means of selecting practically relevant constitutive
theories based on tensile stress relaxation experiments.

Remark 4. Upon division of σ v
11 in equation (27)a by the stretch λ, we recover the expression of the “11”-

component of the first Piola–Kirchhoff stress Pv = σ vF−T provided in equation (52) of Zhao et al. [28] (see
also equation (26) of Gao et al. [29]). This equivalence is caused by the symmetry of the relative deformation
gradient tensor Ft|s in the uniaxial tensile case (see definition in equation (9)). Thus, this remark applies also to
the pure shear and equibiaxial tensile motions for which the deformation gradient tensor can be chosen diagonal.
We conclude that the experimental results obtained in Zhao et al. [28] and Gao et al. [29] are consistent with
Model A, which is a frame-indifferent version of the theory proposed therein.

6. Incremental stress and acoustoelasticity
In this section, the material is subjected to an infinitesimal perturbation ũ = x − x̄ of a motionless equilibrium
x̄, whose stress σ̄ = −p̄I + σ̄ e is assumed homogeneous. Hence, the equilibrium equation ∇̄ · σ̄ = 0 for the
pre-deformation x̄ = F̄X is naturally satisfied. Here, quantities with an overbar are related to the statically
pre-deformed configuration, whereas tildes mark infinitesimal increments (cf. Figure 5).

The total deformation gradient reads F = F̄ + HF̄, where H = ∂ũ/∂ x̄ is the incremental displacement
gradient, and the total particle velocity reduces to the incremental part: ẋ = ˙̃u = ṽ. Based on the decomposition
σ = σ̄ + σ̃ of the stress, linearisation of Cauchy’s equation of motion with respect to ũ yields the incremental
equations of motion [36]:

ρ ∂tṽ = ∇ · σ̃ , (28)

along with the linearised incompressibility constraint ∇ · ṽ = 0.
By linearisation of equation (2)b, we arrive at the expression of the incremental stress σ̃ = −p̃I + σ̃

e + σ̃
v,

whose elastic part satisfies:

σ̃
e = 2C+(HB̄ + B̄HT) + 2C−(HTB̄

−1 + B̄
−1

H), (29)

see equation (23). Based on the relationship σ̃ v = F̄S̃
v
F̄

T
, Models A, B, and C produce:

σ̃
v = 2μκ ∗ D̃, σ̃

v = 2μ B̄(κ ∗ D̃)B̄, (30)

where D̃ = sym ∇ ṽ is the symmetric part of the incremental velocity gradient. Note that Models A and B yield
the same viscous stress increment, equation (30)a.
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Remark 5. We note that the non-objective fractional velocity gradient used by Delory et al. [30] produces the
same incremental stress as in equation (30)a. Therefore, the Models A and B can be used as a frame-indifferent
substitute for the velocity gradient in the discussed study.

Now consider body waves propagating in a material subject to a homogeneous tri-axial stretch F̄ =
diag[λ̄1, λ̄2, λ̄3], with λ̄1λ̄2λ̄3 = 1 by incompressibility. The principal Cauchy stresses σ̄i required to effect
the pre-deformation are such that:

σ̄i − σ̄j = 2C+(λ̄2
i − λ̄2

j ) − 2C−(λ̄−2
i − λ̄−2

j ), (31)

where the coefficients C± are defined in equation (23).
We study harmonic principal body waves of the form ũ = û ei(ωt−kx), where û is the constant amplitude

vector, ω is the angular frequency, k is the wavenumber, and x is the direction of propagation. We see from
∇ · ṽ = 0 that the polarisation of the wave must be transverse to accommodate incremental incompressibility:
û · ex = 0.

Consider the wave polarised along y: û = ûey. The harmonic amplitudes of ∂tṽ and κ ∗ D̃ are −ω2ûey and
−(iωτ )αikû sym(ey ⊗ ex), respectively. Using the incremental equation of motion (28), we obtain the following
dimensionless dynamic moduli M∗ = ρω2/(μk2) for Models A–B and for Model C:

M∗ = 1+β

2 λ̄2
1 + 1−β

2 λ̄−2
2 + (iωτ )α ,

M∗ = 1+β

2 λ̄2
1 + 1−β

2 λ̄−2
2 + λ̄2

1λ̄
2
2 (iωτ )α ,

(32)

respectively. The real and imaginary parts of M∗ represent the storage modulus Re M∗ and the loss modulus
Im M∗, respectively. We note that Models A and B cannot capture a change of loss modulus with the pre-stretch.

We can deduce other dispersion properties from equation (32) (see section 2.3 of Carcione [8]). For instance,
the dissipation factors d∗ = Im M∗/Re M∗ for Models A–B and for Model C are given by:

d∗ = (ωτ )α sin(α π
2 )

1+β

2 λ̄2
1 + 1−β

2 λ̄−2
2 + (ωτ )α cos(α π

2 )
,

d∗ = λ̄2
1λ̄

2
2 (ωτ )α sin(α π

2 )
1+β

2 λ̄2
1 + 1−β

2 λ̄−2
2 + λ̄2

1λ̄
2
2 (ωτ )α cos(α π

2 )
,

(33)

respectively. In the special case of neo-Hookean behaviour β = 1, we see that the dissipation factor for Mod-
els A and B is sensitive to the stretch along the propagation direction, while for Model C, it depends on the
stretch along the polarisation direction. Upon nondimensionlisation, the phase velocity c = ω/Re k and the
attenuation factor a = −Im k satisfy:

c2 = 2
(
1 + d∗2

)
1 + √

1 + d∗2
Re M∗, a2 = (ωτ )2

Re M∗

√
1 + d∗2 − 1

2 (1 + d∗2)
, (34)

for all models.
For illustrative purposes, consider a neo-Hookean viscous body for which β = 1, which is subjected to

uni-axial traction of stretch λ̄ (see, for instance, the experimental configuration in Delory et al. [41]). Three
types of principal waves may propagate in such a deformed body [42]. First, the wave travelling in a direction
perpendicular to the uni-axial tension and polarised along that direction (e.g., a wave propagating along the x-
axis and polarised along the y-axis, which is the direction of uni-axial tension). Here, λ̄1 = λ̄3 = λ̄−1/2, λ̄2 = λ̄.
Wave dispersion properties are then deduced from equations (32)–(34).

In the first row of Figure 6, we show the variations of the corresponding storage moduli Re M∗ and loss
moduli Im M∗ with the dimensionless frequency ωτ for some given values of pre-stretch, respectively, found
from:

M∗ = λ̄−1 + (iωτ )α , M∗ = λ̄−1 + λ̄ (iωτ )α. (35)

In particular, the figure shows the evolution of the loss modulus in terms of the frequency (Figure 6(b)). As
predicted earlier, the loss modulus is unaffected by variations of the pre-stretch for Models A and B, whereas
the loss modulus increases with increasing values of λ̄ when Model C is used.
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(a) (b)

Figure 6. Principal plane shear waves propagating in a neo-Hookean viscous material (β = 1) subject to uni-axial tension. The
material has fractional viscosity of order α = 0.3 and the pre-stretch equals λ̄ = 3

5 , 1, 5
3 . Dimensionless storage modulus (a) and

loss modulus (b) for waves polarised along the stretching direction (top) and for waves with propagation direction and polarisation
transverse to the uni-axial tension (middle). Same for shear waves propagating along the stretching axis (bottom).

For Models A and B—i.e., for M∗ satisfying (35)a — the relationships (33)–(34) entail the following
asymptotic expansions for 0 < α < 1:

d∗ ∼
0

(ωτ )α sin(α π
2 ) λ̄, d∗ ∼∞

(
1 − (ωτ )−α sec(α π

2 )/λ̄
)

tan(α π
2 ),

c ∼
0

(
1 + (ωτ )2α sin(α π

2 )2
)
λ̄− 1

2 , c ∼∞ (ωτ )
α
2 sec(α π

4 ),

a ∼
0

1
2 (ωτ )1+α sin(α π

2 ) λ̄
3
2 , a ∼∞ (ωτ )1− α

2 sin(α π
4 ),

(36)

at low- and high-dimensionless frequency ωτ . The above quantities (33)a–(34) with β = 1 and the approxi-
mations (36) are displayed in Figure 7 for several values of the pre-stretch. Although the loss modulus does
not vary with pre-stretch, λ̄ still influences the dispersion properties through modification of the storage mod-
ulus. Of course, similar computations can be carried out for viscous Mooney–Rivlin solids −1 ≤ β < 1, for
Model C, and even with other wave polarisations, given that equation (34) is model-independent.

The second principal shear wave propagates and is polarised transversely to the direction of stretching. Then,
λ̄1 = λ̄2 = λ̄−1/2, λ̄3 = λ̄, and:

M∗ = λ̄−1 + (iωτ )α , M∗ = λ̄−1 + λ̄−2(iωτ )α , (37)

for Models A–B and for Model C, respectively. Finally, the third wave propagates along the direction of stretch-
ing and λ̄1 = λ̄, λ̄2 = λ̄3 = λ̄−1/2. In this case, we have the following dimensionless dynamic moduli for
Models A–B and for Model C:

M∗ = λ̄2 + (iωτ )α , M∗ = λ̄2 + λ̄ (iωτ )α, (38)

respectively, see the second and third rows of Figure 6 for the variations of the storage and loss moduli with the
frequency when α = 0.3.
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(a) (b) (c)

Figure 7. Dispersion characteristics (33)–(36) in terms of the dimensionless frequency: (a) dissipation factor, (b) normalised phase
velocity, and (c) normalised attenuation coefficient. Models A and B with α = 0.3, β = 1, and stretch λ̄ = 3

5 , 1, 5
3 , where shear waves

are polarised along the stretching direction.

As shown in the figure, the first two waves yield a decrease of the storage modulus with increasing values
of the applied stretch (see the first two rows of Figure 6), whereas the third wave leads to the opposite trend
(third row of Figure 6). This feature can be explained by the relationship between the propagation direction and
the stretching direction. In fact, the first two waves both propagate orthogonally to the direction of stretching.
Hence, by virtue of incompressibility, they are subject to a contraction along their propagation direction if λ̄ > 1.
In contrast, the third wave travels along the direction of stretching, which implies that this wave is subject to an
extension along its propagation direction if λ̄ > 1.

7. Conclusion
Several fractional viscous stresses were investigated. Among others, Models A, B, and C are both physically
satisfactory from the points of view of material frame-indifference and thermodynamic consistency. Neverthe-
less, one might prefer Model A or Model B due to their ease of use (e.g., for the study of shearing and tensile
motions in creep and relaxation) and for the mathematical properties of the viscous limit. Although Models A
and B both correspond to the classical Newtonian theory of viscosity for α → 1, their elastic limits α → 0
differ. In passing, we observe that linear combinations of these models produce Mooney–Rivlin stresses (23) in
the elastic limit (see the expressions in Table 1).

Despite this observation, it appears that Models A and B are very similar in many respects. In fact, they lead
to the same creep and relaxation behaviour in simple shear. They produce also the same incremental stresses, as
shown by the theory of acoustoelasticity. Nevertheless, they can be distinguished according to their creep and
relaxation behaviour at large stretches (27), which could be useful for experimental calibration purposes.

Interestingly, we note that the dispersion relationships obtained for body waves in section 6 are reminiscent
of experimental and theoretical results obtained for Lamb wave propagation in stretched plates [30], as well as
for wave propagation in stretched strips [41]. On this basis, an experimentally calibrated theory that complies
with the elementary principles of physics has yet to be established. This study provides relevant models to carry
out such a task.

On one hand, if the loss modulus does not vary significantly with applied stretches, then Models A or B
might be satisfactory. On the other hand, if the experimental data shows that the loss modulus varies with the
pre-stretch, then Model C might be preferred, despite its mathematical complexity for elementary shearing and
tensile motions. Alternatively, a more general fractional viscosity theory based on Model A or Model B could
be derived by including further tensor invariants [43] (e.g., in the framework of the K-BKZ theory), especially if
it provides a better fit with experiments. Such an approach was followed by Delory et al. [30] for the modelling
of their experimental data.

Some limitations of this study are the restriction to incompressible motions and to fractional viscosity
theories with one differential order only. Related compressible theories could be obtained by removing the
incompressibility constraint and by incorporating the missing strain and strain-rate tensor invariants. In the
same spirit, fractional Maxwell models with two fractional differential orders could be developed [11].
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