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a b s t r a c t 

Skin tension plays a pivotal role in clinical settings, it affects scarring, wound healing and skin necrosis. 

Despite its importance, there is no widely accepted method for assessing in vivo skin tension or its natu- 

ral pre-stretch. This study aims to utilise modern machine learning (ML) methods to develop a model that 

uses non-invasive measurements of surface wave speed to predict clinically useful skin properties such 

as stress and natural pre-stretch. A large dataset consisting of simulated wave propagation experiments 

was created using a simplified two-dimensional finite element (FE) model. Using this dataset, a sensi- 

tivity analysis was performed, highlighting the effect of the material parameters and material model on 

the Rayleigh and supersonic shear wave speeds. Then, a Gaussian process regression model was trained 

to solve the ill-posed inverse problem of predicting stress and pre-stretch of skin using measurements 

of surface wave speed. This model had good predictive performance ( R2 = 0.9570) and it was possible 

to interpolate simplified parametric equations to calculate the stress and pre-stretch. To demonstrate that 

wave speed measurements could be obtained cheaply and easily, a simple experiment was devised to ob- 

tain wave speed measurements from synthetic skin at different values of pre-stretch. These experimental 

wave speeds agree well with the FE simulations, and a model trained solely on the FE data provided ac- 

curate predictions of synthetic skin stiffness. Both the simulated and experimental results provide further 

evidence that elastic wave measurements coupled with ML models are a viable non-invasive method to 

determine in vivo skin tension. 

Statement of significance 

To prevent unfavourable patient outcomes from reconstructive surgery, it is necessary to determine rel- 

evant subject-specific skin properties. For example, during a skin graft, it is necessary to estimate the 

pre-stretch of the skin to account for shrinkage upon excision. Existing methods are invasive or rely on 

the experience of the clinician. Our work aims to present an innovative framework to non-invasively de- 

termine in vivo material properties using the speed of a surface wave travelling through the skin. Our 

findings have implications for the planning of surgical procedures and provides further motivation for 

the use of elastic wave measurements to determine in vivo material properties. 

© 2024 The Author(s). Published by Elsevier Ltd on behalf of Acta Materialia Inc. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The skin is the largest organ in the body and serves as the in- 

erface between the internal physiological environment and the ex- 

ernal world. It plays a pivotal role in protection against external 

hreats, including the invasion of pathogens and fending off chem- 
c. This is an open access article under the CC BY license 
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Fig. 1. Dimensions and boundary conditions of the FE model of wave propagation. 

(a) The uniaxial pre-stretch is generated using a displacement boundary condition, 

and (b) the wave is generated by a 10 kPa pressure applied for 2 × 10−5 s. The ver- 

tical displacement of the nodes in the 4 mm − 6 mm region was stored for analysis. 
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cal and physical assaults [1] . It is under constant anisotropic ten- 

ion and must be both pliable and durable for everyday movement. 

In the surgical setting, skin tension plays a crucial role in 

chieving optimal outcomes and fostering effective wound healing 

rocesses [2,3] . In many surgical procedures, such as wound clo- 

ure or breast reconstructions, maintaining appropriate skin ten- 

ion is paramount. Excessive tension can lead to complications 

uch as compromised aesthetics and scarring [3,4] , and further, to 

ignificant psychosocial impacts for the patient [5] . It can also lead 

o dangerous physical complications including wound dehiscence, 

aematoma and skin necrosis, which can occur at alarmingly high 

omplication rates for patients. For example, recent publications 

ave reported overall complication rates for head and neck tissue 

xpansion of 8.73% [6] and that 8.9% of patients experience skin 

ecrosis from breast tissue expansion following a mastectomy [7] . 

It is well established that in vivo skin tension is aligned along 

referred directions known as Langer lines, skin tension lines or 

elaxed skin tension lines [3,8,9] . Both the magnitude of in vivo 

kin tension and its preferred orientation have been shown to be 

atient-specific [10,11] . However, despite the important role skin 

ension plays in surgery, there is no commonly accepted quan- 

itative method to determine its magnitude or direction in vivo . 

urrently, surgeons must rely on generic skin tension maps or an 

mprecise “pinch test” to identify the orientation of skin tension 

ines, which requires significant skill and experience to interpret 

10,12,13] . 

Recently, attempts have been made to identify the direction 

f skin tension lines using suction devices [14] , extensiometry 

15,16] and elastic wave propagation [10,17] . There have also been 

ttempts to quantify the magnitude of in vivo pre-stretch and skin 

ension. However, many of the methods are invasive and cumber- 

ome and have not been widely adopted [10,18–20] . 

Most methods to determine the magnitude of pre-stretch in- 

olve a destructive process where the skin is excised, and the 

hrinkage is quantified [10,18,19] . A notable exception is the 

ethod employed by Paul et al. where instead of skin being ex- 

ised, rods are used to compress or stretch the skin [20] . However, 

he measurement process is still invasive, as the rods must pierce 

he skin for a measurement to be taken. 

Our own recent publication analysed the direction and relative 

agnitude of skin tension using a wave propagation device (Revis- 

ometer® Model RVM 600, made by Courage & Khazaka Electronic 

mbH) to take in vivo measurements of the surface wave speed 

11] . Devices such as these can be made easily and cheaply to fa- 

ilitate measurements of wave speed on the surface of the skin 

long one axis. They often contain two piezoelectric transducers 

paced a known distance apart. One transducer impacts the sur- 

ace of the material, generating a surface wave, while the other 

ransducer detects the resulting wave and records the time taken 

or that wave to propagate across the surface of the skin, along 

ne axis. We demonstrated that the direction of highest skin ten- 

ion and its magnitude is subject specific and is affected by the 

ge and sex of the patient, and that skin tension is directly related 

o the speed of the elastic wave [11] . We concluded that in vivo

lastic wave measurements are a suitable method for inferring in 

ivo skin tension. 

There exist analytical models relating the material properties to 

 surface wave speed. For example, for a Rayleigh surface wave 

ravelling over a Mooney-Rivlin half space under uniform uniaxial 

ension, the wave speed is [21] : 

 =
√ 

E 

6 ρ

[ 
(1 − β)λ1 

2 + (1 + β) λ1 

] (
1 − (0 . 2956)2 λ1 

−3 
)
, (1) 

here v is the wave speed along one axis, E is the Young’s mod- 

lus, ρ is the density, β is a dimensionless material parameter 

hich ranges from the neo-Hookean case ( β = −1 ) to the extreme 
2

ooney-Rivlin case ( β = +1 ), see Section 2.2 for more details; λ1 

s the pre-stretch in the direction of tension. 

This analytical solution can be a useful tool, but, its real-world 

se is limited as it makes a number of assumptions and outputs a 

ingle wave which travels at a constant velocity. More recently, Li 

t al. developed an analytical solution that describes two propagat- 

ng waves to account for the Rayleigh and supersonic shear waves 

22] . Such analytical solutions can be useful for quantifying mate- 

ial parameters of interest using non-destructive means. Notably, 

eng et al. developed a travelling-wave optical coherence elastog- 

aphy technique to measure the elastic modulus of the epidermis, 

ermis, and hypodermis [23] . However, to the best of our knowl- 

dge, there is no analytical method to determine the magnitude of 

kin tension, stress or pre-stretch. 

It seems that, an objective method has not yet been developed 

hat can non-invasively determine important subject specific pa- 

ameters such as skin tension. As such, the overall objective of the 

aper is to present a method which can non-invasively identify the 

agnitude of in vivo skin tension and stress using surface wave 

peeds. To this goal, we have devised the following procedure, 

hich constitutes the innovative contribution of this research: 

1. Development of a simplified finite element (FE) model that 

simulates a typical surface wave propagation experiment in in 

vivo skin. 

2. Creation of a large database of simulated test cases representa- 

tive of real-world conditions. 

3. Development of a statistical emulator for the purpose of a sen- 

sitivity analysis to elucidate the general trends and important 

features of surface wave propagation in in vivo skin. 

4. Development of a machine learning (ML) model which can 

solve, in real time, the ill-posed and inverse problem of deter- 

mining in vivo tension and stress from elastic wave speeds. 

. Materials and methods 

.1. Finite element modelling 

The FE model for this study was designed to be both compu- 

ationally inexpensive, as our analysis will involve running many 

imulations, and analogous to existing wave propagation devices 

for example, the Reviscometer®). 

We simulate a pre-stretched two-dimensional block of skin and 

mpact the surface, see Fig. 1 . This generates a wave that prop- 

gates along the surface of the skin. The vertical displacement 

f the nodes at known distances from the impact site can then 

e stored for analysis. To implement the model, firstly, the non- 

inear FE package Abaqus/Standard (Dassault Systems, Waltham, 

A) was used to statically pre-stretch the skin and, subsequently, 

baqus/Explicit (Dassault Systems, Waltham, MA) was used to per- 

orm the wave propagation. An assumption of plane stress was 

sed for the FE simulations, in other words, there was no stress 
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Fig. 2. Graph of the vertical displacement for (a) a node 4.8 mm away from the impact and (b) all nodes in the 4 mm - 6 mm region of interest. neo-Hookean material with 

a Young’s modulus of 175 kPa, a density of 1,116 kg m 

−3 and a pre-stretch of 1.2 (20% extension). 
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out-of-plane” in the z-direction. A four node plane stress element 

ith reduced integration (CPS4R) was used to minimise compu- 

ational complexity. The unstretched skin block has dimensions 

0 mm × 6 mm and was discretised into 150,0 0 0 CPS4R elements 

ith 150,801 nodes. The dimensions of the skin block were se- 

ected to minimise wave reflections interfering with waveforms 

rom the region of interest (surface nodes 4 mm − 6 mm from the 

mpact). The skin block is modelled by a hyperelastic material (ei- 

her neo-Hookean or Mooney-Rivlin). 

To perform the pre-stretch, a displacement boundary condition 

as used to perform a uniaxial stretch. After the pre-stretch, a 

ave was generated by applying a 10 kPa pressure for 2 × 10−5 

; see Fig. 1 . 

A typical y-displacement vs time graph 4.8 mm away from the 

pplied perturbation is given in Fig. 2 a. From these curves, impor- 

ant information about the speed of the elastic waves can be ex- 

racted and used to predict the material properties of the block of 

kin. For example, in Fig. 2 we see that a fast wave arrives just

efore 0.4 ms followed by a larger peak and corresponding trough 

ccurring just before 0.6 ms. Finally, we can see a peak occurring 

round 0.9 ms, which is the result of the first wave reflecting off

he bottom of the skin before reaching the node. The first wave 

s the supersonic shear wave, and the second (larger) wave is the 

ayleigh surface wave (to be discussed further in Section 3.1 ). 

The deformed coordinates of the nodes, i.e. their position af- 

er the pre-stretch step, can be used in conjunction with the ar- 

ival time of the wave to determine the wave velocity. However, 

his naive approach makes the implicit assumption that the wave 

s travelling at constant speed. It also requires precise knowledge 

bout the wave generation method. For example, if a pressure is 

pplied, it is necessary to know the precise area that the pressure 

as applied to as well as the duration of the perturbation. 

By measuring multiple waveforms at different distances from 

he perturbation, see Fig. 2 b, it is possible to extract more accurate 

easures of the wave speed while avoiding such assumptions. Fi- 

ally, to avoid inherent discretisation errors when determining the 

rrival time of the “maximum” y-displacement, the waveform data 

oints were interpolated by means of a quadratic spline function, 

s implemented in the Python function “InterpolatedUnivariateS- 

line” from the Python sub-package “scipy.interpolate” [24] . This 

mooth spline function passes through all data points and can be 

ifferentiated to find a more accurate arrival time of the waveform 

eak. Therefore, in our study, the speeds of the Rayleigh and su- 

ersonic shear waves ( vR and vs ) were taken to be the average of 

he wave speeds within the region of interest. 

.2. Input space sampling 

Our goal was to train a ML model that could predict the ma- 

erial parameters of the skin using only the Rayleigh wave speed 

nd supersonic shear wave speed described in Section 2.1 . In order 

o have a model that is capable of accurate predictions for a wide 

ariety of subjects with different combinations of material param- 

ters, it was necessary to sample carefully from the input space. 
3

We had to explore a four-dimensional input space of E, β , ρ
nd λ1 (Young’s modulus, beta, density and pre-stretch). To guar- 

ntee good coverage of this input space, a Latin hypercube sam- 

ling method [25] was employed. Specifically, the function “Latin- 

ypercube” from the Python sub-package “scipy.stats.qmc” (Quasi- 

onte Carlo) [24] was used to generate 5,0 0 0 samples using a neo- 

ookean material model ( β = −1 ) and an additional 5,0 0 0 sam- 

les using a Mooney-Rivlin material model. The material parame- 

er ranges were chosen specifically to closely resemble those of in 

ivo human skin. 

The neo-Hookean material model is hyperelastic and is com- 

only used to describe incompressible material response due to 

he simplicity of the form [26] . In Abaqus, its strain energy func- 

ion U can be expressed as: 

 = C10 

(
Ī1 − 3

)
+ 1 

D1 
( Jel − 1) 

2 
, (2) 

here C10 and D1 are material parameters, Ī1 is the reduced first 

train invariant of the left Cauchy-Green tensor and Jel is the elastic 

olume strain [27] . C10 and D1 can be related to the stiffness mea- 

ured by the Young’s modulus E and the incompressibility mea- 

ured by the Poisson ratio ν by: 

10 = E 

6 

, D1 = 9 − 18 ν

E( 1 + ν) 
, (3) 

r, equivalently, to the shear modulus μ and bulk modulus k by 

27] : 

10 = μ

2 

, D1 = 2 

k 
. (4) 

The Mooney-Rivlin material model can be viewed as an exten- 

ion of the neo-Hookean form, as it adds a term that depends on 

he reduced second strain invariant Ī2 [27] . In Abaqus, its strain 

nergy function can be expressed as: 

 = C10 

(
Ī1 − 3

)
+ C01 

(
Ī2 − 3

)
+ 1 

D1 
( Jel − 1) 

2 
, (5) 

here C10 , C01 and D1 are material parameters and Jel is the elastic 

olume strain. In this case, the initial Young’s modulus E is ex- 

ressed as [27] : 

 = 6( C01 + C10 ) , (6) 

Therefore, to express the model parameters C10 , C01 and D1 in 

erms of E and ν , a unitless parameter β is introduced: 

10 = E 

12 

(
1 − β

)
, C01 = E 

12 

(
1 + β

)
, ν = 9 − 18 ν

E( 1 + ν) 
, (7) 

r, equivalently, the model parameters C10 , C01 and D1 can be writ- 

en in terms of μ and k : 

10 = μ

4 

(
1 − β

)
, C01 = μ

4 

(
1 + β

)
, D1 = 2 

k 
, (8) 

here β ranges from −1 , representing a pure neo-Hookean mate- 

ial, to +1 , representing a pure Mooney-Rivlin case. 



M. Nagle, H. Conroy Broderick, C. Vedel et al. Acta Biomaterialia xxx (xxxx) xxx

ARTICLE IN PRESS
JID: ACTBIO [m5G;May 22, 2024;15:48]

Table 1 

Material property ranges used when sampling from the input space. 

Material Property Range Units 

E [ 50 , 300] kPa 

β [ −1 , 1] 

ρ [ 1060 . 2 , 1171 . 8] kg /m 

3 

λ1 [ 1 . 05 , 1 . 35] 
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Fig. 3. Schematic of (a) the ML emulator used to relate the four input variables E, 

β , ρ and λ1 (the Young’s modulus, beta parameter, density and pre-stretch respec- 

tively), to the two output variables vR and vs (the Rayleigh wave speed and super- 

sonic shear wave speed, respectively). (b) The ML model used to infer the steady- 

state stress, S11 , in the principal directions of stretch and the natural pre-stretch of 

the subject’s skin, λ1 , from the input variables corresponding to the Rayleigh wave 

speed vR and the supersonic shear wave speed vs . 

m

n

s

o

e

t

d

s

t

r

c

u

d

s  

a

4

e

L

p  

s

v

H

c

t

v

G

t

c

[

m

“

w

s

“

t

a

[

[

T

w

m

o

i

f

s

m

a

s

T

d

The density of skin ρ is often assumed to be a fixed value, for 

xample the value 1116 kg /m 

3 [28] . However, to allow for some 

ariation due to hydration and other factors, we allowed the value 

o vary by ±5% . The skin’s pre-stretch range in the principal di- 

ection λ1 varies from study to study, depending on the measure- 

ent procedure. Jor et al. reported a maximum skin retraction of 

pproximately 40% for porcine skin [19] , Deroy et al. reported con- 

ractions in the 10% − 30% range for canine skin [10] and finally, Ní

nnaidh et al. reported the mean failure strain of excised human 

kin to be 54% ± 17% [29] . For our study, a pre-stretch in the range

rom 5% to 35% was chosen. 

The stiffness of human skin as measured by the Young’s mod- 

lus E has been reported extensively using various methods. Liang 

nd Boppart reported forearm skin to have E ∈ [50 , 150] kPa using

ptical coherence elastography [30] , Li et al. reported values of the 

orearm dermis in the range E ∈ [152 . 27 , 286 . 68] kPa by measuring

urface waves using optical coherence tomography [28] , and Diri- 

ollou et al. reported forearm skin with E ∈ [80 , 260] kPa using a

uction device [31] . As such, for our study, we selected a reason- 

bly broad range of values between 50 kPa and 300 kPa. It should 

e noted here that while the Young’s modulus is widely reported, 

here is a significant spread in the literature, due to variations in 

he location of the skin on the body, the method used to iden- 

ify the Young’s modulus and subject-specific attributes including 

ge, sex, race, hydration, health etc. For instance, the review paper 

y Joodaki and Panzer [32] presents a summary of studies on the 

oung’s modulus of whole skin, with measurements varying sig- 

ificantly. These variations range from 1.09 kPa (forearm of young 

emale) as reported by Bader and Bowker [33] using an indentation 

est method, to tens of thousands of kPa reported by Grahame and 

olt [34] using a suction device. Note that we used a fixed value 

or the Poisson ratio ( ν = 0 . 495 ) assuming all materials nearly in-

ompressible [35–37] . 

In summary, 5,0 0 0 unique neo-Hookean and 5,0 0 0 unique 

ooney-Rivlin subjects were generated with a Latin hypercube 

ampling technique using the material parameter ranges in Table 1 . 

wo different material models were used to examine if the training 

nd performance of the ML model were affected by the material 

odel employed, i.e. the neo-Hookean and Mooney-Rivlin formu- 

ations, which are among the most common material models used 

or the breast [38] . For each subject, a FE simulation consisting of 

 static pre-stretch followed by a dynamic wave propagation tech- 

ique (see Section 2.1 ) were performed, and the average Rayleigh 

nd supersonic wave speeds were stored. This dataset was then 

sed to train ML models of interest, as described in the subsequent 

ections. 

.3. Statistical emulation 

A “simulator” is a mathematical representation of a physical 

ystem that is deterministic and computationally expensive, but 

s often the gold standard for replicating complex real-world be- 

aviour [39–42] . For example, the gold standard method for de- 

ermining the complex mechanical response of skin or other bi- 

logical materials is a FE model. However, in practice, a three- 

imensional FE simulation could take hours to run, making this 
4

ethod infeasible in many clinical settings, where an analysis 

eeds to be performed quickly. Similarly, if it were of interest to 

ee how small changes to each individual FE input affected the 

utput (i.e. performing sensitivity analysis [43] ), it would be nec- 

ssary to run many FE simulations, which could be very computa- 

ionally expensive. 

An “emulator” is a data-driven model that uses a training 

ataset of diverse outputs from the simulator to reconstruct the 

imulation outputs for unseen inputs in a relatively computa- 

ionally inexpensive manner [39,41,42] . These cheap, fast, accu- 

ate approximations of the true simulator outputs can allow for 

linical/real-world use, sensitivity analysis, efficient optimisation, 

ncertainty quantification, etc [39,41,42] . 

In our study, the simulator is the two-dimensional FE model 

escribed in Section 2.1 , which has the material parameters of the 

kin as its inputs ( E, ρ , λ1 and β), and its outputs are the aver-

ge Rayleigh and supersonic shear wave speeds ( vR and vs ) in the 

-6 mm region of interest; see Fig. 3 . The training dataset for the 

mulator consists of the 10,0 0 0 input instances obtained from the 

atin hypercube design for the various combinations of the input 

arameters ( E, ρ , λ1 and β), defined in Section 2.2 , and the as-

ociated simulation velocity outputs ( vR and vs ). According to the 

alue of β , the dataset is composed of 5,0 0 0 instances of neo- 

ookean subjects and 5,0 0 0 Mooney-Rivlin subjects. While in prin- 

iple many statistical and ML models can be employed as emula- 

ors (regression models, Gaussian process, random forests, support 

ector machines, neural networks etc.) [44–46] , here we consider 

aussian process (GP) models [47] which allow for native uncer- 

ainty quantification and have been used by Stowers et al. in the 

ontext of predicting skin stress/strain for reconstructive surgeries 

48] . Specifically, a Gaussian process regression model as imple- 

ented in “GaussianProcessRegressor” in the Python sub-package 

sklearn.gaussian_process” was used [49] . The GP regression model 

as trained using a radial-basis function (RBF) kernel with length 

cale 1.0 as implemented in “RBF” in the Python sub-package 

sklearn.gaussian_process.kernels” [49] . During the model training, 

he kernel hyperparameters were optimised using the “L-BFGS-B”

lgorithm from the Python sub-package “scipy.optimize.minimize”

24] , following the implementation by Rasmussen and Williams 

50] . To ensure the different magnitudes of the input variables (see 

able 1 ) and output variables do not cause issues, all variables 

ere rescaled to have mean 0 and standard deviation 1 prior to 

odel training. An inverse transformation can easily be performed 

n the predictions from the trained GP model to obtain predictions 

n the natural units. Specifically, the function “StandardScaler”

rom the python sub-package “sklearn.preprocessing” was used to 

tandardise the input and output variables [49] . The trained GP 

odel was found to provide high predictive performance, and it 

lso allows for uncertainty quantification by giving the mean and 

tandard deviation as outputs when predicting, see Section 3.2 . 

he Gaussian process pipeline and a sample of the ML training 

ataset can be found in the public GitHub repository accompa- 
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Fig. 4. Schematic of the experimental device used to collect wave speed measurements. The device consists of a synthetic tissue (Simulab) which is stretched uniaxially to 

a known pre-stretch value. A spring-loaded device provides the perturbation, and two piezoelectric sensors a known distance apart record the shape of the waveform for 

analysis. 
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Fig. 5. Typical graph of Voltage vs Time from the two piezoelectric sensors. Syn- 

thetic tissue (Simulab) with a pre-stretch value of 1.12 (i.e. 12% stretch), the dis- 

tance between the sensors was 17.13 mm. The most consistent results were found 

when comparing the voltage trough immediately before the main voltage peak, ar- 

rival times are marked in the inset plot with an “x”. 
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ying this publication https://github.com/matt-nagle/A_Gaussian_

rocess_approach_for_rapid_evaluation_of_skin_tension/ . 

.4. Non-invasive prediction of material properties 

As discussed in Section 1 , there is a need to be able to mea-

ure the material properties of in vivo skin with a non-invasive 

rocedure. In this study, we suggest that the speed of a surface 

ave travelling through the skin contains information about the 

aterial properties, which can be extracted. In theory, determin- 

ng the wave speeds could be very straightforward, see Section 2.5 . 

owever, using these wave speeds to quantify stress and the pre- 

tretch in vivo requires solving a complex inverse problem in real 

ime. 

Similarly to the use of an emulator to reproduce the outputs of 

 computer simulation, we propose using a ML model as a compu- 

ationally efficient way of solving the inverse problem of inferring 

tress and pre-stretch from the wave speeds. For this model, the 

elocity of the supersonic shear wave vs and the Rayleigh wave 

peed vR are now the input variables. The two target variables are 

he steady-state (after the pre-stretch but before the wave propa- 

ation) stress in the principal direction of stretch S11 and the natu- 

al pre-stretch of the subject’s skin λ1 ; see Fig. 3 . These target vari-

bles were chosen as they are independent of the material model 

eing used (unlike the Young’s modulus E for example) and are the 

arameters of most interest in a surgical setting. The same dataset 

escribed in Section 2.3 obtained from the simulator is used for 

raining, where in this case the inputs are (vR , vs ) and the targets 

re (S11 , λ1 ) . 

Again, while in principle this model could be of any form, in 

his case we consider a Gaussian process regression model with 

tandardised inputs and outputs as it provided high predictive 

erformance and also allowed for uncertainty quantification; see 

ection 3.3 . 

.5. Experimental validation 

To demonstrate that surface wave speed data of the type de- 

cribed in Section 2.1 can be collected easily and cheaply, a cus- 

om device was created consisting of two piezoelectric sensors and 

 custom uniaxial stretching apparatus, see Fig. 4 . 

The skin sample used was a synthetic tissue from Simulab 

Seattle, USA), comprised of a single homogeneous layer of thick- 

ess 1 mm [51] , designed to replicate human skin tissue. The uni- 

xial stretching apparatus consisted of a fixed base and two mov- 

ng clamps mounted on a lead screw. The synthetic tissue was cut 

nto strips with known dimensions 50 mm × 24 mm and secured to 

he clamps using a number of hooks that pierced through the skin. 

 known uniaxial pre-stretch could then be applied to the skin by 

otating the lead screw. 

A spring-loaded device was installed at a fixed distance above 

he skin sample, capable of providing repeatable perturbations nor- 
5

al to the surface of the skin, to generate a surface wave. To mea- 

ure the shape of the waveform, two piezoelectric sensors (TE Con- 

ectivity Measurement Specialties) were fixed perpendicular to the 

irection of the uniaxial stretch, placed at a known distance apart 

nd at a known distance from the impact site. The two sensors 

ere connected to a Handyscope HS3-100 oscilloscope (TiePie En- 

ineering), from which it was possible to visualise the voltage gen- 

rated by the sensor as a function of time, see Fig. 5 . 

Note that in Fig. 5 we see more oscillatory behaviour than in 

he FE model data ( Fig. 2 ). This is likely due to wave reflection

ff the bottom of the skin sample and the inherently more com- 

lex surface wave propagation behaviour we would expect in three 

imensions in a synthetic tissue sample. It should also be noted 

hat it was only possible to extract information about the Rayleigh 

ave, as the supersonic wave was not visible. This may be due to 

ave attenuation or its smaller amplitude (see Fig. 2 ), making it 

ore difficult to detect. 

Using this setup, it was possible to experimentally determine 

he effect of pre-stretch on the surface wave velocity. Four pre- 

tretch values of 1.12, 1.19, 1.22 and 1.27 were considered, and five 

easurements were performed for each pre-stretch value. Note 

hat the voltage-time waveforms obtained experimentally are anal- 

gous to the displacement-time graphs obtained from the FE sim- 

lations. Surface wave speed values were obtained by comparing 

he “arrival time” of particular features of the two waveforms and 

sing the known distance between the piezoelectric sensors. 

. Results 

.1. Finite element results 

As discussed in Section 2.1 , the first step of each simulation was 

o perform a uniaxial static pre-stretch to simulate a pre-stressed 

https://github.com/matt-nagle/A_Gaussian_process_approach_for_rapid_evaluation_of_skin_tension/
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Fig. 6. Maximum principal stress (Pa) in the deformed neo-Hookean material with a Young’s modulus of 175 kPa, a density of 1,116 kg m 

−3 and a pre-stretch of 1.2 (20% 

extension). This frame of the simulation was taken after 0.553 ms of wave propagation. The (larger) Rayleigh wave can be seen travelling along the surface of the skin, as 

well as the faster supersonic shear wave. 

Fig. 7. Histograms of the distribution of the Rayleigh and supersonic shear wave 

speeds for all 10,0 0 0 subjects. 
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in vivo ” state before the wave was propagated along the surface 

f the skin. After the pre-stretch, a motion was generated through 

he skin, see Section 2.1 . Both the Rayleigh and supersonic shear 

aves can be seen propagating through the material in Fig. 6 . 

After running all 10,0 0 0 simulations, it was found that the 

ayleigh wave speed travelled between 3.78 and 12.53 m/s while 

he supersonic shear wave travelled between 4.9 and 18.5 m/s, 

ith the supersonic shear wave always travelling faster than the 

ayleigh wave. The distributions of the wave speeds are shown in 

ig. 7 . It should be noted here that the Rayleigh wave speeds from 

he FE simulation are in very good agreement with the predicted 

nalytical results from Eq. (1) ( R2 = 0 . 9951 ). The analytical wave

peeds are only slightly faster than the FE wave speeds, within 

 . 59% on average. 

.2. Statistical emulation results 

The exact performance of any ML model is dependent on the 

rain-test split of the data, i.e. which data points are used to train 

he model and which data points are withheld to test the per- 

ormance of the trained model. So, to provide a fair assessment 

f the ability of the emulator to reproduce the simulator outputs, 

 10-fold cross-validation procedure is implemented [52] . In the 

rocedure, the dataset is randomly split into 10 folds of 1,0 0 0 

ubjects. In turn, each fold is used as a test set, while the other 

ine folds are employed to train the Gaussian process regression 

odel. The mean of the R2 [53] computed between estimated 

nd simulation-outputted Rayleigh and supersonic velocities is em- 

loyed as a metric to assess the predictive performance. This R2 is 

veraged across the 10-fold replications, giving an average perfor- 

ance of 0 . 9993 ± 0 . 0 0 03 . This result indicates that the emulator
6

s able to reproduce the simulation outputs in a stable manner to 

 very high degree of accuracy. 

To get a visual indication of the predictive performance, we can 

onsider one such 90%/10% train-test split, i.e. where one fold of 

he data is withheld as an unseen test set and the GP regression 

odel is trained on the remaining nine folds. By comparing the 

imulation outputs to the predictions from the emulator for the 

nseen test set data points, we see that the emulator model is 

apable of reproducing very similar outputs to the simulator at a 

reatly reduced computational cost; see Fig. 8 . Note that the GP 

odel has slightly better predictive performance for the Rayleigh 

ave speed output as the Rayleigh wave has a larger amplitude 

see Fig. 2 ) and is more stable than the supersonic shear wave 

peed, making it the “dominant” output. 

Once trained, our emulator can be used to make predictions of 

ayleigh and supersonic wave speeds for unknown sets of inputs 

n a fraction of the time it would take to run the full simulator. 

or example, a typical run of our FE simulation on a single CPU 

ould take approximately 6 min (excluding data extraction and 

ost-processing time). By contrast, a new prediction from the GP 

mulator takes approximately 30 milliseconds, a reduction in com- 

lexity of 4 orders of magnitude. With such a reduction in com- 

uting time, using the emulator, it is possible to perform a sensi- 

ivity analysis of the velocities as a function of ranges of the input 

arameters. 

First, a large dataset was generated using the emulator, 20 

qually spaced points were taken from the range of each input 

ariable ( E, ρ , β , λ1 ), and each possible combination of points was 

onsidered, giving a dataset of 160 thousand observations. Follow- 

ng the method of sensitivity analysis from Section 7.2.2 of The De- 

ign and Analysis of Computer Experiments [42] , two first order 

egression models were fitted: 

∗
R = α∗

0 + α∗
1 E

∗ + α∗
2 ρ

∗ + α∗
3 β

∗ + α∗
4 λ

∗
1 , (9) 

∗
s = α∗

0 + α∗
1 E

∗ + α∗
2 ρ

∗ + α∗
3 β

∗ + α∗
4 λ

∗
1 , (10) 

here each variable x has been standardised as follows: 

∗ = x − x̄ 

σ
, 

here x̄ is the mean of x and σ is the standard deviation of x . 

The regression coefficients α∗
i 

in Eqs. (9) and (10) are known 

s the standardised regression coefficients (SRCs). For example, α∗
1 

easures the change in our target variable ( v∗
R 

or v∗
s ) due to a unit 

tandard deviation change in our input E. Because all variables are 

n a common scale after standardisation, the magnitude of the es- 

imated SRCs tells us the relative sensitivity of the output to each 

nput. The output is most sensitive to the input that has the largest 

bsolute SRC value [42] . Table 2 shows the computed SRCs, where 
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Fig. 8. Performance of the multi-output Gaussian process regression emulator, trained on 90% of the dataset and tested on the remaining unseen 10%. For each data point, 

the x coordinate is the “true” wave speed extracted from the FE simulation, the corresponding y coordinate is the GP prediction of the wave speed given the set of inputs E, 

β , ρ and λ1 for that subject; the error bar is the 99% credible interval for the GP prediction. As shown, the emulator has extremely high predictive power. 

Table 2 

Standardised regression coefficients for Eqs. (9) and (10) . Coefficients indicate that 

the velocity outputs are most sensitive to the Young’s modulus E and are least sen- 

sitive to the density ρ . Note that this analysis is likely to be reasonable because the 

R2 associated with the fitted models are 0.9796 and 0.9534 for vR and vs , respec- 

tively [42] . 

Input Variable Estimated α∗
i 

( vR ) Estimated α∗
i 

( vs ) 

Young’s Modulus ( E) 0.9447 0.9328 

Density ( ρ) −0.0609 −0.0621 

Beta ( β) −0.1229 −0.2493 

Pre-Stretch ( λ1 ) 0.2630 −0.1359 
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e see that the target variables are most sensitive to changes in 

he Young’s modulus E and are least sensitive to changes in the 

ensity ρ . This result is consistent with Eq. (1) where we see that 

he Rayleigh wave speed is directly proportional to 
√ 

E/ρ . Note 

hat when sampling from the input space (see Section 2.2 ) we al- 

owed E to have a much larger variation than ρ , which, in the liter- 

ture, is often taken to be constant. Interestingly, we also see that 

he Rayleigh wave speed is more sensitive to λ1 and less sensitive 

o β while conversely, the supersonic wave speed is more sensitive 

o β and less sensitive to λ1 . 

A visual representation of the effect that each input variable has 

n the response wave speed can be obtained through conditional 

lots where all input are fixed at their mean and one variable is 

llowed to vary in its full range of values, see Fig. 9 . The figures

how that when the other material parameters are fixed at their 

ean and the Young’s modulus is increased, both the Rayleigh and 

upersonic velocities also increase. Conversely, an increase in the 

ensity causes the wave speeds to decrease slightly (due to the 

elatively small amount of variance in density that was sampled). 

nterestingly, we see that there is a significant decrease in the su- 

ersonic wave speed in the transition from a pure neo-Hookean 

aterial ( β = −1 ) to an extreme Mooney-Rivlin material ( β = +1 ),

hereas there is a much weaker decrease in the Rayleigh wave 

peed. We can also see that, as expected, the additional stretch 

auses the Rayleigh wave speed to increase significantly, but sur- 

risingly, it causes the supersonic shear wave speed to decrease. 

his phenomenon has been demonstrated experimentally in a re- 

ent publication by Li et al., who performed uniaxial extension on 

 rubber sample at different magnitudes of pre-stress and observed 

he variations of the phase velocities of the Rayleigh and supers- 

ear waves [22] . 

While our emulator is performing the same task as Eq. (1) , the 

L method used is non-parametric, and as such, it is not possi- 

le to directly extract a simple equation which relates the mate- 

ial parameter inputs to the output velocities. However, it is pos- 

ible to interpolate the complex relationship between our input 
7

ariables ( E, ρ , β and λ1 ) and our output variables ( vR and vs ) 

hat was learned by the Gaussian process emulator. The interpo- 

ation was performed using a parametric regression model. Specif- 

cally, the model “LinearRegression” from the Python sub-package 

sklearn.linear_model” [49] was fit to the large dataset generated 

y the emulator during the sensitivity analysis, allowing us to ex- 

ract the following equations: 

R = −0 . 1519 − (3 . 8577 × 10−11 ) E2 + (3 . 7251 × 10−5 ) E 

− (3 . 4424 × 10−3 ) ρ − 0 . 3868 β + 5 . 5120 λ1 (11) 

s = 15 . 8983 − (6 . 0573 × 10−11 ) E2 + (5 . 8806 × 10−5 ) E 

− (5 . 6327 × 10−3 ) ρ − 1 . 2569 β − 4 . 5659 λ1 (12) 

Note that Eqs. (11) and (12) are simplifications of the true 

omplex relationship between our variables. They are data-driven 

quations (not physics-derived, like Eq. (1) ) that are conditional 

n the emulator model chosen and the FE model used to gener- 

te the simulator dataset. The R2 values for the interpolation of 

qs. (11) and (12) are 0.9905 and 0.9637, respectively. This means 

hat the simplified parametric equations are a good approximation 

f the non-parametric ML model. 

.3. Material property prediction results 

As described in Section 2.4 , a GP regression model was em- 

loyed to predict steady state stress S11 in the principal direction 

f stretch and natural pre-stretch λ1 of the subject’s skin using the 

ayleigh speed vR and the supersonic speed vs as inputs. 

As in Section 3.2 , we get a fair assessment of the ability of 

he GP regression model to predict the steady state stress S11 and 

he natural pre-stretch λ1 by performing a 10-fold cross-validation 

rocedure. The mean of the R2 values computed for estimated 

nd simulation-outputted steady-state stress S11 and natural pre- 

tretch λ1 was employed as a metric to assess the predictive per- 

ormance. This R2 is averaged across the 10-fold replications, giving 

n average performance of 0 . 9570 ± 0 . 0025 when compared with 

he “true” values extracted from the FE simulations. From this, we 

an be confident that the predictive performance of the model is 

ery strong and is not dependent on the initial split of the training 

nd testing data. 

Again, we get a visual indication of predictive performance by 

onsidering one such 90%/10% train-test split, i.e. where one fold 

f the data is withheld as an unseen test set and the GP regression

odel is trained on the remaining nine folds. By comparing the 

true values” extracted from the FE simulations and the predictions 

rom the GP model for the unseen test set data points, we see that 

he GP model is capable of accurate predictions of the stress and 
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Fig. 9. Results of the sensitivity analysis where each input (a) E, (b) ρ , (c) β and (d) λ1 was allowed to vary along their full range while each of the other input variables 

were held at their mean values, E = 175 kPa, β = 0 , ρ = 1 , 116 kg m 

−3 and λ1 = 1 . 2 (20% extension), and the effect on the output variables vR and vs was observed. The 

shaded region is the 99% credible interval for the GP prediction. 

Fig. 10. Performance of the multi-output GP regression model trained on 90% of the dataset and tested on the remaining unseen 10%. For each data point, the x coordinate 

is the “true” stress/pre-stretch extracted from the FE simulation and the corresponding y coordinate is the GP prediction of the stress/pre-stretch given the wave speeds vs 

and vR . The error bar is the 99% credible interval for the GP prediction. As shown, the model has very strong predictive power for both output variables. 
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Table 3 

Standardised regression coefficients for S11 and λ1 . Coefficients indicate that S11 and 

λ1 are sensitive to both vR and vs . 

Input Variable Estimated α∗
i 

( S11 ) Estimated α∗
i 

( λ1 ) 

Rayleigh wave speed ( vR ) 1.8920 2.3758 

Supersonic wave speed ( vs ) −1.1168 −2.2414 

s

1

i

w

a

he pre-stretch of the skin using only the Rayleigh and supersonic 

ave speeds; see Fig. 10 . Unsurprisingly, as the stress/stiffness in 

he material has the largest influence on the wave velocities (see 

ig. 9 ), the model performs better at predicting the stress/stiffness, 

eading to a higher R2 value. Interestingly, however, as the pre- 

tretch of the material has opposite effects on the Rayleigh and 

upersonic wave speeds (see Fig. 9 d), the inclusion of the super- 

onic shear wave speed as an input to the GP model also allows 

ccurate predictions of the pre-stretch. For comparison, the same 

P model trained with the same train-test split with just a single 

nput vR is still capable of making reasonably accurate predictions 

f S11 ( R2 = 0 . 8136 ) but is incapable of accurate predictions of λ1 

 R2 = 0 . 1405 ). We can also confirm this by performing the same
8

ensitivity analysis procedure explained in Section 3.2 using the 

0,0 0 0 measurements of vR and vs from the training dataset as our 

nputs. We see from the SRCs in Table 3 that while the Rayleigh 

ave speed is the most important, the supersonic wave speed has 

 noticeable level of importance in the GP model. 
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Fig. 11. Boxplots of the wave speeds measured experimentally for four different 

levels of pre-stretch. The GP emulator wave speed predictions and the analytical 

solution using Eq. (1) are in blue and orange respectively, where the synthetic tissue 

was assumed to be a neo-Hookean material ( β = −1 ). 
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Again, we use our pre-trained GP model and our 10,0 0 0 com- 

inations of vR and vs from the training data to extract a simpli- 

ed parametric equation by fitting a regression model to interpo- 

ate the complex relationship between our input variables ( vR and 

s ) and our output variables ( S11 and λ1 ): 

11 = 7639 . 4731 − 1163 . 2769vR 
2 − 3983 . 7169 vR 

− 1388 . 9624vs 
2 + 980 . 2333 vs + 3394 . 7445 vR vs (13) 

1 = 1 . 1925 − 0 . 0306vR 
2 + 0 . 1839 vR 

− 0 . 0084vs 
2 − 0 . 1150 vs + 0 . 0329 vR vs (14) 

Again, note that Eqs. (13) and (14) are simplified data- 

riven approximations of the true complex relationship. As such, 

qs. (13) and (14) are conditional on the emulator model chosen 

nd the FE model used to generate the simulator dataset. The R2 

alues for the interpolation of Eqs. (13) and (14) are 0.9973 and 

.9540, respectively. 

.4. Experimental validation results 

As discussed in Section 2.5 , the experimental setup in Fig. 4 was 

sed to take measurements of wave speed from a synthetic tissue 

ample for four levels of pre-stretch: 1.12, 1.19, 1.22 and 1.27. For 

ach value of pre-stretch, five measurements were performed. The 

istribution of wave speeds for different levels of stretch can be 

een in Fig. 11 . 

Overall, the wave speeds measured experimentally were con- 

istent and repeatable, as demonstrated by the tight distributions 

or each value of pre-stretch in Fig. 11 . The observed wave speeds 

ere between 6.57 m/s and 9.43 m/s, consistent with the overall 

ayleigh wave speed values obtained from the FE simulations, see 

ig. 7 . We also see that as the pre-stretch of the skin increases, the

peed of the Rayleigh surface wave also increases. This behaviour 

s consistent with both the existing analytical solution and with 

ur GP emulator, see Fig. 9 d. Furthermore, assuming that the neo- 

ookean material ( β = −1 ) model is suitable to describe the tissue 

ample, that the sample has uniform density ( ρ = 1116 kg m 

−3 ), 

nd that the average Young’s modulus measured by Kho et al. 

s correct ( E = 146 kPa ) [51] , we can compare the experimentally 

easured wave speeds to the predictions from the pre-trained GP 

mulator described in Section 3.2 and the analytical solution from 

q. (1) . We find that there is good agreement between the experi- 

entally measured wave speeds and the predicted wave speeds up 

ntil the highest level of pre-stretch, where the GP emulator and 

he analytical solution deviate from the experimental results; see 

ig. 11 . 

We can also visualise the relationship between the Rayleigh 

ave speed and the Young’s modulus to examine the agreement 
9

etween the FE dataset and the experimental observations, see 

ig. 12 a. There is a clear positive relationship between wave speed 

nd Young’s modulus: the higher the Young’s modulus, the faster 

he Rayleigh wave speeds. For any fixed value of Young’s modu- 

us, a 1 − 3 m/s variation in Rayleigh wave speed can be seen; this 

s due to different combinations of the other variables (pre-stretch, 

ensity and the material model). We see that the variation in wave 

peed observed in the experimental data is consistent with the 

ariation expected from the FE data. 

As discussed in Section 2.5 , unfortunately, it was only possible 

o extract information about the Rayleigh wave speed, as the su- 

ersonic wave was not visible using the piezoelectric sensors em- 

loyed. As such, it was not possible to validate the model pre- 

ented in Section 2.4 . Instead, we use the same FE dataset to train

 new GP regression model which takes in as input the pre-stretch 

nd the Rayleigh wave speed and predicts the Young’s modulus of 

he skin ( R2 = 0 . 9722 ). It should be noted here that the real-world

pplication of this model is limited, since in many cases the pre- 

tretch is unknown. Using this pre-trained model, we can input the 

re-stretch and corresponding Rayleigh wave speed observations 

rom the experimental data and obtain estimates for the Young’s 

odulus of the synthetic skin sample, see Fig. 12 b. The predictions 

rom the GP regression model agree very well with the average 

oung’s modulus of 146 kPa and fall within one standard deviation, 

easured by Kho et al. [51] , which we would expect to vary due 

o hydration levels of the sample, variations in test set up, storage 

onditions etc. Thus, we have demonstrated a ML model trained 

olely on FE simulations is capable of accurate predictions of un- 

nown material properties of interest using the pre-stretch and ex- 

erimentally measured wave speeds from a simple wave propaga- 

ion measurement. 

. Discussion 

As demonstrated in Section 3.2 , it is possible to train an emu- 

ator to quickly and accurately produce outputs similar to a more 

omputationally expensive simulator, using some well-chosen in- 

ut values. In practice, this advance can allow for exploration of 

he relationship between the input and output variables (for ex- 

mple in the form of a sensitivity analysis), or for real-world use 

here relying on the simulator would be too time-consuming. 

ote, it is reasonable to expect the skin material properties (i.e. the 

imulator inputs) to have a distribution centred around their pop- 

lation mean value in nature, for example the normal distribution. 

n this work, a Latin hypercube sampling method was employed to 

ample uniformly from the chosen range, resulting in an emulator 

hich, in theory, is able to produce simulator outputs equally well 

ver the entire input space. 

When exploring the sensitivity of the emulator to the input 

ariables, we found that the wave speeds are by far the most sen- 

itive to the Young’s modulus E and are not sensitive to the den- 

ity ρ , see Table 2 . This may initially seem at odds with Eq. (1) ,

here we see the Rayleigh wave speed is directly proportional to 
 

E/ρ . However, recall that when sampling from the input space 

see Section 2.2 ) we allowed E to have a much larger variation than 

(which in the literature is often taken to be constant), which is 

ikely why for this emulator, the density ρ is not an important pre- 

ictor. 

In Section 3.3 , we demonstrated that using a relatively simple 

P model, it is possible to take wave speed data, which is easily 

ccessible in vivo , and use it to accurately predict important mate- 

ial properties of the skin like the stress and the pre-stretch. While 

his model uses only two-dimensional FE data, it could be ex- 

ended, incorporating three-dimensional FE and experimental data 

o allow for more accurate predictions of material properties in 

ivo . Given that the input parameters can be obtained easily and 
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Fig. 12. (a) Scatter plot of the relationship between the Rayleigh wave speed and the Young’s modulus for the FE data (blue) and the experimental observations (black). The 

experimental observations were all collected from synthetic tissue, with a Young’s modulus of 146 kPa [51] . As shown, the experimental observations agree very well with 

the variation of wave speeds seen in the FE dataset. (b) Predictions from the pre-trained GP regression model using the experimental observations as inputs. Note that there 

is good agreement between the predicted Young’s modulus from the GP model and the Young’s modulus measured by Kho et al. [51] . 
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on-invasively, this investigation offers a method which could be 

f real value to surgeons and patients. 

For computational efficiency, a single homogeneous layer of 

kin was modelled in the FE simulations. While it is possible to 

odel a more complex “multi-layer” skin block, in this work, this 

as not necessary as the goal of the FE simulation was to extract 

he speed of surface waves. As such, the material properties of the 

op layer of skin are the most important factor in the determina- 

ion of the Rayleigh and supersonic wave speeds, the change in 

ave speed due to passing between skin layers will affect only the 

ehaviour of the wave that is reflected off the bottom of the skin. 

While our current dataset is based on simulated data, through 

his simulation approach, a number of implications for future phys- 

cal measurements were identified: 

1. We require at least one receiver, located a known distance away 

from the wave generating perturbation. However, more than 

one receiver is preferable and allows us to not be concerned 

with the specifics of the wave generation process. 

2. We require enough sensitivity to be able to clearly identify the 

Rayleigh wave speed and ideally also the supersonic shear wave 

speed, which can give significant additional predictive power 

for S11 and λ1 . 

3. Ideally, wave reflections should be identifiable and should not 

interfere with the supersonic and Rayleigh wave peak location. 

In practice, this ML method could be viewed as an alternative 

o inverse FE procedures, which are a popular framework used in 

he literature to identify material properties [54–56] . Regular “for- 

ard” FE modelling involves inputting material properties, defin- 

ng boundary conditions and loading conditions, etc., and receiving 

ome output of interest. In the inverse FE framework, some output 

f interest is measured/obtained and the unknown value of inter- 

st is the material parameters. These quantities are often obtained 

hrough iterative rounds of FE simulations, where the material pa- 

ameters are continuously tuned to minimise a predefined objec- 

ive function to replicate the experimentally measured output [57] . 

he benefit of our approach is that all computational complexity 

s “front-loaded”: once the input space has been explored, the FE 

imulations performed and the ML model trained, all subsequent 

redictions have extremely low computational cost. This makes our 

ethod much more suitable for real-time use where, for example, 

 trained and validated model could be deployed in a clinic where 

ave speed measurements can be taken and a near instantaneous 

rediction of material properties can be obtained with minimal ex- 

ertise required. By contrast, with the inverse FE framework, any 
10
ew observation requires new rounds of potentially computation- 

lly expensive FE simulations, and significant expertise to imple- 

ent and interpret them. 

There are a number of limitations to the method. First and fore- 

ost is that the trained model can only make predictions in the 

nput space it has been trained on. As such, selection of the bound- 

ries for the input space is of paramount importance when training 

 model that will be deployed in the real-world. Another limitation 

o the models presented here is that they have been trained en- 

irely on simulated two-dimensional FE data. For this reason, there 

s no noise in the training dataset and the data generation process 

s entirely deterministic (i.e. multiple FE simulation runs with the 

ame set of input variables will produce identical outputs). Thus, 

he models presented here may not generalise well to real-world 

bservations where the data collection process is not perfect and 

he physical device used may have reduced resolution. The models 

resented here then should serve as a proof of concept and pro- 

edural outline by which models of this kind can be employed. 

n practice, once some experimental in vivo data has been col- 

ected, this simulated training dataset could be altered by reduc- 

ng the precision and/or adding noise to make it more similar to 

he experimental observations. A more sophisticated model could 

hen be developed by training on a combination of the adjusted FE 

ata and experimental observations, which would likely generalise 

uch better to the experimental data. 

In this study, two different material models (neo-Hookean and 

ooney-Rivlin), commonly used to model breast and other soft tis- 

ues, were used to examine if the ML model could still achieve 

igh predictive performance while trained on a mix of material 

odels. This proved to be a success: while models trained and 

ested on just the neo-Hookean or just the Mooney-Rivlin subjects 

ad slightly higher performance, the model trained on the com- 

ined dataset still had very strong predictive power. The Mooney- 

ivlin constitutive model was selected for this study, as it is the 

implest model that depends on both the first and second strain 

nvariants of the left Cauchy-Green tensor ( ̄I1 and Ī2 ). Thereby, it 

an often provide a good fit to experimental data whilst still re- 

aining simplicity and requiring the fitting of fewer parameters. An 

dditional benefit to the selection of neo-Hookean and Mooney- 

ivlin material models is that they allowed for validation of the 

E model using the existing analytical solution given in Equation 

 . The FE model was developed as it allowed for the extraction of 

oth the Rayleigh and supersonic shear wave speeds, providing a 

ignificant improvement in predictive performance. The full shape 

f the waveform could also be extracted and used directly for more 
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omplex prediction tasks. Furthermore, the framework developed 

n this work is flexible and can easily be used for different mate- 

ial models where no analytical solution exists. 

To demonstrate that wave speed measurements could be ob- 

ained cheaply and easily and be used to infer information about 

he pre-stretch, a custom experimental rig was designed consist- 

ng of a uniaxial tensioner, a spring-loaded device to impact the 

urface of the skin and two piezoelectric sensors to record the 

aveforms. As discussed in Section 3.4 , the obtained Rayleigh wave 

peeds were consistent, repeatable, increased as expected with in- 

reasing pre-stretch, and had good agreement with existing ana- 

ytical solutions and the GP emulator. By comparing the predicted 

oung’s modulus from a newly-trained GP regression model to the 

oung’s modulus measured by Kho et al. [51] , see Fig. 12 b, we

emonstrate that a model trained solely on the FE simulations de- 

cribed in Section 2.1 is capable of fast and accurate predictions 

f skin material properties using wave speed observations from a 

imple and cheaply constructed wave propagation device. 

However, it should be recognised here that there were a num- 

er of limitations to the experimental set-up. Firstly, the obtained 

aveforms only captured the Rayleigh surface wave and the su- 

ersonic shear wave was not visible. This may be due to the dif- 

erence in amplitude between the Rayleigh and supersonic wave 

see Fig. 2 a), sensitivity of the piezoelectric sensors and/or atten- 

ation of the supersonic wave before arriving at the sensors, which 

as significantly further away from the impact location than in 

he FE simulation. It is also possible that the spring-loaded device 

sed to generate the wave acted to increase attenuation of the per- 

urbation. As such, it was not possible to validate the GP model 

resented in Section 3.3 and instead a new model was trained 

o demonstrate feasibility. This model used the pre-stretch and 

ayleigh wave speed as inputs to predict the Young’s modulus E. 

t should also be noted that while the Young’s modulus prediction 

nd general agreement between the experimental data and the GP 

mulator were very good for low/medium pre-stretch configura- 

ions, the wave speeds obtained from the higher stretch values, es- 

ecially 1.27, were higher than expected. There are a number of 

xperimental effects which may have led to this deviation, includ- 

ng delamination of the sensors from the skin surface or hetero- 

eneous areas of strain at high stretches. It is also possible that 

he deviation is due to the non-linear stress-strain response of the 

ynthetic tissue. Experimentally, the tissue was observed to expe- 

ience wrinkling at high strain values ( > 1.27) and as such it was

ot possible to obtain consistent wave speed measurements. Fu- 

ure work could involve a more thorough exploration of experi- 

ental wave speeds for different synthetic skin samples with dif- 

erent stiffnesses to quantify the effect that each material parame- 

er has on the measured wave speed. 

Finally, as discussed above, to generate the training data used 

n this study, a simplified two-dimensional FE simulation of fully 

lastic skin was used. Future work should involve extending this 

ethod into three dimensions. This would allow for the explo- 

ation of anisotropic skin tension through the use of a biaxial pre- 

tretch. 

. Conclusions 

In this study, an innovative procedure was developed that pro- 

ides real time non-invasive access to in vivo stretch and stress. 

irst, a simplified FE model was developed to simulate surface 

ave propagation in in vivo skin. Then, a large dataset consisting 

f simulated real-world wave propagation experiments was con- 

tructed using the FE simulator. Using this dataset, a Gaussian pro- 

ess regression model was trained as an emulator that can repli- 

ate the FE model outputs with an average R2 = 0 . 9993 at a 4 or-

er of magnitude reduction in computational complexity. This al- 
11
owed for sensitivity analysis of the physical parameters that affect 

he Rayleigh wave speed and supersonic shear wave speed. Then, 

 Gaussian process regression model was trained to solve the in- 

erse problem of predicting clinically important material proper- 

ies like the stress and the pre-stretch of in vivo skin using mea- 

urements of Rayleigh and supersonic wave speeds. This model 

as found to have an average R2 = 0 . 9570 and furthermore it was

ossible to interpolate simplified parametric equations to calculate 

he stress and the pre-stretch. Finally, an experimental device con- 

isting of two piezoelectric sensors and a spring-loaded impactor 

as used to take wave speed measurements at different degrees 

f pre-stretch from a sample of synthetic skin tissue (Simulab). 

hese experimental wave speeds were shown to agree well with 

he existing analytical solution and the Gaussian process emulator. 

urthermore, a ML model trained on just the FE data was capable 

f taking the experimental wave speeds as inputs and predicting 

 Young’s modulus similar to that obtained from destructive me- 

hanical characterisation tests. These results indicate that measur- 

ng surface wave speeds to predict skin pre-stretch and stress is 

 feasible method which could be employed in clinical settings to 

nform surgical procedures. 
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