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ABSTRACT

Skin tension plays a pivotal role in clinical settings, it affects scarring, wound healing and skin necrosis.
Despite its importance, there is no widely accepted method for assessing in vivo skin tension or its natu-
ral pre-stretch. This study aims to utilise modern machine learning (ML) methods to develop a model that
uses non-invasive measurements of surface wave speed to predict clinically useful skin properties such
as stress and natural pre-stretch. A large dataset consisting of simulated wave propagation experiments
was created using a simplified two-dimensional finite element (FE) model. Using this dataset, a sensi-
tivity analysis was performed, highlighting the effect of the material parameters and material model on
the Rayleigh and supersonic shear wave speeds. Then, a Gaussian process regression model was trained
to solve the ill-posed inverse problem of predicting stress and pre-stretch of skin using measurements
of surface wave speed. This model had good predictive performance (R*> = 0.9570) and it was possible
to interpolate simplified parametric equations to calculate the stress and pre-stretch. To demonstrate that
wave speed measurements could be obtained cheaply and easily, a simple experiment was devised to ob-
tain wave speed measurements from synthetic skin at different values of pre-stretch. These experimental
wave speeds agree well with the FE simulations, and a model trained solely on the FE data provided ac-
curate predictions of synthetic skin stiffness. Both the simulated and experimental results provide further
evidence that elastic wave measurements coupled with ML models are a viable non-invasive method to
determine in vivo skin tension.

Statement of significance

To prevent unfavourable patient outcomes from reconstructive surgery, it is necessary to determine rel-
evant subject-specific skin properties. For example, during a skin graft, it is necessary to estimate the
pre-stretch of the skin to account for shrinkage upon excision. Existing methods are invasive or rely on
the experience of the clinician. Our work aims to present an innovative framework to non-invasively de-
termine in vivo material properties using the speed of a surface wave travelling through the skin. Our
findings have implications for the planning of surgical procedures and provides further motivation for
the use of elastic wave measurements to determine in vivo material properties.

© 2024 The Author(s). Published by Elsevier Ltd on behalf of Acta Materialia Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
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1. Introduction

The skin is the largest organ in the body and serves as the in-
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terface between the internal physiological environment and the ex-
ternal world. It plays a pivotal role in protection against external
threats, including the invasion of pathogens and fending off chem-
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ical and physical assaults [1]. It is under constant anisotropic ten-
sion and must be both pliable and durable for everyday movement.

In the surgical setting, skin tension plays a crucial role in
achieving optimal outcomes and fostering effective wound healing
processes [2,3]. In many surgical procedures, such as wound clo-
sure or breast reconstructions, maintaining appropriate skin ten-
sion is paramount. Excessive tension can lead to complications
such as compromised aesthetics and scarring [3,4], and further, to
significant psychosocial impacts for the patient [5]. It can also lead
to dangerous physical complications including wound dehiscence,
haematoma and skin necrosis, which can occur at alarmingly high
complication rates for patients. For example, recent publications
have reported overall complication rates for head and neck tissue
expansion of 8.73% [6] and that 8.9% of patients experience skin
necrosis from breast tissue expansion following a mastectomy [7].

It is well established that in vivo skin tension is aligned along
preferred directions known as Langer lines, skin tension lines or
relaxed skin tension lines [3,8,9]. Both the magnitude of in vivo
skin tension and its preferred orientation have been shown to be
patient-specific [10,11]. However, despite the important role skin
tension plays in surgery, there is no commonly accepted quan-
titative method to determine its magnitude or direction in vivo.
Currently, surgeons must rely on generic skin tension maps or an
imprecise “pinch test” to identify the orientation of skin tension
lines, which requires significant skill and experience to interpret
[10,12,13].

Recently, attempts have been made to identify the direction
of skin tension lines using suction devices [14], extensiometry
[15,16] and elastic wave propagation [10,17|. There have also been
attempts to quantify the magnitude of in vivo pre-stretch and skin
tension. However, many of the methods are invasive and cumber-
some and have not been widely adopted [10,18-20].

Most methods to determine the magnitude of pre-stretch in-
volve a destructive process where the skin is excised, and the
shrinkage is quantified [10,18,19]. A notable exception is the
method employed by Paul et al. where instead of skin being ex-
cised, rods are used to compress or stretch the skin [20]. However,
the measurement process is still invasive, as the rods must pierce
the skin for a measurement to be taken.

Our own recent publication analysed the direction and relative
magnitude of skin tension using a wave propagation device (Revis-
cometer® Model RVM 600, made by Courage & Khazaka Electronic
GmbH) to take in vivo measurements of the surface wave speed
[11]. Devices such as these can be made easily and cheaply to fa-
cilitate measurements of wave speed on the surface of the skin
along one axis. They often contain two piezoelectric transducers
spaced a known distance apart. One transducer impacts the sur-
face of the material, generating a surface wave, while the other
transducer detects the resulting wave and records the time taken
for that wave to propagate across the surface of the skin, along
one axis. We demonstrated that the direction of highest skin ten-
sion and its magnitude is subject specific and is affected by the
age and sex of the patient, and that skin tension is directly related
to the speed of the elastic wave [11]. We concluded that in vivo
elastic wave measurements are a suitable method for inferring in
vivo skin tension.

There exist analytical models relating the material properties to
a surface wave speed. For example, for a Rayleigh surface wave
travelling over a Mooney-Rivlin half space under uniform uniaxial
tension, the wave speed is [21]:

V= \/6';[(1 — B+ (1+ ﬂ)x1](1 - (0.2956)2)\1’3>, 1)

where v is the wave speed along one axis, E is the Young’'s mod-
ulus, p is the density, 8 is a dimensionless material parameter
which ranges from the neo-Hookean case (8 = —1) to the extreme
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Fig. 1. Dimensions and boundary conditions of the FE model of wave propagation.
(a) The uniaxial pre-stretch is generated using a displacement boundary condition,
and (b) the wave is generated by a 10 kPa pressure applied for 2 x 10~> s. The ver-
tical displacement of the nodes in the 4mm — 6 mm region was stored for analysis.

Mooney-Rivlin case (8 = +1), see Section 2.2 for more details; A;
is the pre-stretch in the direction of tension.

This analytical solution can be a useful tool, but, its real-world
use is limited as it makes a number of assumptions and outputs a
single wave which travels at a constant velocity. More recently, Li
et al. developed an analytical solution that describes two propagat-
ing waves to account for the Rayleigh and supersonic shear waves
[22]. Such analytical solutions can be useful for quantifying mate-
rial parameters of interest using non-destructive means. Notably,
Feng et al. developed a travelling-wave optical coherence elastog-
raphy technique to measure the elastic modulus of the epidermis,
dermis, and hypodermis [23]. However, to the best of our knowl-
edge, there is no analytical method to determine the magnitude of
skin tension, stress or pre-stretch.

It seems that, an objective method has not yet been developed
that can non-invasively determine important subject specific pa-
rameters such as skin tension. As such, the overall objective of the
paper is to present a method which can non-invasively identify the
magnitude of in vivo skin tension and stress using surface wave
speeds. To this goal, we have devised the following procedure,
which constitutes the innovative contribution of this research:

1. Development of a simplified finite element (FE) model that
simulates a typical surface wave propagation experiment in in
vivo skin.

2. Creation of a large database of simulated test cases representa-
tive of real-world conditions.

3. Development of a statistical emulator for the purpose of a sen-
sitivity analysis to elucidate the general trends and important
features of surface wave propagation in in vivo skin.

4, Development of a machine learning (ML) model which can
solve, in real time, the ill-posed and inverse problem of deter-
mining in vivo tension and stress from elastic wave speeds.

2. Materials and methods
2.1. Finite element modelling

The FE model for this study was designed to be both compu-
tationally inexpensive, as our analysis will involve running many
simulations, and analogous to existing wave propagation devices
(for example, the Reviscometer®).

We simulate a pre-stretched two-dimensional block of skin and
impact the surface, see Fig. 1. This generates a wave that prop-
agates along the surface of the skin. The vertical displacement
of the nodes at known distances from the impact site can then
be stored for analysis. To implement the model, firstly, the non-
linear FE package Abaqus/Standard (Dassault Systems, Waltham,
MA) was used to statically pre-stretch the skin and, subsequently,
Abaqus/Explicit (Dassault Systems, Waltham, MA) was used to per-
form the wave propagation. An assumption of plane stress was
used for the FE simulations, in other words, there was no stress
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Fig. 2. Graph of the vertical displacement for (a) a node 4.8 mm away from the impact and (b) all nodes in the 4 mm - 6 mm region of interest. neo-Hookean material with
a Young’s modulus of 175 kPa, a density of 1,116 kg m—3 and a pre-stretch of 1.2 (20% extension).

“out-of-plane” in the z-direction. A four node plane stress element
with reduced integration (CPS4R) was used to minimise compu-
tational complexity. The unstretched skin block has dimensions
10mm x 6 mm and was discretised into 150,000 CPS4R elements
with 150,801 nodes. The dimensions of the skin block were se-
lected to minimise wave reflections interfering with waveforms
from the region of interest (surface nodes 4 mm — 6 mm from the
impact). The skin block is modelled by a hyperelastic material (ei-
ther neo-Hookean or Mooney-Rivlin).

To perform the pre-stretch, a displacement boundary condition
was used to perform a uniaxial stretch. After the pre-stretch, a
wave was generated by applying a 10 kPa pressure for 2 x 10~
s; see Fig. 1.

A typical y-displacement vs time graph 4.8 mm away from the
applied perturbation is given in Fig. 2a. From these curves, impor-
tant information about the speed of the elastic waves can be ex-
tracted and used to predict the material properties of the block of
skin. For example, in Fig. 2 we see that a fast wave arrives just
before 0.4 ms followed by a larger peak and corresponding trough
occurring just before 0.6 ms. Finally, we can see a peak occurring
around 0.9 ms, which is the result of the first wave reflecting off
the bottom of the skin before reaching the node. The first wave
is the supersonic shear wave, and the second (larger) wave is the
Rayleigh surface wave (to be discussed further in Section 3.1).

The deformed coordinates of the nodes, i.e. their position af-
ter the pre-stretch step, can be used in conjunction with the ar-
rival time of the wave to determine the wave velocity. However,
this naive approach makes the implicit assumption that the wave
is travelling at constant speed. It also requires precise knowledge
about the wave generation method. For example, if a pressure is
applied, it is necessary to know the precise area that the pressure
was applied to as well as the duration of the perturbation.

By measuring multiple waveforms at different distances from
the perturbation, see Fig. 2b, it is possible to extract more accurate
measures of the wave speed while avoiding such assumptions. Fi-
nally, to avoid inherent discretisation errors when determining the
arrival time of the “maximum” y-displacement, the waveform data
points were interpolated by means of a quadratic spline function,
as implemented in the Python function “InterpolatedUnivariateS-
pline” from the Python sub-package “scipy.interpolate” [24]. This
smooth spline function passes through all data points and can be
differentiated to find a more accurate arrival time of the waveform
peak. Therefore, in our study, the speeds of the Rayleigh and su-
personic shear waves (vg and vs) were taken to be the average of
the wave speeds within the region of interest.

2.2. Input space sampling

Our goal was to train a ML model that could predict the ma-
terial parameters of the skin using only the Rayleigh wave speed
and supersonic shear wave speed described in Section 2.1. In order
to have a model that is capable of accurate predictions for a wide
variety of subjects with different combinations of material param-
eters, it was necessary to sample carefully from the input space.

We had to explore a four-dimensional input space of E, 8, p
and A; (Young’s modulus, beta, density and pre-stretch). To guar-
antee good coverage of this input space, a Latin hypercube sam-
pling method [25] was employed. Specifically, the function “Latin-
Hypercube” from the Python sub-package “scipy.stats.qmc” (Quasi-
Monte Carlo) [24] was used to generate 5,000 samples using a neo-
Hookean material model (8 = —1) and an additional 5,000 sam-
ples using a Mooney-Rivlin material model. The material parame-
ter ranges were chosen specifically to closely resemble those of in
vivo human skin.

The neo-Hookean material model is hyperelastic and is com-

monly used to describe incompressible material response due to
the simplicity of the form [26]. In Abaqus, its strain energy func-
tion U can be expressed as:
U =Cioh —3)+Dl](]e1—1)2, (2)
where Cjg and D; are material parameters, I; is the reduced first
strain invariant of the left Cauchy-Green tensor and J,; is the elastic
volume strain [27]. C;¢ and D; can be related to the stiffness mea-
sured by the Young’s modulus E and the incompressibility mea-
sured by the Poisson ratio v by:

o _E _ 9-18v
10 = =>» _E(1+v)’

6
or, equivalently, to the shear modulus u and bulk modulus k by
[27]:

D; (3)

w
Co==, 4
0 =73 4)
The Mooney-Rivlin material model can be viewed as an exten-
sion of the neo-Hookean form, as it adds a term that depends on
the reduced second strain invariant I, [27]. In Abaqus, its strain
energy function can be expressed as:

_ - 1 )
U=C10(11—3)+C01(12—3)+D—](]e,—1) , (5)
where Cyg, Cp; and Dq are material parameters and J,; is the elastic
volume strain. In this case, the initial Young’s modulus E is ex-

pressed as [27]:
E =6(Co1 +Cio), (6)

Therefore, to express the model parameters Cyg, Cp; and D in
terms of E and v, a unitless parameter f is introduced:

c E 9 18v
Co=p(1-F) =514 V=g

or, equivalently, the model parameters Cyg, Cp; and D; can be writ-
ten in terms of © and k:

2
Co=14

S(1-8).  G=5(1+8), o (8)

where 8 ranges from —1, representing a pure neo-Hookean mate-
rial, to +1, representing a pure Mooney-Rivlin case.

v

(7)

D,
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Table 1

Material property ranges used when sampling from the input space.
Material Property Range Units
E [50,300] kPa
B [-1.1]
P [1060.2, 1171.8] kg/m?
A [1.05,1.35]

The density of skin p is often assumed to be a fixed value, for
example the value 1116kg/m3 [28]. However, to allow for some
variation due to hydration and other factors, we allowed the value
to vary by £5%. The skin’s pre-stretch range in the principal di-
rection A varies from study to study, depending on the measure-
ment procedure. Jor et al. reported a maximum skin retraction of
approximately 40% for porcine skin [19], Deroy et al. reported con-
tractions in the 10% — 30% range for canine skin [10] and finally, Ni
Annaidh et al. reported the mean failure strain of excised human
skin to be 54% + 17% [29]. For our study, a pre-stretch in the range
from 5% to 35% was chosen.

The stiffness of human skin as measured by the Young’s mod-
ulus E has been reported extensively using various methods. Liang
and Boppart reported forearm skin to have E < [50, 150] kPa using
optical coherence elastography [30], Li et al. reported values of the
forearm dermis in the range E € [152.27, 286.68] kPa by measuring
surface waves using optical coherence tomography [28], and Diri-
dollou et al. reported forearm skin with E € [80, 260] kPa using a
suction device [31]. As such, for our study, we selected a reason-
ably broad range of values between 50 kPa and 300 kPa. It should
be noted here that while the Young’s modulus is widely reported,
there is a significant spread in the literature, due to variations in
the location of the skin on the body, the method used to iden-
tify the Young’s modulus and subject-specific attributes including
age, sex, race, hydration, health etc. For instance, the review paper
by Joodaki and Panzer [32] presents a summary of studies on the
Young’s modulus of whole skin, with measurements varying sig-
nificantly. These variations range from 1.09 kPa (forearm of young
female) as reported by Bader and Bowker [33] using an indentation
test method, to tens of thousands of kPa reported by Grahame and
Holt [34] using a suction device. Note that we used a fixed value
for the Poisson ratio (v = 0.495) assuming all materials nearly in-
compressible [35-37].

In summary, 5,000 unique neo-Hookean and 5,000 unique
Mooney-Rivlin subjects were generated with a Latin hypercube
sampling technique using the material parameter ranges in Table 1.
Two different material models were used to examine if the training
and performance of the ML model were affected by the material
model employed, i.e. the neo-Hookean and Mooney-Rivlin formu-
lations, which are among the most common material models used
for the breast [38]. For each subject, a FE simulation consisting of
a static pre-stretch followed by a dynamic wave propagation tech-
nique (see Section 2.1) were performed, and the average Rayleigh
and supersonic wave speeds were stored. This dataset was then
used to train ML models of interest, as described in the subsequent
sections.

2.3. Statistical emulation

A “simulator” is a mathematical representation of a physical
system that is deterministic and computationally expensive, but
is often the gold standard for replicating complex real-world be-
haviour [39-42]. For example, the gold standard method for de-
termining the complex mechanical response of skin or other bi-
ological materials is a FE model. However, in practice, a three-
dimensional FE simulation could take hours to run, making this
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(b)

Fig. 3. Schematic of (a) the ML emulator used to relate the four input variables E,
B, p and A, (the Young’s modulus, beta parameter, density and pre-stretch respec-
tively), to the two output variables vg and v (the Rayleigh wave speed and super-
sonic shear wave speed, respectively). (b) The ML model used to infer the steady-
state stress, Sy, in the principal directions of stretch and the natural pre-stretch of
the subject’s skin, Ay, from the input variables corresponding to the Rayleigh wave
speed vi and the supersonic shear wave speed v;.

method infeasible in many clinical settings, where an analysis
needs to be performed quickly. Similarly, if it were of interest to
see how small changes to each individual FE input affected the
output (i.e. performing sensitivity analysis [43]), it would be nec-
essary to run many FE simulations, which could be very computa-
tionally expensive.

An “emulator” is a data-driven model that uses a training
dataset of diverse outputs from the simulator to reconstruct the
simulation outputs for unseen inputs in a relatively computa-
tionally inexpensive manner [39,41,42]. These cheap, fast, accu-
rate approximations of the true simulator outputs can allow for
clinical/real-world use, sensitivity analysis, efficient optimisation,
uncertainty quantification, etc [39,41,42].

In our study, the simulator is the two-dimensional FE model
described in Section 2.1, which has the material parameters of the
skin as its inputs (E, p, A and B8), and its outputs are the aver-
age Rayleigh and supersonic shear wave speeds (vg and vs) in the
4-6 mm region of interest; see Fig. 3. The training dataset for the
emulator consists of the 10,000 input instances obtained from the
Latin hypercube design for the various combinations of the input
parameters (E, p, A; and B), defined in Section 2.2, and the as-
sociated simulation velocity outputs (vg and vs). According to the
value of B, the dataset is composed of 5,000 instances of neo-
Hookean subjects and 5,000 Mooney-Rivlin subjects. While in prin-
ciple many statistical and ML models can be employed as emula-
tors (regression models, Gaussian process, random forests, support
vector machines, neural networks etc.) [44-46], here we consider
Gaussian process (GP) models [47] which allow for native uncer-
tainty quantification and have been used by Stowers et al. in the
context of predicting skin stress/strain for reconstructive surgeries
[48]. Specifically, a Gaussian process regression model as imple-
mented in “GaussianProcessRegressor” in the Python sub-package
“sklearn.gaussian_process” was used [49]. The GP regression model
was trained using a radial-basis function (RBF) kernel with length
scale 1.0 as implemented in “RBF” in the Python sub-package
“sklearn.gaussian_process.kernels” [49]. During the model training,
the kernel hyperparameters were optimised using the “L-BFGS-B”
algorithm from the Python sub-package “scipy.optimize.minimize”
[24], following the implementation by Rasmussen and Williams
[50]. To ensure the different magnitudes of the input variables (see
Table 1) and output variables do not cause issues, all variables
were rescaled to have mean 0 and standard deviation 1 prior to
model training. An inverse transformation can easily be performed
on the predictions from the trained GP model to obtain predictions
in the natural units. Specifically, the function “StandardScaler”
from the python sub-package “sklearn.preprocessing” was used to
standardise the input and output variables [49]. The trained GP
model was found to provide high predictive performance, and it
also allows for uncertainty quantification by giving the mean and
standard deviation as outputs when predicting, see Section 3.2.
The Gaussian process pipeline and a sample of the ML training
dataset can be found in the public GitHub repository accompa-
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Fig. 4. Schematic of the experimental device used to collect wave speed measurements. The device consists of a synthetic tissue (Simulab) which is stretched uniaxially to
a known pre-stretch value. A spring-loaded device provides the perturbation, and two piezoelectric sensors a known distance apart record the shape of the waveform for

analysis.

nying this publication https://github.com/matt-nagle/A_Gaussian_
process_approach_for_rapid_evaluation_of_skin_tension/.

2.4. Non-invasive prediction of material properties

As discussed in Section 1, there is a need to be able to mea-
sure the material properties of in vivo skin with a non-invasive
procedure. In this study, we suggest that the speed of a surface
wave travelling through the skin contains information about the
material properties, which can be extracted. In theory, determin-
ing the wave speeds could be very straightforward, see Section 2.5.
However, using these wave speeds to quantify stress and the pre-
stretch in vivo requires solving a complex inverse problem in real
time.

Similarly to the use of an emulator to reproduce the outputs of
a computer simulation, we propose using a ML model as a compu-
tationally efficient way of solving the inverse problem of inferring
stress and pre-stretch from the wave speeds. For this model, the
velocity of the supersonic shear wave vs and the Rayleigh wave
speed vg are now the input variables. The two target variables are
the steady-state (after the pre-stretch but before the wave propa-
gation) stress in the principal direction of stretch S;; and the natu-
ral pre-stretch of the subject’s skin Aq; see Fig. 3. These target vari-
ables were chosen as they are independent of the material model
being used (unlike the Young’s modulus E for example) and are the
parameters of most interest in a surgical setting. The same dataset
described in Section 2.3 obtained from the simulator is used for
training, where in this case the inputs are (v, vs) and the targets
are (Sll’ }\1)

Again, while in principle this model could be of any form, in
this case we consider a Gaussian process regression model with
standardised inputs and outputs as it provided high predictive
performance and also allowed for uncertainty quantification; see
Section 3.3.

2.5. Experimental validation

To demonstrate that surface wave speed data of the type de-
scribed in Section 2.1 can be collected easily and cheaply, a cus-
tom device was created consisting of two piezoelectric sensors and
a custom uniaxial stretching apparatus, see Fig. 4.

The skin sample used was a synthetic tissue from Simulab
(Seattle, USA), comprised of a single homogeneous layer of thick-
ness 1 mm [51], designed to replicate human skin tissue. The uni-
axial stretching apparatus consisted of a fixed base and two mov-
ing clamps mounted on a lead screw. The synthetic tissue was cut
into strips with known dimensions 50 mm x 24 mm and secured to
the clamps using a number of hooks that pierced through the skin.
A known uniaxial pre-stretch could then be applied to the skin by
rotating the lead screw.

A spring-loaded device was installed at a fixed distance above
the skin sample, capable of providing repeatable perturbations nor-
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Fig. 5. Typical graph of Voltage vs Time from the two piezoelectric sensors. Syn-
thetic tissue (Simulab) with a pre-stretch value of 1.12 (i.e. 12% stretch), the dis-
tance between the sensors was 17.13 mm. The most consistent results were found
when comparing the voltage trough immediately before the main voltage peak, ar-
rival times are marked in the inset plot with an “x”.

mal to the surface of the skin, to generate a surface wave. To mea-
sure the shape of the waveform, two piezoelectric sensors (TE Con-
nectivity Measurement Specialties) were fixed perpendicular to the
direction of the uniaxial stretch, placed at a known distance apart
and at a known distance from the impact site. The two sensors
were connected to a Handyscope HS3-100 oscilloscope (TiePie En-
gineering), from which it was possible to visualise the voltage gen-
erated by the sensor as a function of time, see Fig. 5.

Note that in Fig. 5 we see more oscillatory behaviour than in
the FE model data (Fig. 2). This is likely due to wave reflection
off the bottom of the skin sample and the inherently more com-
plex surface wave propagation behaviour we would expect in three
dimensions in a synthetic tissue sample. It should also be noted
that it was only possible to extract information about the Rayleigh
wave, as the supersonic wave was not visible. This may be due to
wave attenuation or its smaller amplitude (see Fig. 2), making it
more difficult to detect.

Using this setup, it was possible to experimentally determine
the effect of pre-stretch on the surface wave velocity. Four pre-
stretch values of 1.12, 1.19, 1.22 and 1.27 were considered, and five
measurements were performed for each pre-stretch value. Note
that the voltage-time waveforms obtained experimentally are anal-
ogous to the displacement-time graphs obtained from the FE sim-
ulations. Surface wave speed values were obtained by comparing
the “arrival time” of particular features of the two waveforms and
using the known distance between the piezoelectric sensors.

3. Results
3.1. Finite element results

As discussed in Section 2.1, the first step of each simulation was
to perform a uniaxial static pre-stretch to simulate a pre-stressed
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Fig. 6. Maximum principal stress (Pa) in the deformed neo-Hookean material with a Young's modulus of 175 kPa, a density of 1,116 kg m~3 and a pre-stretch of 1.2 (20%
extension). This frame of the simulation was taken after 0.553 ms of wave propagation. The (larger) Rayleigh wave can be seen travelling along the surface of the skin, as

well as the faster supersonic shear wave.
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Fig. 7. Histograms of the distribution of the Rayleigh and supersonic shear wave
speeds for all 10,000 subjects.

“in vivo” state before the wave was propagated along the surface
of the skin. After the pre-stretch, a motion was generated through
the skin, see Section 2.1. Both the Rayleigh and supersonic shear
waves can be seen propagating through the material in Fig. 6.

After running all 10,000 simulations, it was found that the
Rayleigh wave speed travelled between 3.78 and 12.53 m/s while
the supersonic shear wave travelled between 4.9 and 18.5 m/s,
with the supersonic shear wave always travelling faster than the
Rayleigh wave. The distributions of the wave speeds are shown in
Fig. 7. It should be noted here that the Rayleigh wave speeds from
the FE simulation are in very good agreement with the predicted
analytical results from Eq. (1) (R? = 0.9951). The analytical wave
speeds are only slightly faster than the FE wave speeds, within
1.59% on average.

3.2. Statistical emulation results

The exact performance of any ML model is dependent on the
train-test split of the data, i.e. which data points are used to train
the model and which data points are withheld to test the per-
formance of the trained model. So, to provide a fair assessment
of the ability of the emulator to reproduce the simulator outputs,
a 10-fold cross-validation procedure is implemented [52]. In the
procedure, the dataset is randomly split into 10 folds of 1,000
subjects. In turn, each fold is used as a test set, while the other
nine folds are employed to train the Gaussian process regression
model. The mean of the R? [53] computed between estimated
and simulation-outputted Rayleigh and supersonic velocities is em-
ployed as a metric to assess the predictive performance. This R? is
averaged across the 10-fold replications, giving an average perfor-
mance of 0.9993 + 0.0003. This result indicates that the emulator

is able to reproduce the simulation outputs in a stable manner to
a very high degree of accuracy.

To get a visual indication of the predictive performance, we can
consider one such 90%/10% train-test split, i.e. where one fold of
the data is withheld as an unseen test set and the GP regression
model is trained on the remaining nine folds. By comparing the
simulation outputs to the predictions from the emulator for the
unseen test set data points, we see that the emulator model is
capable of reproducing very similar outputs to the simulator at a
greatly reduced computational cost; see Fig. 8. Note that the GP
model has slightly better predictive performance for the Rayleigh
wave speed output as the Rayleigh wave has a larger amplitude
(see Fig. 2) and is more stable than the supersonic shear wave
speed, making it the “dominant” output.

Once trained, our emulator can be used to make predictions of
Rayleigh and supersonic wave speeds for unknown sets of inputs
in a fraction of the time it would take to run the full simulator.
For example, a typical run of our FE simulation on a single CPU
would take approximately 6 min (excluding data extraction and
post-processing time). By contrast, a new prediction from the GP
emulator takes approximately 30 milliseconds, a reduction in com-
plexity of 4 orders of magnitude. With such a reduction in com-
puting time, using the emulator, it is possible to perform a sensi-
tivity analysis of the velocities as a function of ranges of the input
parameters.

First, a large dataset was generated using the emulator, 20
equally spaced points were taken from the range of each input
variable (E, p, 8, A1), and each possible combination of points was
considered, giving a dataset of 160 thousand observations. Follow-
ing the method of sensitivity analysis from Section 7.2.2 of The De-
sign and Analysis of Computer Experiments [42], two first order
regression models were fitted:

Vs = ap + aiE* + adp* + o B 4 s, 9)
Vi = o + B + o 0" + o 5 + asAT, (10)
where each variable x has been standardised as follows:
. X—X

==

where X is the mean of x and o is the standard deviation of x.
The regression coefficients o in Egs. (9) and (10) are known
as the standardised regression coefficients (SRCs). For example, o}
measures the change in our target variable (v; or vf) due to a unit
standard deviation change in our input E. Because all variables are
on a common scale after standardisation, the magnitude of the es-
timated SRCs tells us the relative sensitivity of the output to each
input. The output is most sensitive to the input that has the largest
absolute SRC value [42]. Table 2 shows the computed SRCs, where
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Fig. 8. Performance of the multi-output Gaussian process regression emulator, trained on 90% of the dataset and tested on the remaining unseen 10%. For each data point,
the x coordinate is the “true” wave speed extracted from the FE simulation, the corresponding y coordinate is the GP prediction of the wave speed given the set of inputs E,
B, p and A; for that subject; the error bar is the 99% credible interval for the GP prediction. As shown, the emulator has extremely high predictive power.

Table 2

Standardised regression coefficients for Eqs. (9) and (10). Coefficients indicate that
the velocity outputs are most sensitive to the Young’s modulus E and are least sen-
sitive to the density p. Note that this analysis is likely to be reasonable because the
R? associated with the fitted models are 0.9796 and 0.9534 for v and vs, respec-
tively [42].

Input Variable Estimated o (1) Estimated o ()

Young's Modulus (E) 0.9447 0.9328

Density (p) —0.0609 —0.0621
Beta (8) -0.1229 —0.2493
Pre-Stretch (1q) 0.2630 -0.1359

we see that the target variables are most sensitive to changes in
the Young’s modulus E and are least sensitive to changes in the
density p. This result is consistent with Eq. (1) where we see that
the Rayleigh wave speed is directly proportional to /E/p. Note
that when sampling from the input space (see Section 2.2) we al-
lowed E to have a much larger variation than p, which, in the liter-
ature, is often taken to be constant. Interestingly, we also see that
the Rayleigh wave speed is more sensitive to A; and less sensitive
to B while conversely, the supersonic wave speed is more sensitive
to B and less sensitive to Aq.

A visual representation of the effect that each input variable has
on the response wave speed can be obtained through conditional
plots where all input are fixed at their mean and one variable is
allowed to vary in its full range of values, see Fig. 9. The figures
show that when the other material parameters are fixed at their
mean and the Young’s modulus is increased, both the Rayleigh and
supersonic velocities also increase. Conversely, an increase in the
density causes the wave speeds to decrease slightly (due to the
relatively small amount of variance in density that was sampled).
Interestingly, we see that there is a significant decrease in the su-
personic wave speed in the transition from a pure neo-Hookean
material (8 = —1) to an extreme Mooney-Rivlin material (8 = +1),
whereas there is a much weaker decrease in the Rayleigh wave
speed. We can also see that, as expected, the additional stretch
causes the Rayleigh wave speed to increase significantly, but sur-
prisingly, it causes the supersonic shear wave speed to decrease.
This phenomenon has been demonstrated experimentally in a re-
cent publication by Li et al., who performed uniaxial extension on
a rubber sample at different magnitudes of pre-stress and observed
the variations of the phase velocities of the Rayleigh and supers-
hear waves [22].

While our emulator is performing the same task as Eq. (1), the
ML method used is non-parametric, and as such, it is not possi-
ble to directly extract a simple equation which relates the mate-
rial parameter inputs to the output velocities. However, it is pos-
sible to interpolate the complex relationship between our input

variables (E, p, B and Aq) and our output variables (vg and vs)
that was learned by the Gaussian process emulator. The interpo-
lation was performed using a parametric regression model. Specif-
ically, the model “LinearRegression” from the Python sub-package
“sklearn.linear_model” [49] was fit to the large dataset generated
by the emulator during the sensitivity analysis, allowing us to ex-
tract the following equations:

Vg = —0.1519 — (3.8577 x 10")E? + (3.7251 x 107°)E

— (3.4424 x 10-3)p — 0.38688 + 5.51201, (11)
Vs = 15.8983 — (6.0573 x 10-11)E2 + (5.8806 x 10~5)E
— (5.6327 x 1073)p — 1.25698 — 4.5659, (12)

Note that Eqgs. (11) and (12) are simplifications of the true
complex relationship between our variables. They are data-driven
equations (not physics-derived, like Eq. (1)) that are conditional
on the emulator model chosen and the FE model used to gener-
ate the simulator dataset. The R% values for the interpolation of
Egs. (11) and (12) are 0.9905 and 0.9637, respectively. This means
that the simplified parametric equations are a good approximation
of the non-parametric ML model.

3.3. Material property prediction results

As described in Section 2.4, a GP regression model was em-
ployed to predict steady state stress S;; in the principal direction
of stretch and natural pre-stretch A, of the subject’s skin using the
Rayleigh speed vy and the supersonic speed vs as inputs.

As in Section 3.2, we get a fair assessment of the ability of
the GP regression model to predict the steady state stress Sq; and
the natural pre-stretch A; by performing a 10-fold cross-validation
procedure. The mean of the R? values computed for estimated
and simulation-outputted steady-state stress S;; and natural pre-
stretch A; was employed as a metric to assess the predictive per-
formance. This R? is averaged across the 10-fold replications, giving
an average performance of 0.9570 4+ 0.0025 when compared with
the “true” values extracted from the FE simulations. From this, we
can be confident that the predictive performance of the model is
very strong and is not dependent on the initial split of the training
and testing data.

Again, we get a visual indication of predictive performance by
considering one such 90%/10% train-test split, i.e. where one fold
of the data is withheld as an unseen test set and the GP regression
model is trained on the remaining nine folds. By comparing the
“true values” extracted from the FE simulations and the predictions
from the GP model for the unseen test set data points, we see that
the GP model is capable of accurate predictions of the stress and
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Fig. 10. Performance of the multi-output GP regression model trained on 90% of the dataset and tested on the remaining unseen 10%. For each data point, the x coordinate
is the “true” stress/pre-stretch extracted from the FE simulation and the corresponding y coordinate is the GP prediction of the stress/pre-stretch given the wave speeds v
and vg. The error bar is the 99% credible interval for the GP prediction. As shown, the model has very strong predictive power for both output variables.

the pre-stretch of the skin using only the Rayleigh and supersonic
wave speeds; see Fig. 10. Unsurprisingly, as the stress/stiffness in
the material has the largest influence on the wave velocities (see
Fig. 9), the model performs better at predicting the stress/stiffness,
leading to a higher R? value. Interestingly, however, as the pre-
stretch of the material has opposite effects on the Rayleigh and
supersonic wave speeds (see Fig. 9d), the inclusion of the super-
sonic shear wave speed as an input to the GP model also allows
accurate predictions of the pre-stretch. For comparison, the same
GP model trained with the same train-test split with just a single
input vy is still capable of making reasonably accurate predictions
of Sy; (R? = 0.8136) but is incapable of accurate predictions of A4
(R%2 = 0.1405). We can also confirm this by performing the same

Table 3
Standardised regression coefficients for Sy; and A;. Coefficients indicate that Sy; and
A1 are sensitive to both vz and v;.

Input Variable Estimated o; (Si1) Estimated o (1)

1.8920
—1.1168

2.3758
—2.2414

Rayleigh wave speed (vg)
Supersonic wave speed (vs)

sensitivity analysis procedure explained in Section 3.2 using the
10,000 measurements of vg and vs from the training dataset as our
inputs. We see from the SRCs in Table 3 that while the Rayleigh
wave speed is the most important, the supersonic wave speed has
a noticeable level of importance in the GP model.
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was assumed to be a neo-Hookean material (8 = —-1).

Again, we use our pre-trained GP model and our 10,000 com-
binations of vz and vs from the training data to extract a simpli-
fied parametric equation by fitting a regression model to interpo-
late the complex relationship between our input variables (v and
vs) and our output variables (Sy; and Aq):

Sy = 7639.4731 — 1163.2769v? — 3983.7169v
—1388.9624v;% + 980.2333v; + 3394.7445Vxs (13)

A1 = 1.1925 — 0.0306vx? + 0.1839v¢
—0.0084v,% — 0.1150v5 + 0.0329vx Vs (14)

Again, note that Eqgs. (13) and (14) are simplified data-
driven approximations of the true complex relationship. As such,
Egs. (13) and (14) are conditional on the emulator model chosen
and the FE model used to generate the simulator dataset. The R2
values for the interpolation of Eqs. (13) and (14) are 0.9973 and
0.9540, respectively.

3.4. Experimental validation results

As discussed in Section 2.5, the experimental setup in Fig. 4 was
used to take measurements of wave speed from a synthetic tissue
sample for four levels of pre-stretch: 1.12, 1.19, 1.22 and 1.27. For
each value of pre-stretch, five measurements were performed. The
distribution of wave speeds for different levels of stretch can be
seen in Fig. 11.

Overall, the wave speeds measured experimentally were con-
sistent and repeatable, as demonstrated by the tight distributions
for each value of pre-stretch in Fig. 11. The observed wave speeds
were between 6.57 m/s and 9.43 m/s, consistent with the overall
Rayleigh wave speed values obtained from the FE simulations, see
Fig. 7. We also see that as the pre-stretch of the skin increases, the
speed of the Rayleigh surface wave also increases. This behaviour
is consistent with both the existing analytical solution and with
our GP emulator, see Fig. 9 d. Furthermore, assuming that the neo-
Hookean material (8 = —1) model is suitable to describe the tissue
sample, that the sample has uniform density (p = 1116kgm™3),
and that the average Young's modulus measured by Kho et al.
is correct (E = 146kPa) [51], we can compare the experimentally
measured wave speeds to the predictions from the pre-trained GP
emulator described in Section 3.2 and the analytical solution from
Eq. (1). We find that there is good agreement between the experi-
mentally measured wave speeds and the predicted wave speeds up
until the highest level of pre-stretch, where the GP emulator and
the analytical solution deviate from the experimental results; see
Fig. 11.

We can also visualise the relationship between the Rayleigh
wave speed and the Young's modulus to examine the agreement
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between the FE dataset and the experimental observations, see
Fig. 12a. There is a clear positive relationship between wave speed
and Young’s modulus: the higher the Young’s modulus, the faster
the Rayleigh wave speeds. For any fixed value of Young’s modu-
lus, a 1 — 3 m/s variation in Rayleigh wave speed can be seen; this
is due to different combinations of the other variables (pre-stretch,
density and the material model). We see that the variation in wave
speed observed in the experimental data is consistent with the
variation expected from the FE data.

As discussed in Section 2.5, unfortunately, it was only possible
to extract information about the Rayleigh wave speed, as the su-
personic wave was not visible using the piezoelectric sensors em-
ployed. As such, it was not possible to validate the model pre-
sented in Section 2.4. Instead, we use the same FE dataset to train
a new GP regression model which takes in as input the pre-stretch
and the Rayleigh wave speed and predicts the Young’s modulus of
the skin (R? = 0.9722). It should be noted here that the real-world
application of this model is limited, since in many cases the pre-
stretch is unknown. Using this pre-trained model, we can input the
pre-stretch and corresponding Rayleigh wave speed observations
from the experimental data and obtain estimates for the Young’s
modulus of the synthetic skin sample, see Fig. 12b. The predictions
from the GP regression model agree very well with the average
Young's modulus of 146 kPa and fall within one standard deviation,
measured by Kho et al. [51], which we would expect to vary due
to hydration levels of the sample, variations in test set up, storage
conditions etc. Thus, we have demonstrated a ML model trained
solely on FE simulations is capable of accurate predictions of un-
known material properties of interest using the pre-stretch and ex-
perimentally measured wave speeds from a simple wave propaga-
tion measurement.

4. Discussion

As demonstrated in Section 3.2, it is possible to train an emu-
lator to quickly and accurately produce outputs similar to a more
computationally expensive simulator, using some well-chosen in-
put values. In practice, this advance can allow for exploration of
the relationship between the input and output variables (for ex-
ample in the form of a sensitivity analysis), or for real-world use
where relying on the simulator would be too time-consuming.
Note, it is reasonable to expect the skin material properties (i.e. the
simulator inputs) to have a distribution centred around their pop-
ulation mean value in nature, for example the normal distribution.
In this work, a Latin hypercube sampling method was employed to
sample uniformly from the chosen range, resulting in an emulator
which, in theory, is able to produce simulator outputs equally well
over the entire input space.

When exploring the sensitivity of the emulator to the input
variables, we found that the wave speeds are by far the most sen-
sitive to the Young’s modulus E and are not sensitive to the den-
sity p, see Table 2. This may initially seem at odds with Eq. (1),
where we see the Rayleigh wave speed is directly proportional to
E/p. However, recall that when sampling from the input space
(see Section 2.2) we allowed E to have a much larger variation than
p (which in the literature is often taken to be constant), which is
likely why for this emulator, the density o is not an important pre-
dictor.

In Section 3.3, we demonstrated that using a relatively simple
GP model, it is possible to take wave speed data, which is easily
accessible in vivo, and use it to accurately predict important mate-
rial properties of the skin like the stress and the pre-stretch. While
this model uses only two-dimensional FE data, it could be ex-
tended, incorporating three-dimensional FE and experimental data
to allow for more accurate predictions of material properties in
vivo. Given that the input parameters can be obtained easily and
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Fig. 12. (a) Scatter plot of the relationship between the Rayleigh wave speed and the Young's modulus for the FE data (blue) and the experimental observations (black). The
experimental observations were all collected from synthetic tissue, with a Young’s modulus of 146 kPa [51]. As shown, the experimental observations agree very well with
the variation of wave speeds seen in the FE dataset. (b) Predictions from the pre-trained GP regression model using the experimental observations as inputs. Note that there
is good agreement between the predicted Young's modulus from the GP model and the Young's modulus measured by Kho et al. [51].

non-invasively, this investigation offers a method which could be
of real value to surgeons and patients.

For computational efficiency, a single homogeneous layer of
skin was modelled in the FE simulations. While it is possible to
model a more complex “multi-layer” skin block, in this work, this
was not necessary as the goal of the FE simulation was to extract
the speed of surface waves. As such, the material properties of the
top layer of skin are the most important factor in the determina-
tion of the Rayleigh and supersonic wave speeds, the change in
wave speed due to passing between skin layers will affect only the
behaviour of the wave that is reflected off the bottom of the skin.

While our current dataset is based on simulated data, through
this simulation approach, a number of implications for future phys-
ical measurements were identified:

1. We require at least one receiver, located a known distance away
from the wave generating perturbation. However, more than
one receiver is preferable and allows us to not be concerned
with the specifics of the wave generation process.

. We require enough sensitivity to be able to clearly identify the
Rayleigh wave speed and ideally also the supersonic shear wave
speed, which can give significant additional predictive power
for St and )\.1.

. Ideally, wave reflections should be identifiable and should not
interfere with the supersonic and Rayleigh wave peak location.

In practice, this ML method could be viewed as an alternative
to inverse FE procedures, which are a popular framework used in
the literature to identify material properties [54-56]. Regular “for-
ward” FE modelling involves inputting material properties, defin-
ing boundary conditions and loading conditions, etc., and receiving
some output of interest. In the inverse FE framework, some output
of interest is measured/obtained and the unknown value of inter-
est is the material parameters. These quantities are often obtained
through iterative rounds of FE simulations, where the material pa-
rameters are continuously tuned to minimise a predefined objec-
tive function to replicate the experimentally measured output [57].
The benefit of our approach is that all computational complexity
is “front-loaded”: once the input space has been explored, the FE
simulations performed and the ML model trained, all subsequent
predictions have extremely low computational cost. This makes our
method much more suitable for real-time use where, for example,
a trained and validated model could be deployed in a clinic where
wave speed measurements can be taken and a near instantaneous
prediction of material properties can be obtained with minimal ex-
pertise required. By contrast, with the inverse FE framework, any

10

new observation requires new rounds of potentially computation-
ally expensive FE simulations, and significant expertise to imple-
ment and interpret them.

There are a number of limitations to the method. First and fore-
most is that the trained model can only make predictions in the
input space it has been trained on. As such, selection of the bound-
aries for the input space is of paramount importance when training
a model that will be deployed in the real-world. Another limitation
to the models presented here is that they have been trained en-
tirely on simulated two-dimensional FE data. For this reason, there
is no noise in the training dataset and the data generation process
is entirely deterministic (i.e. multiple FE simulation runs with the
same set of input variables will produce identical outputs). Thus,
the models presented here may not generalise well to real-world
observations where the data collection process is not perfect and
the physical device used may have reduced resolution. The models
presented here then should serve as a proof of concept and pro-
cedural outline by which models of this kind can be employed.
In practice, once some experimental in vivo data has been col-
lected, this simulated training dataset could be altered by reduc-
ing the precision and/or adding noise to make it more similar to
the experimental observations. A more sophisticated model could
then be developed by training on a combination of the adjusted FE
data and experimental observations, which would likely generalise
much better to the experimental data.

In this study, two different material models (neo-Hookean and
Mooney-Rivlin), commonly used to model breast and other soft tis-
sues, were used to examine if the ML model could still achieve
high predictive performance while trained on a mix of material
models. This proved to be a success: while models trained and
tested on just the neo-Hookean or just the Mooney-Rivlin subjects
had slightly higher performance, the model trained on the com-
bined dataset still had very strong predictive power. The Mooney-
Rivlin constitutive model was selected for this study, as it is the
simplest model that depends on both the first and second strain
invariants of the left Cauchy-Green tensor (I; and L). Thereby, it
can often provide a good fit to experimental data whilst still re-
taining simplicity and requiring the fitting of fewer parameters. An
additional benefit to the selection of neo-Hookean and Mooney-
Rivlin material models is that they allowed for validation of the
FE model using the existing analytical solution given in Equation
1. The FE model was developed as it allowed for the extraction of
both the Rayleigh and supersonic shear wave speeds, providing a
significant improvement in predictive performance. The full shape
of the waveform could also be extracted and used directly for more
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complex prediction tasks. Furthermore, the framework developed
in this work is flexible and can easily be used for different mate-
rial models where no analytical solution exists.

To demonstrate that wave speed measurements could be ob-
tained cheaply and easily and be used to infer information about
the pre-stretch, a custom experimental rig was designed consist-
ing of a uniaxial tensioner, a spring-loaded device to impact the
surface of the skin and two piezoelectric sensors to record the
waveforms. As discussed in Section 3.4, the obtained Rayleigh wave
speeds were consistent, repeatable, increased as expected with in-
creasing pre-stretch, and had good agreement with existing ana-
lytical solutions and the GP emulator. By comparing the predicted
Young’s modulus from a newly-trained GP regression model to the
Young’s modulus measured by Kho et al. [51], see Fig. 12b, we
demonstrate that a model trained solely on the FE simulations de-
scribed in Section 2.1 is capable of fast and accurate predictions
of skin material properties using wave speed observations from a
simple and cheaply constructed wave propagation device.

However, it should be recognised here that there were a num-
ber of limitations to the experimental set-up. Firstly, the obtained
waveforms only captured the Rayleigh surface wave and the su-
personic shear wave was not visible. This may be due to the dif-
ference in amplitude between the Rayleigh and supersonic wave
(see Fig. 2 a), sensitivity of the piezoelectric sensors and/or atten-
uation of the supersonic wave before arriving at the sensors, which
was significantly further away from the impact location than in
the FE simulation. It is also possible that the spring-loaded device
used to generate the wave acted to increase attenuation of the per-
turbation. As such, it was not possible to validate the GP model
presented in Section 3.3 and instead a new model was trained
to demonstrate feasibility. This model used the pre-stretch and
Rayleigh wave speed as inputs to predict the Young’s modulus E.
It should also be noted that while the Young’s modulus prediction
and general agreement between the experimental data and the GP
emulator were very good for low/medium pre-stretch configura-
tions, the wave speeds obtained from the higher stretch values, es-
pecially 1.27, were higher than expected. There are a number of
experimental effects which may have led to this deviation, includ-
ing delamination of the sensors from the skin surface or hetero-
geneous areas of strain at high stretches. It is also possible that
the deviation is due to the non-linear stress-strain response of the
synthetic tissue. Experimentally, the tissue was observed to expe-
rience wrinkling at high strain values (> 1.27) and as such it was
not possible to obtain consistent wave speed measurements. Fu-
ture work could involve a more thorough exploration of experi-
mental wave speeds for different synthetic skin samples with dif-
ferent stiffnesses to quantify the effect that each material parame-
ter has on the measured wave speed.

Finally, as discussed above, to generate the training data used
in this study, a simplified two-dimensional FE simulation of fully
elastic skin was used. Future work should involve extending this
method into three dimensions. This would allow for the explo-
ration of anisotropic skin tension through the use of a biaxial pre-
stretch.

5. Conclusions

In this study, an innovative procedure was developed that pro-
vides real time non-invasive access to in vivo stretch and stress.
First, a simplified FE model was developed to simulate surface
wave propagation in in vivo skin. Then, a large dataset consisting
of simulated real-world wave propagation experiments was con-
structed using the FE simulator. Using this dataset, a Gaussian pro-
cess regression model was trained as an emulator that can repli-
cate the FE model outputs with an average R? = 0.9993 at a 4 or-
der of magnitude reduction in computational complexity. This al-
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lowed for sensitivity analysis of the physical parameters that affect
the Rayleigh wave speed and supersonic shear wave speed. Then,
a Gaussian process regression model was trained to solve the in-
verse problem of predicting clinically important material proper-
ties like the stress and the pre-stretch of in vivo skin using mea-
surements of Rayleigh and supersonic wave speeds. This model
was found to have an average R? = 0.9570 and furthermore it was
possible to interpolate simplified parametric equations to calculate
the stress and the pre-stretch. Finally, an experimental device con-
sisting of two piezoelectric sensors and a spring-loaded impactor
was used to take wave speed measurements at different degrees
of pre-stretch from a sample of synthetic skin tissue (Simulab).
These experimental wave speeds were shown to agree well with
the existing analytical solution and the Gaussian process emulator.
Furthermore, a ML model trained on just the FE data was capable
of taking the experimental wave speeds as inputs and predicting
a Young’s modulus similar to that obtained from destructive me-
chanical characterisation tests. These results indicate that measur-
ing surface wave speeds to predict skin pre-stretch and stress is
a feasible method which could be employed in clinical settings to
inform surgical procedures.

Declaration of competing interest

The authors declare that there is no conflict of interest. The au-
thors declare that they have no known competing financial inter-
ests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

CRediT authorship contribution statement

Matt Nagle: Conceptualization, Data curation, Formal analysis,
Investigation, Methodology, Software, Visualization, Writing - orig-
inal draft, Writing - review & editing. Hannah Conroy Broderick:
Validation, Writing - review & editing, Methodology. Christelle
Vedel: Data curation, Writing - review & editing. Michel Destrade:
Validation, Writing - review & editing. Michael Fop: Conceptual-
ization, Funding acquisition, Supervision, Writing - review & edit-
ing, Methodology. Aisling Ni Annaidh: Conceptualization, Funding
acquisition, Supervision, Writing - review & editing, Methodology.

Acknowledgments

This publication has emanated from research supported in part
by a Grant from Science Foundation Ireland under Grant number
18/CRT/6049. The opinions, findings and conclusions or recommen-
dations expressed in this material are those of the authors and
do not necessarily reflect the views of the Science Foundation Ire-
land. This work is partially supported by a Government of Ireland
Postdoctoral Fellowship from the Irish Research Council (Project ID:
GOIPD/2022/367). The authors wish to acknowledge the Irish Cen-
tre for High-End Computing (ICHEC) for the provision of compu-
tational facilities and support. Part of the graphical abstract was
created with BioRender.com.

References

[1] E. Proksch, J.M. Brandner, ]J.-M. Jensen, The skin: an indispensable barrier, Exp.
Dermatol. 17 (12) (2008) 1063-1072, doi:10.1111/j.1600-0625.2008.00786.x.
Publisher: John Wiley & Sons, Ltd

[2] H.L-C. Harn, R. Ogawa, C.-K. Hsu, M.\W. Hughes, M.-]. Tang, C.-M. Chuong,
The tension biology of wound healing, Exp. Dermatol. 28 (4) (2019) 464-471,
doi:10.1111/exd.13460. Publisher: John Wiley & Sons, Ltd

[3] S. Paul, Biodynamic excisional skin tension lines for surgical excisions: un-
tangling the science, Ann. R. Coll. Surgeons Engl. 100 (4) (2018) 330-337,
doi:10.1308/rcsann.2018.0038.

[4] D. Son, A. Harijan, Overview of surgical scar prevention and management, J.
Korean Med. Sci. 29 (6) (2014) 751-757, doi:10.3346/jkms.2014.29.6.751.


https://doi.org/10.1111/j.1600-0625.2008.00786.x
https://doi.org/10.1111/exd.13460
https://doi.org/10.1308/rcsann.2018.0038
https://doi.org/10.3346/jkms.2014.29.6.751

JID: ACTBIO

M. Nagle, H. Conroy Broderick, C. Vedel et al.

[5] N. Ziolkowski, S.C. Kitto, D. Jeong, ]J. Zuccaro, T. Adams-Webber, A. Miroshny-
chenko, ].S. Fish, Psychosocial and quality of life impact of scars in the surgi-
cal, traumatic and burn populations: a scoping review protocol, BMJ Open 9
(6) (2019) e021289, doi:10.1136/bmjopen-2017-021289.

[6] J.L. Azzi, C. Thabet, AJ. Azzi, M.S. Gilardino, Complications of tissue expan-
sion in the head and neck, Head Neck 42 (4) (2020) 747-762, doi:10.1002/hed.
26017. Publisher: John Wiley & Sons, Ltd

[7] G.C. Yalanis, S. Nag, J.R. Georgek, C.M. Cooney, M.A. Manahan, G.D. Rosson,
J-M. Sacks, Mastectomy weight and tissue expander volume predict necrosis
and increased costs associated with breast reconstruction, Plast. Reconstr. Surg.
Global Open 3 (7) (2015), doi:10.1097/GOX.0000000000000408.

[8] K. Langer, On the anatomy and physiology of the skin: I. The cleavability of the
cutis, Br. J. Plast. Surg. 31 (1) (1978) 3-8, doi:10.1016/0007-1226(78)90003-6.

[9] A.F. Borges, Relaxed skin tension lines (RSTL) versus other skin lines, Plast. Re-
constr. Surg. 73 (1) (1984), doi:10.1097/00006534-198401000-00036.

[10] C. Deroy, M. Destrade, A. Aidan, A. Ni Annaidh, Non-invasive evaluation of skin

tension lines with elastic waves, Skin Res. Technol. 23 (2017) 326-335, doi:10.

1111/s1t.12339.

M. Nagle, S. Price, A. Trotta, M. Destrade, M. Fop, A. Ni Annaidh, Analysis of

in vivo skin anisotropy using elastic wave measurements and Bayesian mod-

elling, Ann. Biomed. Eng. 51 (8) (2023) 1781-1794, doi:10.1007/s10439-023-

03185-2.

[12] A. Ni Annaidh, M. Destrade, Tension lines of the skin, in: G. Limbert (Ed.),

Skin Biophysics: From Experimental Characterisation to Advanced Modelling,

Springer International Publishing, Cham, 2019, pp. 265-280, doi:10.1007/

978-3-030-13279-8_9.

H. Seo, S.-j. Kim, F. Cordier, J. Choi, K. Hong, Estimating dynamic skin ten-

sion lines in vivo using 3D scans, Comput.-Aided Des. 45 (2) (2013) 551-555,

doi:10.1016/j.cad.2012.10.044.

D. Laiacona, J.M. Cohen, K. Coulon, ZW. Lipsky, C. Maiorana, R. Boltyanskiy,

E.R. Dufresne, G.K. German, Non-invasive in vivo quantification of human skin

tension lines, Acta Biomater. 88 (2019) 141-148, doi:10.1016/j.actbio.2019.02.

003.

G. Boyer, L. Laquiéze, A. Le Bot, S. Laquiéze, H. Zahouani, Dynamic indentation

on human skin in vivo: ageing effects, Skin Res. Technol. 15 (1) (2009) 55-67,

doi:10.1111/j.1600-0846.2008.00324.x. Publisher: John Wiley & Sons, Ltd

S.P. Paul, Biodynamic excisional skin tension lines for excisional surgery of the

lower limb and the technique of using parallel relaxing incisions to further

reduce wound tension, Plast. Reconstr. Surg. Global Open 5 (12) (2017), doi:10.
1097/GOX.0000000000001614.

E. Ruvolo Jr, G. Stamatas, N. Kollias, Skin viscoelasticity displays site- and age-

dependent angular anisotropy, Skin Pharmacol. Physiol. 20 (6) (2007) 313-321,

doi:10.1159/000108147.

[18] J. Dauendorffer, S. Bastuji-Garin, S. Guéro, N. Brousse, S. Fraitag, Shrinkage of
skin excision specimens: formalin fixation is not the culprit, Br. ]. Dermatol.
160 (4) (2009) 810-814, doi:10.1111/j.1365-2133.2008.08994.x.

[19] JW.Y. Jor, M.P. Nash, PM.E. Nielsen, PJ. Hunter, Estimating material parame-
ters of a structurally based constitutive relation for skin mechanics, Biomech.
Model. Mechanobiol. 10 (5) (2011) 767-778, doi:10.1007/s10237-010-0272-0.

[20] S.P. Paul, J. Matulich, N. Charlton, A new skin tensiometer device: computa-
tional analyses to understand biodynamic excisional skin tension lines, Sci.
Rep. 6 (1) (2016), doi:10.1038/srep30117. Publisher: Springer Science and Busi-
ness Media LLC

[21] J.N. Flavin, Surface waves in pre-stressed Mooney material, Q. J. Mech. Appl.
Math. 16 (4) (1963) 441-449, doi:10.1093/qjmam/16.4.441.

[22] G.-Y. Li, X. Feng, A. Ramier, S.-H. Yun, Supershear surface waves reveal pre-

stress and anisotropy of soft materials, J. Mech. Phys. Solids 169 (2022)

105085, doi:10.1016/j.jmps.2022.105085. Publisher: Elsevier BV

X. Feng, G.-Y. Li, A. Ramier, A.M. Eltony, S.-H. Yun, In vivo stiffness measure-

ment of epidermis, dermis, and hypodermis using broadband Rayleigh-wave

optical coherence elastography, Acta Biomater. 146 (2022) 295-305, doi:10.
1016/j.actbio.2022.04.030.

P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Courna-

peau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, SJ. van der Walt,

M. Brett, ]J. Wilson, KJ. Millman, N. Mayorov, A.RJ. Nelson, E. Jones, R. Kern,

E. Larson, CJ. Carey, I. Polat, Y. Feng, E.W. Moore, ]. VanderPlas, D. Laxalde,

J. Perktold, R. Cimrman, 1. Henriksen, E.A. Quintero, C.R. Harris, A.M. Archibald,

A.H. Ribeiro, F. Pedregosa, P. van Mulbregt, A. Vijaykumar, A.P. Bardelli, A. Roth-

berg, A. Hilboll, A. Kloeckner, A. Scopatz, A. Lee, A. Rokem, C.N. Woods,

C. Fulton, C. Masson, C. Hoggstrom, C. Fitzgerald, D.A. Nicholson, D.R. Ha-

gen, D.V. Pasechnik, E. Olivetti, E. Martin, E. Wieser, F. Silva, F. Lenders,

F. Wilhelm, G. Young, G.A. Price, G.-L. Ingold, G.E. Allen, G.R. Lee, H. Audren,

I. Probst, J.P. Dietrich, J. Silterra, ].T. Webber, ]. Slavi¢, ]. Nothman, J. Buchner,

J. Kulick, J.L. Schonberger, J.V. de Miranda Cardoso, J. Reimer, ]J. Harrington,

J.L.C. Rodriguez, ]. Nunez-Iglesias, J. Kuczynski, K. Tritz, M. Thoma, M. Newville,

M. Kiimmerer, M. Bolingbroke, M. Tartre, M. Pak, NJ. Smith, N. Nowaczyk,

N. Shebanov, O. Pavlyk, P.A. Brodtkorb, P. Lee, R.T. McGibbon, R. Feldbauer,

S. Lewis, S. Tygier, S. Sievert, S. Vigna, S. Peterson, S. More, T. Pudlik, T. Os-

hima, TJ. Pingel, T.P. Robitaille, T. Spura, T.R. Jones, T. Cera, T. Leslie, T. Zito,

T. Krauss, U. Upadhyay, Y.0. Halchenko, Y. Vazquez-Baeza, SciPy 1.0 Contribu-

tors, SciPy 1.0: fundamental algorithms for scientific computing in Python, Nat.

Methods 17 (3) (2020) 261-272, doi:10.1038/541592-019-0686-2.

M.D. McKay, RJ. Beckman, WJ. Conover, A comparison of three methods for

selecting values of input variables in the analysis of output from a computer

code, Technometrics 21 (2) (1979) 239-245, doi:10.2307/1268522.

[11]

[13]

[14]

[15]

[16]

[17]

(23]

[24]

(25]

12

[m5G;May 22, 2024;15:48]

Acta Biomaterialia xxx (Xxxx) xXx

[26] D. Behera, P. Roy, E. Madenci, Peridynamic correspondence model for finite
elastic deformation and rupture in Neo-Hookean materials, Int. J. Non-Linear
Mech. 126 (2020) 103564, doi:10.1016/j.ijnonlinmec.2020.103564.

[27] M. Smith, ABAQUS/Standard User’s Manual, Version 6.9, Dassault Systémes
Simulia Corp, United States, 2009.

[28] C. Li, G. Guan, R. Reif, Z. Huang, R.K. Wang, Determining elastic properties of
skin by measuring surface waves from an impulse mechanical stimulus using
phase-sensitive optical coherence tomography, J. R. Soc. Interface 9 (70) (2011)
831-841, doi:10.1098/rsif.2011.0583. Publisher: Royal Society

[29] A. Ni Annaidh, K. Bruyére, M. Destrade, M.D. Gilchrist, M. Otténio, Characteri-
zation of the anisotropic mechanical properties of excised human skin, J. Mech.
Behav. Biomed. Mater. 5 (1) (2012) 139-148, doi:10.1016/j.jmbbm.2011.08.016.

[30] X. Liang, S. A. Boppart, Biomechanical properties of in vivo human skin from
dynamic optical coherence elastography, IEEE Trans. Biomed. Eng. 57 (4) (2010)
953-959, doi:10.1109/TBME.2009.2033464.

[31] S. Diridollou, V. Vabre, M. Berson, L. Vaillant, D. Black, .M. Lagarde, ].M. Gré-
goire, Y. Gall, F. Patat, Skin ageing: changes of physical properties of hu-
man skin in vivo, Int. J. Cosmet. Sci. 23 (6) (2001) 353-362, doi:10.1046/j.
0412-5463.2001.00105.x. Publisher: John Wiley & Sons, Ltd

[32] H. Joodaki, M.B. Panzer, Skin mechanical properties and modeling: A review,
Proc. Inst. Mech. Eng. Part H ]. Eng. Med. 232 (4) (2018) 323-343, doi:10.1177/
0954411918759801.

[33] D.L. Bader, P. Bowker, Mechanical characteristics of skin and underlying tissues
in vivo, Biomaterials 4 (4) (1983) 305-308, doi:10.1016/0142-9612(83)90033-9.

[34] R. Grahame, P. Holt, The influence of ageing on the in vivo elasticity of human
skin, Gerontologia 15 (2-3) (2009) 121-139, doi:10.1159/000211681.

[35] R. Sanders, Torsional elasticity of human skin in vivo, Pfliigers Archiv. 342 (3)
(1973) 255-260, doi:10.1007/BF00591373.

[36] EM. Hendriks, D. Brokken, JTW.M. Van Eemeren, C.W,]. Oomens, EP.T. Baai-

jens, J.B.AM. Horsten, A numerical-experimental method to characterize the

non-linear mechanical behaviour of human skin, Skin Res. Technol. 9 (3)

(2003) 274-283, doi:10.1034/j.1600-0846.2003.00019.x. Publisher: John Wiley

& Sons, Ltd

R. Reihsner, B. Balogh, E.J. Menzel, Two-dimensional elastic properties of hu-

man skin in terms of an incremental model at the in vivo configuration, Med.

Eng. Phys. 17 (4) (1995) 304-313, doi:10.1016/1350-4533(95)90856-7.

A.M. Teixeira, P. Martins, A review of bioengineering techniques applied to

breast tissue: mechanical properties, tissue engineering and finite element

analysis, Front. Bioeng. Biotechnol. 11 (2023) 1161815, doi:10.3389/fbioe.2023.

1161815.

L.S. Bastos, A. O’Hagan, Diagnostics for Gaussian Process Emulators, Techno-

metrics 51 (4) (2009) 425-438, doi:10.1198/TECH.2009.08019. Publisher: Taylor

& Francis _eprint:

[40] J. Sacks, W,J. Welch, TJ. Mitchell, H.P. Wynn, Design and analysis of computer
experiments, Stat. Sci. 4 (4) (1989) 409-423, doi:10.1214/ss/1177012413. Pub-
lisher: Institute of Mathematical Statistics

[41] R.B. Gramacy, Surrogates: Gaussian Process Modeling, Design, and Optimiza-
tion for the Applied Sciences, Chapman and Hall/CRC, 2020, doi:10.1201/
9780367815493.

[42] TJ. Santner, BJ. Williams, W.I. Notz, The design and analysis of computer ex-

periments, Springer series in statistics, Springer, New York, NY, 2010, doi:10.

1007/978-1-4757-3799-8.

S. Razavi, A. Jakeman, A. Saltelli, C. Prieur, B. looss, E. Borgonovo, E. Plis-

chke, S.L. Piano, T. Iwanaga, W. Becker, S. Tarantola, J.H.A. Guillaume, J. Jake-

man, H. Gupta, N. Melillo, G. Rabitti, V. Chabridon, Q. Duan, X. Sun,

S. Smith, R. Sheikholeslami, N. Hosseini, M. Asadzadeh, A. Puy, S. Kucherenko,

H.R. Maier, The future of sensitivity analysis: an essential discipline for sys-

tems modeling and policy support, Environ. Modell. Softw. 137 (2021) 104954,

doi:10.1016/j.envsoft.2020.104954.

N. Villa-Vialaneix, M. Follador, M. Ratto, A. Leip, A comparison of eight meta-

modeling techniques for the simulation of N20 fluxes and N leaching from

corn crops, Environ. Modell. Softw. 34 (2012) 51-66, doi:10.1016/j.envsoft.2011.

05.003.

R. Zhang, C. Wu, AT.C. Goh, T. Bohlke, W. Zhang, Estimation of diaphragm

wall deflections for deep braced excavation in anisotropic clays using ensemble

learning, Geosci. Front. 12 (1) (2021) 365-373, doi:10.1016/j.gsf.2020.03.003.

[46] A. Bhosekar, M. lerapetritou, Advances in surrogate based modeling, feasibility

analysis, and optimization: a review, Comput. Chem. Eng. 108 (2018) 250-267,

doi:10.1016/j.compchemeng.2017.09.017.

C.E. Rasmussen, Gaussian processes in machine learning, in: O. Bousquet,

U. von LuLuxburgxburg, G. Rétsch (Eds.), Advanced Lectures on Machine Learn-

ing: ML Summer Schools 2003, Canberra, Australia, February 2 - 14, 2003,

Tiibingen, Germany, August 4 - 16, 2003, Revised Lectures, Springer Berlin Hei-

delberg, Berlin, Heidelberg, 2004, pp. 63-71, doi:10.1007/978-3-540-28650-9_

4

[37]

[38]

[39]

[43]

[44]

[45]

(47]

C. Stowers, T. Lee, 1. Bilionis, A.K. Gosain, A.B. Tepole, Improving reconstructive
surgery design using Gaussian process surrogates to capture material behav-
ior uncertainty, J. Mech. Behav. Biomed. Mater. 118 (104340) (2021) 104340.
Publisher: Elsevier BV

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: machine
learning in Python, ]. Mach. Learn. Res. 12 (85) (2011) 2825-2830.

C.E. Rasmussen, C.K.I. Williams, Gaussian Processes for Machine Learning, The
MIT Press, 2005, doi:10.7551/mitpress/3206.001.0001.

(48]

[49]

[50]


https://doi.org/10.1136/bmjopen-2017-021289
https://doi.org/10.1002/hed.26017
https://doi.org/10.1097/GOX.0000000000000408
https://doi.org/10.1016/0007-1226(78)90003-6
https://doi.org/10.1097/00006534-198401000-00036
https://doi.org/10.1111/srt.12339
https://doi.org/10.1007/s10439-023-penalty -@M 03185-2
https://doi.org/10.1007/978-3-030-13279-8_9
https://doi.org/10.1016/j.cad.2012.10.044
https://doi.org/10.1016/j.actbio.2019.02.003
https://doi.org/10.1111/j.1600-0846.2008.00324.x
https://doi.org/10.1097/GOX.0000000000001614
https://doi.org/10.1159/000108147
https://doi.org/10.1111/j.1365-2133.2008.08994.x
https://doi.org/10.1007/s10237-010-0272-0
https://doi.org/10.1038/srep30117
https://doi.org/10.1093/qjmam/16.4.441
https://doi.org/10.1016/j.jmps.2022.105085
https://doi.org/10.1016/j.actbio.2022.04.030
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.2307/1268522
https://doi.org/10.1016/j.ijnonlinmec.2020.103564
http://refhub.elsevier.com/S1742-7061(24)00264-2/sbref0027
https://doi.org/10.1098/rsif.2011.0583
https://doi.org/10.1016/j.jmbbm.2011.08.016
https://doi.org/10.1109/TBME.2009.2033464
https://doi.org/10.1046/j.0412-5463.2001.00105.x
https://doi.org/10.1177/0954411918759801
https://doi.org/10.1016/0142-9612(83)90033-9
https://doi.org/10.1159/000211681
https://doi.org/10.1007/BF00591373
https://doi.org/10.1034/j.1600-0846.2003.00019.x
https://doi.org/10.1016/1350-4533(95)90856-7
https://doi.org/10.3389/fbioe.2023.1161815
https://doi.org/10.1198/TECH.2009.08019
https://doi.org/10.1214/ss/1177012413
https://doi.org/10.1201/9780367815493
https://doi.org/10.1007/978-1-4757-3799-8
https://doi.org/10.1016/j.envsoft.2020.104954
https://doi.org/10.1016/j.envsoft.2011.05.003
https://doi.org/10.1016/j.gsf.2020.03.003
https://doi.org/10.1016/j.compchemeng.2017.09.017
https://doi.org/10.1007/978-3-540-28650-9_4
http://refhub.elsevier.com/S1742-7061(24)00264-2/sbref0048
http://refhub.elsevier.com/S1742-7061(24)00264-2/sbref0048
http://refhub.elsevier.com/S1742-7061(24)00264-2/sbref0049
https://doi.org/10.7551/mitpress/3206.001.0001

JID: ACTBIO

M. Nagle, H. Conroy Broderick, C. Vedel et al.

[51] A.S.K. Kho, S. Béguin, E.D. O’Cearbhaill, A.N. Annaidh, Mechanical characterisa-
tion of commercial artificial skin models, J. Mech. Behav. Biomed. Mater. 147
(2023) 106090, doi:10.1016/j.jmbbm.2023.106090.

[52] T. Hastie, R. Tibshirani, ]. Friedman, The Elements of Statistical Learning,
Springer New York, 2009, doi:10.1007/978-0-387-84858-7.

[53] C. Lewis-Beck, M. Lewis-Beck, Applied Regression: An Introduction, Quantita-
tive Applications in the Social Sciences, SAGE Publications, 2015.

[54] H.A. Nieuwstadt, S. Fekkes, H.H.G. Hansen, C.L.d. Korte, A.v.d. Lugt, ].J. Wentzel,
A.FW.v.d. Steen, FJ.H. Gijsen, Carotid plaque elasticity estimation using ultra-
sound elastography, MRI, and inverse FEA - A numerical feasibility study, Med.
Eng. Phys. 37 (8) (2015) 801-807, doi:10.1016/j.medengphy.2015.06.003.

13

[m5G;May 22, 2024;15:48]

Acta Biomaterialia xxx (Xxxx) xXx

[55] R.A. Baldewsing, M.G. Danilouchkine, F. Mastik, J.A. Schaar, PW. Serruys,
A.EW. van der Steen, An inverse method for imaging the local elasticity
of atherosclerotic coronary plaques, IEEE Trans. Inf. Technol. Biomed. 12 (3)
(2008) 277-289, doi:10.1109/TITB.2007.907980.

[56] A.D. Pant, L. Kagemann, J.S. Schuman, LA. Sigal, R. Amini, An imaged-based
inverse finite element method to determine in-vivo mechanical properties of
the human trabecular meshwork, J. Model. Ophthalmol. 1 (3) (2017) 100-111.

[57] B. Narayanan, M.L. Olender, D. Marlevi, E.R. Edelman, FR. Nezami, An in-
verse method for mechanical characterization of heterogeneous diseased ar-
teries using intravascular imaging, Sci. Rep. 11 (1) (2021) 22540, doi:10.1038/
s41598-021-01874-3.


https://doi.org/10.1016/j.jmbbm.2023.106090
https://doi.org/10.1007/978-0-387-84858-7
http://refhub.elsevier.com/S1742-7061(24)00264-2/sbref0053
https://doi.org/10.1016/j.medengphy.2015.06.003
https://doi.org/10.1109/TITB.2007.907980
http://refhub.elsevier.com/S1742-7061(24)00264-2/sbref0056
https://doi.org/10.1038/s41598-021-01874-3

	\advance \chk@titlecnt \@ne A Gaussian process approach for rapid evaluation of skin tension\global \chk@titlecnt =\z@ 
	1 Introduction
	2 Materials and methods
	2.1 Finite element modelling
	2.2 Input space sampling
	2.3 Statistical emulation
	2.4 Non-invasive prediction of material properties
	2.5 Experimental validation

	3 Results
	3.1 Finite element results
	3.2 Statistical emulation results
	3.3 Material property prediction results
	3.4 Experimental validation results

	4 Discussion
	5 Conclusions
	Declaration of competing interest
	CRediT authorship contribution statement
	Acknowledgments
	References


