
International Journal of Solids and Structures 290 (2024) 112671

A
0

Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier.com/locate/ijsolstr

Voltage-controlled non-axisymmetric vibrations of soft electro-active tubes
with strain-stiffening effect
Fangzhou Zhu a, Bin Wu a,∗, Michel Destrade a,b, Huiming Wang a, Ronghao Bao a,
Weiqiu Chen a,c,d

a Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province and Department of Engineering Mechanics, Zhejiang University, 310027 Hangzhou, PR
China
b School of Mathematical and Statistical Sciences, University of Galway, University Road, Galway, Ireland
c Huanjiang Laboratory, 311816 Zhuji, Zhejiang, PR China
d Soft Matter Research Center, Zhejiang University, 310027 Hangzhou, PR China

A R T I C L E I N F O

Dedicated to Yibin Fu, in esteem and friendship

Keywords:
Soft electro-active tube
Non-axisymmetric vibrations
Biasing fields
State space method
Strain-stiffening effect
Active resonator

A B S T R A C T

Material properties of soft electro-active (SEA) structures are significantly sensitive to external electro-
mechanical biasing fields (such as pre-stretch and electric stimuli), which generate remarkable knock-on effects
on their dynamic characteristics. In this work, we analyze the electrostatically tunable non-axisymmetric
vibrations of an incompressible SEA cylindrical tube under the combination of a radially applied electric
voltage and an axial pre-stretch. Following the theory of nonlinear electro-elasticity and the associated
linearized theory for superimposed perturbations, we derive the nonlinear static response of the SEA tube to the
inhomogeneous biasing fields for the Gent ideal dielectric model. Using the State Space Method, we efficiently
obtain the frequency equations for voltage-controlled small-amplitude three-dimensional non-axisymmetric
vibrations, covering a wide range of behaviors, from the purely radial breathing mode to torsional modes,
axisymmetric longitudinal modes, and prismatic diffuse modes. We also perform an exhaustive numerical
analysis to validate the proposed approach compared with the conventional displacement method, as well as
to elucidate the influences of the applied voltage, axial pre-stretch, and strain-stiffening effect on the nonlinear
static response and vibration behaviors of the SEA tube. The present study clearly indicates that manipulating
electro-mechanical biasing fields is a feasible way to tune the small-amplitude vibration characteristics of an
SEA tube. The results should benefit experimental work on, and design of, voltage-controlled resonant devices
made of SEA tubes.
1. Introduction

Among the ever-increasing range of smart materials being cur-
rently developed, soft electro-active (SEA) materials such as dielectric
elastomers can convert or transduce electrical energy to or from me-
chanical energy (Pelrine et al., 1998). SEA structures demonstrate
superior electro-mechanical coupling properties, as they reduce re-
markably in thickness and expand in area when exposed to applied
electro-mechanical biasing fields, in contrast to typical piezoelectric
materials which are too brittle to undergo large deformations. Other
excellent features, such as reversible large deformation, rapid response,
low weight and low cost, high elastic energy density, and high conver-
sion efficiency, have attracted wide academic and industrial interest
and led to various broad practical applications in soft robotics, biomed-
ical devices, flexible electronics, tunable resonators as well as active
waveguides, phononic crystals and metamaterials (Carpi et al., 2011;
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Anderson et al., 2012; Zhao and Wang, 2014; Lu et al., 2020; Zhu et al.,
2010b; Zhao et al., 2016; Wang et al., 2020; Chen et al., 2022; Zhao
et al., 2023).

Strong nonlinearity and electro-mechanical coupling make it quite
difficult to establish a general continuum mechanics framework. Pio-
neering works on nonlinear theory of electro-elasticity were conducted
by Toupin (1956, 1963) more than half a century ago for static and
dynamic analyses of finitely deformed elastic dielectrics. Since the
1980s, there have been numerous reformulations of a general nonlinear
continuum theory for electro-magneto-mechanical couplings (Maugin,
1988; Eringen and Maugin, 1990), paralleled with the development
of various smart materials and structures with wide-ranging applica-
tions. Furthermore, the emergence of SEA materials in recent decades
has encouraged new interpretations, advancements, and applications
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of nonlinear electro-elasticity theory (McMeeking and Landis, 2005;
Dorfmann and Ogden, 2006; Suo et al., 2008; Liu, 2013; Dorfmann and
Ogden, 2014). A nonlinear continuum framework, accounting for the
nonlinear interaction between mechanical and electromagnetic fields,
as documented in the monograph by Dorfmann and Ogden (2014),
has now successfully been applied to the analysis of electro-active and
magneto-active materials undergoing significant deformations (Rudykh
and Bertoldi, 2013; Xie et al., 2016; Jandron and Henann, 2018; Fu
et al., 2018; Psarra et al., 2019; Su et al., 2019, 2020; Wu and Destrade,
2021).

The linearized incremental theory based on the nonlinear electro-
elasticity theory (Baumhauer and Tiersten, 1973; Tiersten, 1981; Mau-
gin, 1988; Eringen and Maugin, 1990; Baesu et al., 2003; Dorfmann and
Ogden, 2010) is commonly employed to investigate how biasing fields
(induced by, for example, prestretch, internal pressure, and electric
stimuli) affect the superimposed small-amplitude dynamic properties of
SEA structures. Dorfmann and Ogden (2010, 2014) developed a com-
pact version of the linearized incremental theory in both the Lagrangian
and updated Lagrangian descriptions to examine the small-amplitude
motions superimposed on finite biasing fields, paying particular at-
tention to SEA materials. We recommend the detailed review by Wu
et al. (2016) for a comprehensive comparison of different versions of
nonlinear electro-elasticity theories and relevant linearized incremental
theories, showing ultimately that ostensibly different theories in the
literature on this topic are actually equivalent with no substantive
differences.

The analysis of electro-mechanical instabilities has significant the-
oretical and practical implications. Practically speaking, SEA mate-
rials and structures could experience multiple failure mechanisms,
such as pull-in or snap-through instability (Zhao and Suo, 2007; Su
et al., 2018), electric breakdown (Zurlo et al., 2017), macroscopic
and microscopic buckling instability (Bertoldi and Gei, 2011; Rudykh
et al., 2014; Goshkoderia and Rudykh, 2017), localized necking of
SEA membranes (Fu et al., 2018), bending instability of SEA slabs
or bilayers (Su et al., 2019, 2020), barreling axisymmetric instabil-
ity of SEA tubes (Melnikov and Ogden, 2018), prismatic instability
of SEA tubes (Bortot and Shmuel, 2018), bulging instability of SEA
tubes or balloons (Lu et al., 2015a; Wang et al., 2017), and pear-
shaped bifurcation from SEA spherical balloons (Xie et al., 2016). In
particular, Bertoldi and Gei (2011) analytically identified four different
instability criteria for multilayered soft dielectrics: (i) loss of positive
definiteness of the tangent electro-elastic constitutive operator, (ii)
existence of diffuse modes of bifurcation or microscopic instability
modes, (iii) loss of strong ellipticity of the homogenized continuum or
macroscopic instability modes, and (iv) electric breakdown. In another
work, Rudykh et al. (2014) extensively investigated the multiscale
instabilities in layered dielectric elastomers and explained the crucial
effect of microstructures on the onset of instabilities: (i) macroscopic
instabilities predominate when the stiffer phase’s volume fraction is
moderate, (ii) interfacial instabilities start to show up at low stiffer
phase volume fractions, and (iii) instabilities of a finite scale, compa-
rable to the microstructure size, appear at high volume fractions of the
stiffer phase.

Investigations on the small-amplitude dynamic behaviors of smart
systems made of SEA materials subject to biasing fields induced by
pre-stretch, internal pressure and electric stimuli, also have theoret-
ical as well as practical significance, see the recent review article
by Zhao et al. (2023) on vibrations and waves in soft dielectric struc-
tures. Based on Dorfmann and Ogden’s linearized incremental theory
of nonlinear electro-elasticity (Dorfmann and Ogden, 2010, 2014), con-
siderable efforts have been devoted to studying small-amplitude elastic
waves propagating in finitely deformed SEA structures, such as bulk
waves in compressible dielectrics (Galich and Rudykh, 2016), surface
waves in a deformed SEA half-space (Dorfmann and Ogden, 2010),
Rayleigh–Lamb waves in a deformed ideal dielectric plate (Shmuel
2

et al., 2012; Ziser and Shmuel, 2017; Broderick et al., 2020), torsional,
axisymmetric, non-axisymmetric and circumferential waves in a pre-
stretched SEA tube subject to an axial or a radial electrical biasing
field (Shmuel and DeBotton, 2013; Shmuel, 2015; Su et al., 2016;
Wu et al., 2017, 2020; Dorfmann and Ogden, 2020), bulk waves in
extremely deformed soft auxetic materials (Galich and Rudykh, 2015),
shear or longitudinal wave propagation and tunable band gaps in
periodic dielectric laminates (Galich and Rudykh, 2017; Chen et al.,
2020), and electrostatically tunable band gaps in finitely deformed
SEA fiber composites (Shmuel, 2013). In particular, to overcome the
difficulty in solving the inhomogeneous biasing fields generated by
the application of a radial electric voltage in an SEA tube, Wu et al.
(2017) proposed the State Space Method (SSM), which combines the
state-space formalism with the approximate laminate technique, to
effectively investigate the elastic waves propagating in SEA tubes.

Electro-mechanical biasing fields lead to changes in the effective
material characteristics and geometry, and also allow for active tuning
of the vibration behaviors to acquire desired operating performance.
Thus, tunable SEA resonators have a wide range of potential appli-
cations, including the design of tunable SEA loudspeakers for sound
generation, the use of adaptive acoustic absorbers for noise reduction,
and the development of active and adaptive vibration isolators and
dampers that take advantage of viscoelasticity and stiffness tunabil-
ity. For example, Dubois et al. (2008) examined experimentally and
theoretically the voltage controllability of the resonance frequency for
SEA polymer membranes, and found that tuning the voltage might
reduce the resonance frequency by up to 77% from its initial value. Zhu
et al. (2010b) analytically and experimentally found that the natural
frequencies of a circular dielectric membrane can be tuned by varying
the in-plane pre-stretch, out-of-plane pressure and voltage. Sugimoto
et al. (2013) proposed a lightweight push–pull acoustic transducer
using dielectric films for sound generation in advanced audio systems,
and their experiments showed that push–pull driving can effectively
suppress harmonic distortion. Furthermore, Hosoya et al. (2015) con-
structed, examined, and evaluated a hemispherical breathing mode
loudspeaker driven by a dielectric actuator to determine its repeata-
bility, sound pressure, vibration mode profiles, and acoustic radiation
patterns. To absorb sound energy, Lu et al. (2015b) developed an
electronically tunable duct silencer, which is formed with dielectric
membranes and back cavity, and uses external control signals. With the
Space State Method, Zhu et al. (2020) studied axisymmetric torsional
and longitudinal vibrations in an SEA tube subject to inhomogeneous
biasing fields induced by the combined action of axial pre-stretch and
radial voltage, and established electrostatically tunable axisymmetric
vibration characteristics. By applying alternating voltages with opposite
phases to a dielectric actuator, Zhang et al. (2015) proposed a vibration
damper to reduce vibration. Sarban et al. (2011) effectively achieved
active vibration isolation after fabricating a core-free rolled tubular
SEA actuator and studying its dynamic properties. As a biomedical
application, Son and Goulbourne (2012) suggested coupling a SEA
tube sensor to an artery segment to give it structural support while
also keeping track of its local condition data. Zhu et al. (2010a)
demonstrated theoretically the tunability of the natural frequency of
breathing modes in a dielectric balloon by varying the pressure or
voltage. Mao et al. (2019) used the SSM to investigate the feasibility
of tuning the three-dimensional (3D) and small-amplitude torsional
and spheroidal vibrations in a dielectric spherical balloon by means of
varying internal pressure and radial electric voltage. Recently, the SSM
was utilized by Cao et al. (2024) to explore the influences of electro-
mechanical biasing fields and fluid added mass effect on the linearized
axisymmetric vibration of multilayered SEA circular plates in contact
with fluid.

The first objective of this paper is to investigate the strain-stiffening
effect on axisymmetric torsional and longitudinal vibrations (hereafter
abbreviated as T vibrations and L vibrations) of an SEA tube as a
continuation of our previous work (Zhu et al., 2020) wherein the strain-

stiffening effect was not taken into consideration. The second purpose



International Journal of Solids and Structures 290 (2024) 112671F. Zhu et al.
Fig. 1. Schematic diagram of an SEA tube with cylindrical coordinates and geometric sizes: (a) undeformed configuration and (b) deformed configuration subject to inhomogeneous
biasing fields generated by the combined action of radial electric voltage (𝑉 ) and axial pre-stretch (𝜆𝑧). Incremental motion fields created by (c) non-axisymmetric vibrations, (d)
longitudinal vibrations (L vibrations), (e) torsional vibrations (T vibrations), and (f) prismatic vibrations.
of this paper is to clarify how the inhomogeneous biasing fields induced
by the radial electric voltage and axial pre-stretch (see Figs. 1(a)
and 1(b)) and the strain-stiffening effect impact the superimposed
non-axisymmetric small-amplitude vibrations in the SEA tube.

The structure of this paper is as follows. Section 2 derives the
basic formulations governing the axisymmetric static deformations and
induced inhomogeneous biasing fields of an SEA tube characterized
by the Gent ideal dielectric model. In Section 3, we employ the state-
space formalism combined with an approximate laminate technique to
obtain the frequency equations of the non-axisymmetric vibrations and
prismatic vibrations of the deformed SEA tube with generalized rigidly
supported boundary condition. Numerical calculations are presented
in Section 4 to examine the nonlinear static response to the applied
radial voltage of the SEA tube, to validate the excellent convergence
rate and accuracy of the SSM, and to demonstrate the influences
of the applied voltage, axial pre-stretch, and strain-stiffening effect
on the axisymmetric and non-axisymmetric vibration characteristics.
Finally, we give a conclusive summary in Section 5 and some relevant
mathematical derivations are provided in Appendix.

2. Equations of nonlinear electro-elasticity

The basic equations governing the finite electro-elastic deformations
of an incompressible soft electro-elastic body are presented first in
Section 2.1, as established by Dorfmann and Ogden (2006, 2014). Then
we specialize the basic equations of nonlinear electro-elasticity to the
finite static axisymmetric deformations of an SEA tube subject to a
radial electric field and an axial pre-stretch in Section 2.2.
3

2.1. Finite electro-elasticity theory

Here we consider a soft deformable continuous electro-elastic body
undergoing a static finite deformation. The underformed stress-free ref-
erence configuration at time 𝑡0 is denoted by 𝑟 with its boundary and
outward unit normal vector denoted as 𝜕𝑟 and 𝐍, respectively. An
arbitrary material point 𝑋 in the stress-free reference configuration
is labeled by a position vector 𝐗. At time 𝑡, stimulated by external
electro-mechanical loads, the electro-elastic body 𝑟 deforms to the
deformed or current configuration 𝑡. Naturally, the material point 𝑋
occupies a new position 𝐱, and the deformation is described by the
mapping 𝐱 = 𝝌 (𝐗, 𝑡) where 𝝌 is a continuous and twice differentiable
vector function. The boundary and outward unit normal of the current
configuration are denoted as 𝜕𝑡 and 𝐧𝑡, respectively, and 𝐅 = 𝜕𝐱∕𝜕𝐗 =
Grad𝝌 is the deformation gradient tensor, where ‘Grad’ is the gradient
operator with respect to 𝐗 in the reference configuration 𝑟. The
quantity 𝐽 = det 𝐅 > 0 measures local volume changes, and is equal
to one identically for an incompressible material.

The equation of motion, Gauss’s law, and Faraday’s law can be
expressed as follows, respectively, within the ‘quasi-electrostatic ap-
proximation’ and in the absence of mechanical body forces as well as
free charges and electric currents:

div𝝉 = 𝜌𝜕2𝐱∕𝜕𝑡2, div𝐃 = 0, curl𝐄 = 𝟎, (1)

where ‘div’ and ‘curl’ are the divergence and curl operators with respect
to 𝐱 in the current configuration 𝑡, 𝜌 is the mass density (which is
unchanged during the motion due to the material incompressibility),



International Journal of Solids and Structures 290 (2024) 112671F. Zhu et al.

d

2
f
m

𝐓

c

𝐷

and 𝝉, 𝐃 and 𝐄 are the total Cauchy stress tensor, Eulerian electric
isplacement vector and electric field vector in 𝑡, respectively.

Following nonlinear electro-elasticity theory (Dorfmann and Ogden,
014), it is convenient to present the nonlinear constitutive relations
or incompressible SEA materials in terms of a total energy function or
odified free energy function, 𝛺(𝐅,) per unit reference volume in 𝑟 as

= 𝜕𝛺
𝜕𝐅

− 𝑝𝐅−1,  = 𝜕𝛺
𝜕

, (2)

where 𝐓 = 𝐅−1𝝉 is the total nominal stress tensor,  = 𝐅−1𝐃 and  =
𝐅𝖳𝐄 are the nominal electric displacement vector and nominal electric
field vector, respectively, which are the Lagrangian counterparts of
𝐃 and 𝐄, and 𝑝 is a Lagrange multiplier due to the incompressibility
constraint. For an incompressible isotropic SEA material (𝐼3 ≡ det 𝐂 =
𝐽 2 = 1), the energy density function 𝛺(𝐅,) depends on five scalar
quantities, for example the following five invariants:

𝐼1 = tr𝐂, 𝐼2 =
1
2 [(tr𝐂)

2 − tr(𝐂2)], 𝐼4 =  ⋅,

𝐼5 =  ⋅ (𝐂), 𝐼6 =  ⋅ (𝐂2), (3)

where 𝐂 = 𝐅𝖳𝐅 is the right Cauchy–Green deformation tensor, with the
superscript 𝖳 indicating the transpose operator.

Therefore, combination of Eqs. (2) and (3) provides the total Cauchy
stress tensor 𝝉 and the Eulerian electric field vector 𝐄 as

𝝉 = 2𝛺1𝐛 + 2𝛺2(𝐼1𝐛 − 𝐛2) − 𝑝𝐈 + 2𝛺5𝐃⊗ 𝐃 + 2𝛺6(𝐃⊗ 𝐛𝐃 + 𝐛𝐃⊗ 𝐃),

𝐄 = 2(𝛺4𝐛−1𝐃 +𝛺5𝐃 +𝛺6𝐛𝐃),

(4)

where 𝐈 is the identity tensor in 𝑡, 𝐛 = 𝐅𝐅𝖳 is the left Cauchy–Green
deformation tensor, and the shorthand notation 𝛺𝑚 = 𝜕𝛺∕𝜕𝐼𝑚 (𝑚 =
1, 2, 4, 5, 6) is adopted throughout this paper.

There is no electric field in the surrounding vacuum when an
electric voltage is applied to the surfaces of the SEA body covered
with flexible electrodes. Thus, the mechanical and electric boundary
conditions to be satisfied on the boundary 𝜕𝑡 are written in Eulerian
form as

𝝉𝐧𝑡 = 𝐭𝑎, 𝐄 × 𝐧𝑡 = 𝟎, 𝐃 ⋅ 𝐧𝑡 = −𝜎𝑓 , (5)

where 𝐭𝑎 is the applied mechanical traction vector per unit area of 𝜕𝑡
and 𝜎𝑓 is the free surface charge density on 𝜕𝑡.

2.2. Finite axisymmetric deformations of an SEA tube

The problem of nonlinear axisymmetric deformations of an SEA tube
subject to a radial electric field, internal/external pressures, and an
axial pre-stretch has previously been discussed by Zhu et al. (2010c),
Shmuel and DeBotton (2013), Zhou et al. (2014), Shmuel (2015),
Melnikov and Ogden (2016), Su et al. (2016), Wu et al. (2017), Bortot
and Shmuel (2018). In this section, we briefly outline for completeness
the formulations governing the nonlinear axisymmetric deformations
for arbitrary energy function when the SEA tube is subject to a radial
voltage combined with an axial pre-stretch (see Fig. 1(b)). We then
specialize the results to the Gent ideal dielectric model and obtain
explicit expressions for both the nonlinear static response and the
radially inhomogeneous biasing fields.

The schematic diagrams of an SEA tube with flexible electrodes
before and after activation are illustrated in Figs. 1(a) and 1(b), re-
spectively. For convenience, we use the cylindrical coordinate systems
(𝑅,𝛩,𝑍) and (𝑟, 𝜃, 𝑧) to describe the undeformed and deformed config-
urations, respectively. In the undeformed configuration, the inner and
outer radii and the thickness of the tube are specified as 𝐴, 𝐵, and
𝐻 = 𝐵 −𝐴, respectively, with the tube length denoted by 𝐿. To realize
electro-mechanically tunable vibration characteristics of the SEA tube,
4

a radial electric voltage 𝑉 is applied to the electrodes of the tube, which
is also simultaneously subject to a uniform axial pre-stretch 𝜆𝑧. As a
result, the inner and outer radii, the thickness and the length of the
deformed tube are 𝑎, 𝑏, ℎ, and 𝑙, respectively. The inner-to-outer radius
ratios in the undeformed and deformed configurations are defined as
𝜂 = 𝐴∕𝐵 and 𝜂 = 𝑎∕𝑏, respectively.

For an incompressible, initially isotropic tube, cylindrically axisym-
metric deformations are described by

𝑟 =
√

𝜆−1𝑧
(

𝑅2 − 𝐴2
)

+ 𝑎2, 𝜃 = 𝛩, 𝑧 = 𝜆𝑧𝑍, (6)

where 𝜆𝑧 = 𝑙∕𝐿. Thus, the deformation gradient tensor can be repre-
sented as

𝐅 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝑟
𝜕𝑅

𝜕𝑟
𝑅𝜕𝛩

𝜕𝑟
𝜕𝑍

𝑟𝜕𝛩
𝜕𝑅

𝑟𝜕𝜃
𝑅𝜕𝛩

𝑟𝜕𝜃
𝜕𝑍

𝜕𝑧
𝜕𝑅

𝜕𝑧
𝑅𝜕𝛩

𝜕𝑧
𝜕𝑍

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= diag
[

𝜆−1𝜃 𝜆−1𝑧 , 𝜆𝜃 , 𝜆𝑧
]

, (7)

where ‘diag’ denotes the diagonal matrix, 𝜆𝜃 = 𝑟∕𝑅 is the circumfer-
ential principal stretch, and 𝜆𝑟 = 𝜆−1𝜃 𝜆−1𝑧 is the radial principal stretch.
Thus, the left and right Cauchy–Green tensors can be written as 𝐛 =
𝐂 = diag

[

𝜆−2𝜃 𝜆−2𝑧 , 𝜆2𝜃 , 𝜆
2
𝑧
]

in their respective eigenvector bases.
For cylindrically axisymmetric deformations and an applied radial

electric field, the biasing Eulerian electric displacement vector 𝐃 only
has a radial component 𝐷𝑟 and the non-zero component of its La-
grangian counterpart,  = 𝐅−1𝐃, is 𝑟 = 𝜆𝜃𝜆𝑧𝐷𝑟. As a result, the five
independent scalar invariants 𝐼𝑚 in Eq. (3) can be written now in the
form
𝐼1 = 𝜆−2𝜃 𝜆−2𝑧 + 𝜆2𝜃 + 𝜆

2
𝑧, 𝐼2 = 𝜆2𝜃𝜆

2
𝑧 + 𝜆

−2
𝜃 + 𝜆−2𝑧 ,

𝐼4 = 𝜆2𝜃𝜆
2
𝑧𝐷

2
𝑟 , 𝐼5 = 𝜆−2𝜃 𝜆−2𝑧 𝐼4, 𝐼6 = 𝜆−4𝜃 𝜆−4𝑧 𝐼4,

(8)

which, when substituted into the initial constitutive relations (4), yields
the non-zero components of the total stress tensor 𝝉 and the Eulerian
electric field vector 𝐄 as
𝜏𝑟𝑟 = 2𝜆−2𝜃 𝜆−2𝑧

[

𝛺1 +𝛺2
(

𝜆2𝜃 + 𝜆
2
𝑧
)]

+ 2
(

𝛺5 + 2𝛺6𝜆−2𝜃 𝜆−2𝑧
)

𝐷2
𝑟 − 𝑝,

𝜏𝜃𝜃 = 2𝜆2𝜃
[

𝛺1 +𝛺2
(

𝜆−2𝜃 𝜆−2𝑧 + 𝜆2𝑧
)]

− 𝑝,

𝜏𝑧𝑧 = 2𝜆2𝑧
[

𝛺1 +𝛺2
(

𝜆−2𝜃 𝜆−2𝑧 + 𝜆2𝜃
)]

− 𝑝,

𝐸𝑟 = 2
(

𝛺4𝜆2𝜃𝜆
2
𝑧 +𝛺5 +𝛺6𝜆−2𝜃 𝜆−2𝑧

)

𝐷𝑟.

(9)

From Eq. (8), we see that the five invariants can be written in terms
of three independent variables only, for instance: 𝜆𝜃 , 𝜆𝑧 and 𝐼4. Then
we define a new reduced energy density function 𝛺∗(𝜆𝜃 , 𝜆𝑧, 𝐼4) =
𝛺(𝐼1, 𝐼2, 𝐼4, 𝐼5, 𝐼6) and obtain from Eqs. (8) and (9) the following re-
lations:

𝜆𝜃𝛺
∗
𝜆𝜃

= 𝜏𝜃𝜃 − 𝜏𝑟𝑟, 𝜆𝑧𝛺
∗
𝜆𝑧

= 𝜏𝑧𝑧 − 𝜏𝑟𝑟, 𝐸𝑟 = 2𝜆2𝜃𝜆
2
𝑧𝛺

∗
4𝐷𝑟, (10)

where 𝛺∗
𝜆𝜃

= 𝜕𝛺∗∕𝜕𝜆𝜃 , 𝛺∗
𝜆𝑧

= 𝜕𝛺∗∕𝜕𝜆𝑧, and 𝛺∗
4 = 𝜕𝛺∗∕𝜕𝐼4.

For axisymmetric deformations invariant along the axis, all the
initial physical quantities depend only on 𝑟. In this case, Faraday’s law
(1)3 is then fulfilled automatically. With the help of Eq. (10)1, the
equation of motion (1)1 and Gauss’s law (1)2 simplify to

𝜕𝜏𝑟𝑟
𝜕𝑟

=
𝜏𝜃𝜃 − 𝜏𝑟𝑟

𝑟
=
𝜆𝜃𝛺∗

𝜆𝜃
𝑟

,
𝜕𝐷𝑟
𝜕𝑟

+
𝐷𝑟
𝑟

= 1
𝑟
𝜕(𝑟𝐷𝑟)
𝜕𝑟

= 0, (11)

respectively.
The inner and outer electrode-coated surfaces of the deformed tube

carry equal free charges with opposite sign (i.e. 𝑄(𝑎) + 𝑄(𝑏) = 0). The
electric field vanishes in the surrounding vacuum based on Gauss’s
theorem and neglecting edge effects. Then integrating Eq. (11)2, we
an obtain the solution of the radial electric displacement as

𝑟 =
𝑄(𝑎)

= −
𝑄(𝑏)

. (12)

2𝜋𝑟𝜆𝑧𝐿 2𝜋𝑟𝜆𝑧𝐿
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The electric field vector is curl-free, and hence an electrostatic potential
𝜑 is introduced to write 𝐄 = −Grad𝜑. Inserting Eq. (12) into Eq. (10)3
and integrating the resulting equation from 𝑎 to 𝑏 results in the electric
potential difference 𝑉 = 𝜑(𝑎) − 𝜑(𝑏) between the inner and outer
surfaces as

𝑉 = 𝜑 (𝑎) − 𝜑 (𝑏) = 𝜆𝑧
𝑄(𝑎)
𝜋𝐿 ∫

𝑏

𝑎
𝜆2𝜃𝛺

∗
4
d𝑟
𝑟
. (13)

Integrating Eq. (11)1 from 𝑎 to 𝑟 and using the change of variable
d𝑟∕𝑟 = d𝜆𝜃∕[𝜆𝜃(1 − 𝜆2𝜃𝜆𝑧)] (which is derived from Eq. (6) with the
efinition 𝜆𝜃 = 𝑟∕𝑅), we obtain

𝑟𝑟(𝑟)−𝜏𝑟𝑟(𝑎) = ∫

𝜆𝑎

𝜆𝜃

𝛺∗
𝜆𝜃

𝜆2𝜃𝜆𝑧 − 1
d𝜆𝜃 , ⇒ 𝜏𝑟𝑟(𝑏)−𝜏𝑟𝑟(𝑎) = ∫

𝜆𝑎

𝜆𝑏

𝛺∗
𝜆𝜃

𝜆2𝜃𝜆𝑧 − 1
d𝜆𝜃 ,

(14)

where 𝜆𝑎 = 𝑎∕𝐴 and 𝜆𝑏 = 𝑏∕𝐵 are circumferential stretches of the
nner and outer surfaces of the SEA tube, respectively. Here, we assume
hat both the inner and outer surfaces of the tube are traction-free,
.e., 𝜏𝑟𝑟 (𝑎) = 𝜏𝑟𝑟 (𝑏) = 0. Thus, Eq. (14)2 can be written as

∫

𝜆𝑎

𝜆𝑏

𝛺∗
𝜆𝜃

𝜆2𝜃𝜆𝑧 − 1
d𝜆𝜃 = 0, (15)

hich establishes a general expression of nonlinear axisymmetric re-
ponse of the circumferential stretch 𝜆𝑎 to the electrical variable 𝑉 or

(which is included in 𝛺∗) for an arbitrary energy function. Similarly,
e can obtain from Eq. (14)1 the radial normal stress as

𝑟𝑟 (𝑟) = ∫

𝜆𝑎

𝜆𝜃

𝛺∗
𝜆𝜃

𝜆2𝜃𝜆𝑧 − 1
d𝜆𝜃 . (16)

The formulations obtained above are completely universal, valid
or any isotropic SEA tube. We now specialize the preceding results to
he Gent ideal dielectric model, which is characterized by the following
reduced) total energy density function:

(𝐼1, 𝐼5) = −
𝜇𝐺
2

ln
[

1 −
𝐼1 − 3
𝐺

]

+
𝐼5
2𝜀
,

∗(𝜆𝜃 , 𝜆𝑧, 𝐼4) = −
𝜇𝐺
2

ln

[

1 −
𝜆−2𝜃 𝜆−2𝑧 + 𝜆2𝜃 + 𝜆

2
𝑧 − 3

𝐺

]

+ 1
2𝜀
𝜆−2𝜃 𝜆−2𝑧 𝐼4,

(17)

here 𝜇 is the shear modulus of the SEA tube in the absence of biasing
ields, 𝜀 is the permittivity of an ideal dielectric material, and the
imensionless Gent constant 𝐺 reflects the limiting chain extensibility
f rubber networks (Gent, 1996), accounting for the strain-stiffening
ffect. Moreover, the Gent ideal dielectric model (17) reduces to the
eo-Hookean model in the limit of 𝐺 → ∞.

Substituting Eq. (17)2 into Eq. (13) and integrating, we obtain
he explicit expression between the dimensionless electric voltage 𝑉 =
𝑉
√

𝜀∕𝜇∕𝐻 and dimensionless surface free charge 𝑄 = 𝑄(𝑎)∕(2𝜋𝐻𝐿
√

𝜇𝜀)
as

𝑉 = − 𝑄
𝜆𝑧

ln 𝜂. (18)

Substitution of Eq. (17)2 into Eq. (15) gives

∫

𝜆𝑎

𝜆𝑏

𝐺
𝐺 − 𝜆−2𝜃 𝜆−2𝑧 − 𝜆2𝜃 − 𝜆

2
𝑧 + 3

𝜆𝜃
(

1 − 𝜆−4𝜃 𝜆−2𝑧
)

𝜆2𝜃𝜆𝑧 − 1
d𝜆𝜃

− ∫

𝜆𝑎

𝜆𝑏

𝐷2
𝑟

𝜇𝜀
1

𝜆𝜃(𝜆2𝜃𝜆𝑧 − 1)
d𝜆𝜃 = 0. (19)

aking use of the relation d𝑟∕𝑟 = d𝜆𝜃∕[𝜆𝜃(1 − 𝜆2𝜃𝜆𝑧)] and Eq. (12), we
an obtain the second integration part in Eq. (19) as

∫

𝜆𝑎 𝐷2
𝑟 1

2
d𝜆𝜃 = − 1

[

𝑄(𝑎)
]2 ( 1

2
− 1

2

)

. (20)
5

𝜆𝑏 𝜇𝜀 𝜆𝜃(𝜆𝜃𝜆𝑧 − 1) 2𝜇𝜀 2𝜋𝜆𝑧𝐿 𝑏 𝑎
The first integration part in Eq. (19) can be derived as follows:

∫ 𝜆𝑎𝜆𝑏
𝐺

𝐺 − 𝜆−2𝜃 𝜆−2𝑧 − 𝜆2𝜃 − 𝜆
2
𝑧 + 3

𝜆𝜃
(

1 − 𝜆−4𝜃 𝜆−2𝑧
)

𝜆2𝜃𝜆𝑧 − 1
d𝜆𝜃

= 𝐺𝜆−2𝑧 ∫ 𝜆𝑎𝜆𝑏
𝜆2𝜃𝜆𝑧 + 1

𝜆𝜃
[(

𝐺 − 𝜆2𝑧 + 3
)

𝜆2𝜃 − 𝜆
−2
𝑧 − 𝜆4𝜃

]d𝜆𝜃

= −𝐺𝜆−2𝑧 ∫ 𝜆𝑎𝜆𝑏
𝜆2𝜃𝜆𝑧 + 1

𝜆𝜃
(

𝜆2𝜃 − 𝜆01
) (

𝜆2𝜃 − 𝜆02
) d𝜆𝜃 ,

(21)

where 𝜆0𝑗 (𝑗 = 1, 2) are the two roots of the following quadratic poly-
nomial equation of 𝜆2𝜃 :

(

𝐺 − 𝜆2𝑧 + 3
)

𝜆2𝜃 − 𝜆
−2
𝑧 − 𝜆4𝜃 = 0. (22)

Therefore, integrating Eq. (21) yields

− 𝐺𝜆−2𝑧 ∫

𝜆𝑎

𝜆𝑏

𝜆2𝜃𝜆𝑧 + 1

𝜆𝜃
(

𝜆2𝜃 − 𝜆01
) (

𝜆2𝜃 − 𝜆02
)d𝜆𝜃 = −𝐺𝜆−2𝑧

[

𝐹
(

𝜆𝑎
)

− 𝐹
(

𝜆𝑏
)]

,

(23)

where

𝐹
(

𝜆𝜃
)

= 1
𝜆01𝜆02

ln 𝜆𝜃 +
1 + 𝜆01𝜆𝑧

2𝜆01
(

𝜆01 − 𝜆02
) ln

(

𝜆2𝜃 − 𝜆01
)

−
1 + 𝜆02𝜆𝑧

2𝜆02
(

𝜆01 − 𝜆02
) ln

(

𝜆2𝜃 − 𝜆02
)

. (24)

Substituting Eqs. (20), (21) and (23) into Eq. (19), we obtain the
nonlinear axisymmetric deformation relation between 𝜆𝑎 and 𝑄 as

𝑄
2
= 2𝐺

𝜆2𝑎
1 − 𝜂2

[

𝐹
(

𝜆𝑏
)

− 𝐹
(

𝜆𝑎
)]

(

𝜂
1 − 𝜂

)2
. (25)

By means of Eqs. (18) and (25), we finally get the nonlinear axisym-
metric response between 𝜆𝑎 and 𝑉 for the Gent ideal dielectric model
as

𝑉 = −

√

√

√

√2𝐺𝜆−2𝑧
𝜆2𝑎

1 − 𝜂2
[

𝐹
(

𝜆𝑏
)

− 𝐹
(

𝜆𝑎
)] 𝜂

1 − 𝜂
ln 𝜂. (26)

Moreover, the radially inhomogeneous biasing fields (including the
circumferential stretch 𝜆𝜃 , the radial electric displacement 𝐷𝑟, the
radial normal stress 𝜏𝑟𝑟, and the Lagrange multiplier 𝑝) needed to calcu-
late the natural frequency of electrostatically tunable non-axisymmetric
vibrations can be derived, using Eqs. (6)1, (12), (16), and (9)1, as

𝜆𝜃 =
𝑟
𝑅

=
𝜉

√

𝜆𝑧
[

𝜉2 − 𝜆2𝑎𝜂2∕(1 − 𝜂)
2] + 𝜂2∕(1 − 𝜂)2

, 𝐷𝑟 = − 𝑉
𝜉 ln 𝜂

,

𝜏𝑟𝑟 = −𝐺𝜆−2𝑧
[

𝐹
(

𝜆𝑎
)

− 𝐹
(

𝜆𝜃
)]

+ 𝑄
2

2𝜆2𝑧

[

1
𝜉2

−
(1 − 𝜂)2

𝜆2𝑎𝜂2

]

,

𝑝 = 𝜆−2𝜃 𝜆−2𝑧
𝐺

𝐺 − 𝐼1 + 3
+𝐷

2
𝑟 − 𝜏𝑟𝑟,

(27)

where 𝜉 = 𝑟∕𝐻 is the dimensionless radial coordinate in the deformed
configuration, 𝐷𝑟 = 𝐷𝑟∕

√

𝜇𝜀 is the dimensionless radial electric displace-
ment, and 𝜏𝑟𝑟 = 𝜏𝑟𝑟∕𝜇 and 𝑝 = 𝑝∕𝜇 are the dimensionless radial normal
stress and dimensionless Lagrange multiplier, respectively.
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For the case of the neo-Hookean ideal dielectric model 𝛺 = 𝜇(𝐼1 −
)∕2 + 𝐼5∕(2𝜀) and after taking the limit of 𝐺 → ∞, Eqs. (26) and (27)
educe to Eqs. (14) and (15) in the paper of Zhu et al. (2020).

. Incremental fields and non-axisymmetric vibration analysis

To analyze the non-axisymmetric vibrations of a finitely deformed
EA tube, we employ the linearized incremental theory of electro-
lasticity (Dorfmann and Ogden, 2010, 2014), the main parts of which
re first summarized for sake of completeness. Then, the incremen-
al governing equations in cylindrical coordinates (𝑟, 𝜃, 𝑧) are recast
nto the state-space formalism, which we use, combined with the
pproximate laminate technique, to obtain the frequency equations.

.1. Linearized incremental theory

We superimpose a time-dependent infinitesimal incremental motion
̇ (𝐗, 𝑡) and an infinitesimal incremental electric displacement ̇0 upon
a finitely deformed configuration 0 (with the boundary 𝜕0 and
utward unit 𝐧). Here and henceforth, a superposed dot indicates the
ncrement in the quantity concerned. According to the incremental
heory of electro-elasticity (Dorfmann and Ogden, 2010, 2014), we
an write the linearized incremental incompressibility condition, incre-
ental governing equations and incremental constitutive relations for

ncompressible SEA materials in updated Lagrangian form as

iv𝐮 = tr𝐇 = 0, (28)

iv 𝐓̇0 = 𝜌𝜕2𝐮∕𝜕𝑡2, div ̇0 = 0, curl ̇0 = 𝟎, (29)

espectively, where

̇ 0 = 0𝐇 + Γ0̇0 + 𝑝𝐇 − 𝑝̇𝐈, ̇0 = Γ𝖳
0𝐇 +0̇0. (30)

ere, 𝐮(𝐱, 𝑡) = 𝐱̇(𝐗, 𝑡) is the incremental mechanical displacement
ector, 𝐇 = grad𝐮 is the incremental displacement gradient tensor,
𝑝̇ is the incremental Lagrange multiplier, and 𝐓̇0, ̇0, and ̇0 are the
ush-forward counterparts of the increments of the total nominal stress
nd of the Lagrangian electric displacement and electric field, respec-
ively. The subscript ‘0’ is used to indicate the resultant push-forward
ariables.

In Eq. (30), 0, Γ0 and 0 are fourth-, third- and second-order
ensors, respectively, which are referred to as the instantaneous electro-
lastic moduli tensors. Their component forms satisfy

0𝑝𝑖𝑞𝑗 = 𝐹𝑝𝛼𝐹𝑞𝛽𝛼𝑖𝛽𝑗 = 0𝑞𝑗𝑝𝑖, 𝛤0𝑝𝑖𝑞 = 𝐹𝑝𝛼𝐹−1
𝛽𝑞 𝛤𝛼𝑖𝛽 = 𝛤0𝑖𝑝𝑞 ,

0𝑖𝑗 = 𝐹−1
𝛼𝑖 𝐹

−1
𝛽𝑗 𝛼𝛽 =𝑀0𝑗𝑖,

(31)

here , Γ and  are the referential electro-elastic moduli tensors
elated to the total energy function Ω(𝐅,), with components

𝛼𝑖𝛽𝑗 =
𝜕2𝛺

𝜕𝐹𝑖𝛼𝜕𝐹𝑗𝛽
, 𝛤𝛼𝑖𝛽 = 𝜕2𝛺

𝜕𝐹𝑖𝛼𝜕𝛽
, 𝛼𝛽 = 𝜕2𝛺

𝜕𝛼𝜕𝛽
. (32)

With no external fields in the surrounding vacuum, the updated
Lagrangian forms of the incremental mechanical and electric boundary
conditions satisfied on 𝜕0 take the following simple forms,

𝐓̇𝖳
0𝐧 = 𝐭̇𝐴0 , ̇0 × 𝐧 = 𝟎, ̇0 ⋅ 𝐧 = −𝜎̇F0, (33)

where 𝐭̇𝐴0 is the updated Lagrangian incremental traction vector per unit
area of 𝜕0 and 𝜎̇F0 is the incremental surface charge density on 𝜕𝟎.

3.2. Incremental equations and state-space formalism in cylindrical coordi-
nates

In this subsection, the incremental governing Eqs. (28)–(30) are first
specialized to the cylindrical coordinates 𝑟, 𝜃, 𝑧 . The basic incremental
6

( )
governing equations of the deformed SEA tube are the incremental
incompressibility constraint,

𝜕𝑢𝑟
𝜕𝑟

+ 1
𝑟

(

𝜕𝑢𝜃
𝜕𝜃

+ 𝑢𝑟

)

+
𝜕𝑢𝑧
𝜕𝑧

= 0, (34)

together with the incremental equations of motion and incremental
Gauss’s law,

𝜕𝑇̇0𝑟𝑟
𝜕𝑟

+ 1
𝑟
𝜕𝑇̇0𝜃𝑟
𝜕𝜃

+
𝑇̇0𝑟𝑟 − 𝑇̇0𝜃𝜃

𝑟
+
𝜕𝑇̇0𝑧𝑟
𝜕𝑧

= 𝜌
𝜕2𝑢𝑟
𝜕𝑡2

,

𝜕𝑇̇0𝑟𝜃
𝜕𝑟

+ 1
𝑟
𝜕𝑇̇0𝜃𝜃
𝜕𝜃

+
𝑇̇0𝜃𝑟 + 𝑇̇0𝑟𝜃

𝑟
+
𝜕𝑇̇0𝑧𝜃
𝜕𝑧

= 𝜌
𝜕2𝑢𝜃
𝜕𝑡2

,

𝜕𝑇̇0𝑟𝑧
𝜕𝑟

+ 1
𝑟
𝜕𝑇̇0𝜃𝑧
𝜕𝜃

+
𝑇̇0𝑟𝑧
𝑟

+
𝜕𝑇̇0𝑧𝑧
𝜕𝑧

= 𝜌
𝜕2𝑢𝑧
𝜕𝑡2

,

(35)

𝜕̇0𝑟
𝜕𝑟

+ 1
𝑟

(

𝜕̇0𝜃
𝜕𝜃

+ ̇0𝑟

)

+
𝜕̇0𝑧
𝜕𝑧

= 0, (36)

and the incremental constitutive equations,

𝑇̇0𝑟𝑟 = 𝑐11
𝜕𝑢𝑟
𝜕𝑟

+ 𝑐12
1
𝑟

(

𝜕𝑢𝜃
𝜕𝜃

+ 𝑢𝑟

)

+ 𝑐13
𝜕𝑢𝑧
𝜕𝑧

+ 𝑒11
𝜕𝜑̇
𝜕𝑟

− 𝑝̇,

̇ 0𝜃𝜃 = 𝑐12
𝜕𝑢𝑟
𝜕𝑟

+ 𝑐22
1
𝑟

(

𝜕𝑢𝜃
𝜕𝜃

+ 𝑢𝑟

)

+ 𝑐23
𝜕𝑢𝑧
𝜕𝑧

+ 𝑒12
𝜕𝜑̇
𝜕𝑟

− 𝑝̇,

𝑇̇0𝑧𝑧 = 𝑐13
𝜕𝑢𝑟
𝜕𝑟

+ 𝑐23
1
𝑟

(

𝜕𝑢𝜃
𝜕𝜃

+ 𝑢𝑟

)

+ 𝑐33
𝜕𝑢𝑧
𝜕𝑧

+ 𝑒13
𝜕𝜑̇
𝜕𝑟

− 𝑝̇,

𝑇̇0𝑟𝑧 = 𝑐58
𝜕𝑢𝑟
𝜕𝑧

+ 𝑐55
𝜕𝑢𝑧
𝜕𝑟

+ 𝑒35
𝜕𝜑̇
𝜕𝑧
, 𝑇̇0𝑧𝑟 = 𝑐88

𝜕𝑢𝑟
𝜕𝑧

+ 𝑐58
𝜕𝑢𝑧
𝜕𝑟

+ 𝑒35
𝜕𝜑̇
𝜕𝑧
,

𝑇̇0𝜃𝑧 = 𝑐44
1
𝑟
𝜕𝑢𝑧
𝜕𝜃

+ 𝑐47
𝜕𝑢𝜃
𝜕𝑧

, 𝑇̇0𝑧𝜃 = 𝑐77
𝜕𝑢𝜃
𝜕𝑧

+ 𝑐47
1
𝑟
𝜕𝑢𝑧
𝜕𝜃

,

𝑇̇0𝑟𝜃 = 𝑐66
𝜕𝑢𝜃
𝜕𝑟

+ 𝑐69
1
𝑟

(

𝜕𝑢𝑟
𝜕𝜃

− 𝑢𝜃

)

+ 𝑒26
1
𝑟
𝜕𝜑̇
𝜕𝜃
,

̇ 0𝜃𝑟 = 𝑐99
1
𝑟

(

𝜕𝑢𝑟
𝜕𝜃

− 𝑢𝜃

)

+ 𝑐69
𝜕𝑢𝜃
𝜕𝑟

+ 𝑒26
1
𝑟
𝜕𝜑̇
𝜕𝜃
,

̇ 0𝑟 = 𝑒11
𝜕𝑢𝑟
𝜕𝑟

+ 𝑒12
1
𝑟

(

𝜕𝑢𝜃
𝜕𝜃

+ 𝑢𝑟

)

+ 𝑒13
𝜕𝑢𝑧
𝜕𝑧

− 𝜀11
𝜕𝜑̇
𝜕𝑟
,

̇0𝜃 = 𝑒26

[

1
𝑟

(

𝜕𝑢𝑟
𝜕𝜃

− 𝑢𝜃

)

+
𝜕𝑢𝜃
𝜕𝑟

]

− 𝜀22
1
𝑟
𝜕𝜑̇
𝜕𝜃
,

̇ 0𝑧 = 𝑒35

(

𝜕𝑢𝑧
𝜕𝑟

+
𝜕𝑢𝑟
𝜕𝑧

)

− 𝜀33
𝜕𝜑̇
𝜕𝑧
.

(37)

where 𝑐𝑖𝑗 , 𝑒𝑖𝑗 and 𝜀𝑖𝑗 are the effective material parameters associated
with the instantaneous electro-elastic moduli 0, Γ0 and 0 (their
explicit expressions are provided in Eq. (41) in the paper by Wu
et al. (2017)). In the process of deriving Eq. (37), the incremental
displacement gradient tensor 𝐇 was specialized to the cylindrical co-
ordinates. In addition, an incremental electric potential 𝜑̇, defined by
̇0 = −grad𝜑̇, was introduced so that the incremental Faraday law (29)3
is satisfied automatically.

Note that the non-zero components of the instantaneous electro-
elastic moduli tensors 0𝑝𝑖𝑞𝑗 , 𝛤0𝑝𝑖𝑞 and 0𝑖𝑗 were derived by Wu et al.
(2017) for the nonlinear axisymmetric deformations of incompressible
isotropic SEA tubes subject to a combination of radial electric displace-
ment and axial pre-stretch (see their Appendix B for specific expres-
sions). It is worth emphasizing that instantaneous physical properties of
the SEA tubes are significantly sensitive to applied electro-mechanical
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m

biasing fields, which generate remarkable knock-on influences on the
dynamic characteristics of superimposed small-amplitude motions, as
demonstrated below.

As discussed in Section 2.2, the physical quantities for cylindrically
axisymmetric deformations in the SEA tube subject to the radial elec-
tric voltage are radially inhomogeneous, leading to the 𝑟-dependence
of the instantaneous electro-elastic moduli. Thus, the resultant in-
cremental displacement equations are, in general, a set of coupled
partial differential equations with variable coefficients, which are likely
intractable to solve analytically and difficult to solve numerically.
Here we employ the state-space method (SSM) (Wu et al., 2017; Zhu
et al., 2020), combining the incremental state-space formalism with
the approximate laminate technique, to obtain the frequency equations.
Following a standard derivation procedure (omitted here for simplic-
ity), we transform the original incremental governing Eqs. (34)–(37)
into the following incremental state equation:
𝜕𝐒
𝜕𝑟

= 𝐌
(

𝜕𝜃 , 𝜕𝑧, 𝜕𝑡; 0𝑝𝑖𝑞𝑗 , 𝛤0𝑝𝑖𝑞 ,0𝑖𝑗 , 𝜌; 𝑟
)

𝐒, (38)

which is a first-order system of differential equations with respect to 𝑟,
where 𝜕𝛾 = 𝜕∕𝜕𝛾 (𝛾 = 𝜃, 𝑧, 𝑡), 𝐒 =

[

𝑢𝑟, 𝑢𝜃 , 𝑢𝑧, 𝜑̇, 𝑇̇0𝑟𝑟, 𝑇̇0𝑟𝜃 , 𝑇̇0𝑟𝑧, ̇0𝑟
]𝖳 is the

incremental state vector, with 𝑢𝑟, 𝑢𝜃 , 𝑢𝑧, 𝜑̇, 𝑇̇0𝑟𝑟, 𝑇̇0𝑟𝜃 , 𝑇̇0𝑟𝑧 and ̇0𝑟 being
the state variables, and 𝐌 is an 8 × 8 system matrix, which depends
on the radial coordinate, the instantaneous electro-elastic moduli, and
partial derivatives with respect to 𝜃, 𝑧 and 𝑡. The specific expressions
for the elements of the system matrix 𝐌 can be found in the Appendix
C in the paper of Wu et al. (2017); they are not reproduced here for
brevity. We emphasize that the state Eq. (38) is applicable for any form
of energy function.

3.3. Approximate laminate technique

We assume that generalized rigidly supported conditions (Ding and
Chen, 2001) are applied to the two ends of the deformed SEA tube,
so that the end cross-sections are in smooth contact with rigid plattens
at both ends. In addition, the electric inductions in the surrounding
vacuum near the tube ends can be neglected, so that the incremental
electric displacement at both ends is zero. Therefore, the incremental
mechanical and electric boundary conditions are

𝑢𝑧 = 𝑇̇0𝑧𝑟 = 𝑇̇0𝑧𝜃 = ̇0𝑧 = 0, (𝑧 = 0, 𝑙) . (39)

To satisfy the incremental boundary conditions (39), we assume
the following formal solutions for the harmonic non-axisymmetric free
vibrations of the deformed SEA tube:

𝐒 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑢𝑟
𝑢𝜃
𝑢𝑧
𝜑̇

𝑇̇0𝑟𝑟
𝑇̇0𝑟𝜃
𝑇̇0𝑟𝑧
̇0𝑟

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐻𝑈𝑟 (𝜉) cos (𝑚𝜃) cos (𝑛𝜋𝜁 )

𝐻𝑈𝜃 (𝜉) sin (𝑚𝜃) cos (𝑛𝜋𝜁 )

𝐻𝑈𝑧 (𝜉) cos (𝑚𝜃) sin (𝑛𝜋𝜁 )

𝐻
√

𝜇∕𝜀𝛷 (𝜉) cos (𝑚𝜃) cos (𝑛𝜋𝜁 )

𝜇𝛴0𝑟𝑟 (𝜉) cos (𝑚𝜃) cos (𝑛𝜋𝜁 )

𝜇𝛴0𝑟𝜃 (𝜉) sin (𝑚𝜃) cos (𝑛𝜋𝜁 )

𝜇𝛴0𝑟𝑧 (𝜉) cos (𝑚𝜃) sin (𝑛𝜋𝜁 )
√

𝜇𝜀𝛥0𝑟 (𝜉) cos (𝑚𝜃) cos (𝑛𝜋𝜁 )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑒i𝜔t , (40)

where 𝜉 = 𝑟∕𝐻 and 𝜁 = 𝑧∕𝑙 are the dimensionless radial and axial
coordinates, respectively; 𝑚 and 𝑛 denote the circumferential mode
number and axial mode number, respectively; i =

√

−1 is the imag-
inary unit, and 𝜔 is the circular frequency of free vibrations. Note
that all the unknown functions (𝑈𝑟 (𝜉) , 𝑈𝜃 (𝜉), etc.) in Eq. (40) are
dimensionless. Then, inserting Eq. (40) into the state Eq. (38) and non-
dimensionalizing related variables, we obtain the dimensionless form
of the incremental state equation as

d𝐒 (𝜉)
= 𝐌 (𝜉)𝐒 (𝜉) , (41)
7

d𝜉
where 𝐒 =
[

𝑈𝑟, 𝑈𝜃 , 𝑈𝑧, 𝛷,𝛴0𝑟𝑟, 𝛴0𝑟𝜃 , 𝛴0𝑟𝑧, 𝛥0𝑟
]𝖳 is the dimensionless

incremental state vector and 𝐌 is the 8 × 8 dimensionless system
atrix, with its four partitioned 4 × 4 sub-matrices 𝐌𝑖𝑗 (𝑖, 𝑗 = 1, 2)

which is given in Box I,

in which the dimensionless quantities are defined as

𝛼 = 𝑛𝜋𝐻∕𝑙 = 𝑛𝜋𝐻∕(𝜆𝑧𝐿), 𝑐𝑖𝑗 = 𝑐𝑖𝑗∕𝜇,

𝑒𝑖𝑗 = 𝑒𝑖𝑗∕
√

𝜇𝜀, 𝜀𝑖𝑗 = 𝜀𝑖𝑗∕𝜀,

𝛽1 = 𝑐69∕𝑐66, 𝛽2 = 𝑒26∕𝑐66, 𝛽3 = 𝑐58∕𝑐55,

𝛽4 = 𝑒35∕𝑐55, 𝑞𝑗 = 𝑞𝑗
√

𝜀∕𝜇 (𝑗 = 1, 2),

𝑞𝑗 = 𝑞𝑗∕𝜇 (𝑗 = 3 ∼ 8), 𝑞𝑗 = 𝑞𝑗∕
√

𝜇𝜀 (𝑗 = 9, 10),

𝑞𝑗 = 𝑞𝑗∕𝜀 (𝑗 = 11, 12),

(43)

and 𝜛 = 𝜔𝐻∕
√

𝜇∕𝜌 is the dimensionless circular frequency.

Note that different combinations of mode numbers 𝑚 and 𝑛 result
in different types of vibrations. It is obvious from Eqs. (41) and
(42) that the eight unknown incremental state variables 𝑢𝑟, 𝑢𝜃 , 𝑢𝑧,
𝜑̇, 𝑇̇0𝑟𝑟, 𝑇̇0𝑟𝜃 , 𝑇̇0𝑟𝑧, ̇0𝑟 are fully coupled for non-axisymmetric vibrations
with 𝑚 ≠ 0 and 𝑛 ≠ 0 (see Fig. 1(c)).

For the incremental axisymmetric vibrations with 𝑚 = 0 and 𝑛 ≠ 0,
the incremental fields are independent of the 𝜃 coordinate (i.e. 𝜕∕𝜕𝜃 =
0) and the state Eq. (41) reduces to two uncoupled classes of incre-
mental axisymmetric vibrations: the axisymmetric longitudinal vibrations
(L vibrations) where the mechanical displacement components 𝑢𝑟 and
𝑢𝑧 coupled with the incremental electrical quantities are non-zero (see
Fig. 1(d)); and the purely torsional vibrations (T vibrations) with the sole
displacement component 𝑢𝜃 (see Fig. 1(e)). The cylindrical breathing
mode with 𝑚 = 𝑛 = 0, characterized by the sole radial displacement
component 𝑢𝑟, is a special mode of the L vibrations. The state equations
governing the incremental axisymmetric vibrations of deformed SEA
tubes were obtained by Zhu et al. (2020) (see their Eqs. (30), (31),
(41) and (42)) and are omitted here for brevity.

Additionally, we consider incremental fields independent of the 𝑧
coordinate (i.e. 𝑚 ≠ 0 and 𝑛 = 0), so that 𝜕∕𝜕𝑧 = 0 holds. To satisfy the
incremental boundary conditions (39), the harmonic solutions for the
incremental vibrations independent of 𝑧 are assumed as

𝐒P =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑢𝑟
𝑢𝜃
𝜑̇

𝑇̇0𝑟𝑟
𝑇̇0𝑟𝜃
̇0𝑟

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐻𝑈𝑟 (𝜉) cos (𝑚𝜃)

𝐻𝑈𝜃 (𝜉) sin (𝑚𝜃)

𝐻
√

𝜇∕𝜀𝛷 (𝜉) cos (𝑚𝜃)

𝜇𝛴0𝑟𝑟 (𝜉) cos (𝑚𝜃)

𝜇𝛴0𝑟𝜃 (𝜉) sin (𝑚𝜃)
√

𝜇𝜀𝛥0𝑟 (𝜉) cos (𝑚𝜃)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑒i𝜔t , (44)

and hence, the incremental state Eq. (41) specializes to

d𝐒P (𝜉)
d𝜉

= 𝐌P (𝜉)𝐒P (𝜉) , (45)

where 𝐒P =
[

𝑈𝑟, 𝑈𝜃 , 𝛷,𝛴0𝑟𝑟, 𝛴0𝑟𝜃 , 𝛥0𝑟
]𝖳 is the dimensionless incremental

state vector, and the 6 × 6 dimensionless system matrix 𝐌P is obtained
from Eq. (42) as

𝐌 =
P
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𝐌11 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1
𝜉

−𝑚
𝜉

−𝛼 0

𝛽1
𝑚
𝜉

𝛽1
𝜉

0 𝛽2
𝑚
𝜉

𝛽3𝛼 0 0 𝛽4𝛼

𝑞1
𝜉

𝑞1
𝑚
𝜉

𝑞2𝛼 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐌12 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0

0 1
𝑐66

0 0

0 0 1
𝑐55

0

0 0 0 − 1
𝜀11

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

𝐌21 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑞7
𝑚2

𝜉2
+
𝑞3
𝜉2

+ 𝑞8𝛼2 −𝜛2
𝑚
(

𝑞3 + 𝑞7
)

𝜉2
𝑞4
𝛼
𝜉

𝑞9
𝑚2

𝜉2
+ 𝑞10𝛼2

(

𝑞3 + 𝑞7
) 𝑚
𝜉2

𝑞3
𝑚2

𝜉2
+
𝑞7
𝜉2

+ 𝑐77𝛼2 −𝜛2 (

𝑞4 + 𝑐47
) 𝑚
𝜉
𝛼 𝑞9

𝑚
𝜉2

𝑞5
𝛼
𝜉

(

𝑐47 + 𝑞5
) 𝑚
𝜉
𝛼 𝑞6𝛼2 + 𝑐44

𝑚2

𝜉2
−𝜛2 0

𝑞9
𝑚2

𝜉2
+ 𝑞10𝛼2 𝑞9

𝑚
𝜉2

0 −𝑞11
𝑚2

𝜉2
− 𝑞12𝛼2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,
(42)

𝐌22 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 −𝛽1
𝑚
𝜉

−𝛽3𝛼 −
𝑞1
𝜉

𝑚
𝜉

−
𝛽1 + 1
𝜉

0 −𝑞1
𝑚
𝜉

𝛼 0 −1
𝜉

−𝑞2𝛼

0 −𝛽2
𝑚
𝜉

−𝛽4𝛼 −1
𝜉

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

Box I.
s
g
e
s

𝜉

𝜉

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1
𝜉

−𝑚
𝜉

0 0 0 0

𝛽1
𝑚
𝜉

𝛽1
𝜉

𝛽2
𝑚
𝜉

0 1
𝑐66

0

𝑞1
𝜉

𝑞1
𝑚
𝜉

0 0 0 − 1
𝜀11

𝑞7
𝑚2

𝜉2
+ 𝑞3

1
𝜉2

−𝜛2 (

𝑞3 + 𝑞7
) 𝑚
𝜉2

𝑞9
𝑚2

𝜉2
0 −𝛽1

𝑚
𝜉

−
𝑞1
𝜉

(

𝑞3 + 𝑞7
) 𝑚
𝜉2

𝑞3
𝑚2

𝜉2
+
𝑞7
𝜉2

−𝜛2 𝑞9
𝑚
𝜉2

𝑚
𝜉

−
𝛽1 + 1
𝜉

−𝑞1
𝑚
𝜉

𝑞9
𝑚2

𝜉2
𝑞9
𝑚
𝜉2

−𝑞11
𝑚2

𝜉2
0 −𝛽2

𝑚
𝜉

−1
𝜉

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(46)

Therefore, the incremental vibrations independent of 𝑧 (𝑚 ≠ 0
and 𝑛 = 0) are described by Eqs. (44)–(46), which are identified as
the prismatic vibrations, where the non-zero mechanical displacement
components 𝑢𝑟 and 𝑢𝜃 are coupled with the incremental electrical
quantities and the SEA tube remains prismatic while its cross-section
loses its circular shape (see Fig. 1(f)). Furthermore, prismatic vibrations
do not depend on the length-to-thickness ratio (𝐿∕𝐻). Note that the
nomenclature of prismatic vibrations corresponds to the elastic counter-
part of prismatic diffuse modes in the realm of instability (Haughton
8

and Ogden, 1979; Bortot and Shmuel, 2018). When 𝑚 = 0, Eqs. (44)–
(46) governing the prismatic vibrations reduce to those of the cylindric
breathing mode.

Now we adopt the approximate laminate technique (Fan and Zhang,
1992; Chen and Ding, 2002) and divide the tube into a laminate with
𝑁 equal thin sublayers. The thickness of each sublayer is ℎ∕𝑁 , which
is sufficiently small for the system matrices 𝐌 and 𝐌P within each
ublayer to be approximately regarded as constant. Without loss of
enerality, the dimensionless deformed radial coordinate itself and the
ffective material parameters take the values at the mid-plane of each
ublayer.

Here, we use 𝑟𝑗0 = 𝑎 + (𝑗 − 1)ℎ∕𝑁 , 𝑟𝑗1 = 𝑎 + 𝑗ℎ∕𝑁 , and 𝑟𝑗𝑚 =
𝑎+(2𝑗−1)ℎ∕(2𝑁) to denote the deformed radial coordinates of the inner,
outer and middle surfaces of the 𝑗th sublayer. Their dimensionless
forms of the deformed radial coordinate are

𝜉𝑗0 =
𝑟𝑗0
𝐻

=
𝜆𝑎𝜂
1 − 𝜂

+ (𝑗 − 1)
𝜆𝑏(1 − 𝜂)
𝑁(1 − 𝜂)

,

𝑗1 =
𝑟𝑗1
𝐻

=
𝜆𝑎𝜂
1 − 𝜂

+ 𝑗
𝜆𝑏(1 − 𝜂)
𝑁(1 − 𝜂)

,

𝑗𝑚 =
𝜆𝑎𝜂 + (2𝑗 − 1)

𝜆𝑏(1 − 𝜂) .

(47)
1 − 𝜂 2𝑁(1 − 𝜂)
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(

w
a

𝜑

w
o

l

respectively. Applied to each sublayer, the incremental state Eq. (41)
becomes
d𝐒 (𝜉)
d𝜉

= 𝐌𝑗
(

𝜉𝑗𝑚
)

𝐒 (𝜉) , (𝑗 = 1, 2, 3,… , 𝑁) (48)

where 𝐌𝑗
(

𝜉𝑗𝑚
)

is the approximated constant system matrix within the
𝑗th thin sublayer, obtained by setting 𝜉 = 𝜉𝑗𝑚. Consequently, the formal
solution to Eq. (48) in the 𝑗th sublayer is

𝐒 (𝜉) = exp
[

(

𝜉 − 𝜉𝑗0
)

𝐌𝑗
(

𝜉𝑗𝑚
)

]

𝐒
(

𝜉𝑗0
)

,

𝜉𝑗0 ≤ 𝜉 ≤ 𝜉𝑗1; 𝑗 = 1, 2, 3,… , 𝑁
)

,
(49)

hich yields the transfer relation between the incremental state vectors
t the inner and outer surfaces of the 𝑗th sublayer as

𝐒
(

𝜉𝑗1
)

= exp
[

𝜆𝑏(1 − 𝜂)
𝑁(1 − 𝜂)

𝐌𝑗
(

𝜉𝑗𝑚
)

]

𝐒
(

𝜉𝑗0
)

. (50)

Making use of the continuity conditions at the fictitious interfaces
between equally divided sublayers that require the eight state variables
be continuous, we can derive from Eq. (50) the following transfer
relation connecting the incremental state vectors 𝐒

𝑜𝑢
and 𝐒

𝑖𝑛
at the

outer and inner surfaces of the deformed SEA tube:

𝐒
𝑜𝑢

= 𝐙𝐒
𝑖𝑛
= Π1

𝑗=𝑁exp
[

𝜆𝑏(1 − 𝜂)
𝑁(1 − 𝜂)

𝐌𝑗
(

𝜉𝑗𝑚
)

]

𝐒
𝑖𝑛
, (51)

where 𝐙 is the global transfer matrix. Similar derivations are applicable
to the case of the prismatic vibrations described by 𝐒P and 𝐌P.

3.4. Frequency equations of non-axisymmetric vibrations

To proceed, we assume that the inner and outer surfaces of the
SEA tube are traction-free and that the applied electric voltage between
these two surfaces is kept fixed. Thus, the incremental mechanical and
electric boundary conditions (33) are:

̇ 𝑖𝑛 = 𝜑̇𝑜𝑢 = 0, 𝑇̇ 𝑖𝑛0𝑟𝑟 = 𝑇̇ 𝑖𝑛0𝑟𝜃 = 𝑇̇ 𝑖𝑛0𝑟𝑧 = 𝑇̇ 𝑜𝑢0𝑟𝑟 = 𝑇̇ 𝑜𝑢0𝑟𝜃 = 𝑇̇ 𝑜𝑢0𝑟𝑧 = 0. (52)

Combining Eq. (52) with Eq. (51) results in a set of independent
linear algebraic equations:

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑍41 𝑍42 𝑍43 𝑍48

𝑍51 𝑍52 𝑍53 𝑍58

𝑍61 𝑍62 𝑍63 𝑍68

𝑍71 𝑍72 𝑍73 𝑍78

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑈 in
𝑟

𝑈 in
𝜃

𝑈 in
𝑧

𝛥in0𝑟

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0

0

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (53)

where 𝑍𝑖𝑗 denote the elements of the global transfer matrix 𝐙. For non-
trivial solutions to exist, the determinant of the coefficient matrix in
Eq. (53) must vanish. Thus, we have
|

|

|

|

|

|

|

|

|

𝑍41 𝑍42 𝑍43 𝑍48
𝑍51 𝑍52 𝑍53 𝑍58
𝑍61 𝑍62 𝑍63 𝑍68
𝑍71 𝑍72 𝑍73 𝑍78

|

|

|

|

|

|

|

|

|

= 0, (54)

which is the characteristic frequency equation for small-amplitude non-
axisymmetric vibrations of the activated SEA tube subject to radially
inhomogeneous biasing fields for mode numbers 𝑚 ≥ 1 and 𝑛 ≥ 1.

Following the same derivation procedure, we can also acquire the
characteristic frequency equation of the incremental prismatic vibra-
tions (𝑚 ≠ 0, 𝑛 = 0) as:
|

|

|

|

|

|

|

𝑍p31 𝑍p32 𝑍p36
𝑍p41 𝑍p42 𝑍p46
𝑍p51 𝑍p52 𝑍p56

|

|

|

|

|

|

|

= 0, (55)

where 𝑍p𝑖𝑗 are the elements of the global transfer matrix 𝐙p for the
prismatic vibrations.

For the incremental axisymmetric vibrations including the L vibra-
tions, the T vibrations and the breathing vibrations, we refer to the
9

frequency equations (40) and (43) in the paper by Zhu et al. (2020).
Note that the frequency equations derived above are applicable for
any form of the energy function of the incompressible isotropic SEA
tubes. To calculate numerically the natural frequency of electrostati-
cally tunable non-axisymmetric vibrations, we specialize the analysis to
the Gent ideal dielectric model (17). Then the dimensionless effective
material parameters appearing in Eqs. (42) and (43) are

𝑐44 = 𝜆2𝜃𝐺1, 𝑐47 = 𝑝, 𝑐77 = 𝜆2𝑧𝐺1, 𝑐55 = 𝑐66 = 𝜆−2𝜃 𝜆−2𝑧 𝐺1, 𝜀11 = 1,

𝛽1 = 𝛽3 = 𝜆2𝜃𝜆
2
𝑧𝐺

−1
1

(

𝑝 −𝐷
2
𝑟

)

, 𝛽2 = 𝛽4 = −𝜆2𝜃𝜆
2
𝑧𝐺

−1
1 𝐷𝑟, 𝑞1 = 𝑞2 = 2𝐷𝑟,

𝑞3 = 𝐺1
(

𝜆2𝜃 + 𝜆
−2
𝜃 𝜆−2𝑧

)

+ 2𝐺2
(

𝜆4𝜃 − 2𝜆−2𝑧 + 𝜆−4𝜃 𝜆4𝑧
)

+𝐷
2
𝑟 + 2𝑝,

𝑞4 = 𝑞5 = 𝐺1𝜆−2𝜃 𝜆−2𝑧 + 2𝐺2
(

𝜆2𝜃𝜆
2
𝑧 − 𝜆

−2
𝑧 − 𝜆−2𝜃 + 𝜆−4𝜃 𝜆−4𝑧

)

+𝐷
2
𝑟 + 𝑝,

𝑞6 = 𝐺1
(

𝜆2𝑧 + 𝜆
−2
𝜃 𝜆−2𝑧

)

+ 2𝐺2
(

𝜆4𝑧 − 2𝜆−2𝜃 + 𝜆−4𝜃 𝜆−4𝑧
)

+𝐷
2
𝑟 + 2𝑝,

𝑞7 = 𝜆2𝜃𝐺1 − 𝜆2𝜃𝜆
2
𝑧𝐺

−1
1

(

𝐷
4
𝑟 + 𝑝

2 − 2𝑝𝐷
2
𝑟

)

−𝐷
2
𝑟 , 𝑞8 = 𝑞7 +

(

𝜆2𝑧 − 𝜆
2
𝜃
)

𝐺1,

𝑞9 = 𝑞10 = −
(

1 − 𝛽1
)

𝐷𝑟, 𝑞11 = 𝑞12 = 𝜆2𝜃𝜆
2
𝑧𝐺

−1
1 𝐷

2
𝑟 + 1,

(56)

here 𝐺1 = 𝐺∕
(

𝐺 − 𝐼1 + 3
)

and 𝐺2 = 𝐺∕
(

𝐺 − 𝐼1 + 3
)2. In the limit

f 𝐺 → ∞, we have 𝐺1 → 1 and 𝐺2 → 0, and the effective material
parameters listed in Eq. (56) reduce to their equivalent forms for the
neo-Hookean ideal dielectric model (see Eq. (44) in Zhu et al. (2020)).

4. Numerical results and discussions

In this section, we investigate the influences of the electro-mechanica
biasing fields (i.e., the combined action of radial voltage 𝑉 and ax-
ial pre-stretch 𝜆𝑧) and strain-stiffening effect on the nonlinear re-
sponse and non-axisymmetric vibration characteristics of the SEA tube
characterized by the Gent ideal dielectric model (17).

4.1. Axisymmetric nonlinear static response

We first investigate the axisymmetric nonlinear static response un-
der the combined action of electric voltage and axial pre-stretch.

Based on the nonlinear response equations described in Section 2.2
for the neo-Hookean and Gent ideal dielectric models, we plot in Fig. 2
the nonlinear static response variation curves (i.e. the dimensionless
electric voltage 𝑉 versus the circumferential stretch 𝜆𝑎) of the SEA
tube under different electro-mechanical biasing fields. In Fig. 2, the
Gent constant 𝐺 models the strain-stiffening effect of the SEA tube
near a limiting stretch and the ‘N-H model’ legend denotes the neo-
Hookean ideal dielectric model. It should be emphasized that the
electro-mechanical limit-point instability (i.e., the 𝑉 − 𝜆𝑎 reaches a
maximum) occurs in neo-Hookean SEA tubes (Shmuel and DeBotton,
2013; Shmuel, 2015; Wu et al., 2017; Zhu et al., 2020) but not in Gent
SEA tubes because of the strain-stiffening effect (Zhou et al., 2014;
Bortot and Shmuel, 2018). Fig. 2(a) displays the nonlinear response
curves for different values of 𝐺 with a fixed pre-stretch 𝜆𝑧 = 2, and
the variation curve for the neo-Hookean model is also included. It
shows that 𝜆𝑎 increases monotonically as the radial electric voltage 𝑉
increases, which means physically that the tube reduces in thickness
and expands in the radial direction with increasing 𝑉 . When the applied
voltage keeps growing, the tube reaches its limiting stretch 𝜆lim due to
the effect of strain-stiffening for a Gent SEA tube. The smaller 𝐺 is, the
smaller the limiting stretch 𝜆lim is, and the stronger the strain-stiffening
effect is, while for large 𝐺 values (e.g. 𝐺 = 104), the curve tends to that
of the neo-Hookean model.

In Fig. 2(b), we additionally take the influence of axial pre-stretch 𝜆𝑧
into account. We mark out the electro-mechanical instability voltages
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Fig. 2. Nonlinear response curves of the dimensionless electric voltage 𝑉 versus the circumferential stretch 𝜆𝑎 at the inner surface of a thin and slender SEA tube (𝜂 = 0.9 and
𝐿∕𝐻 = 10) for (a) different values of the Gent constant 𝐺 with a fixed axial pre-stretch 𝜆𝑧= 2, and (b) different values of the Gent constant 𝐺 and axial pre-stretch 𝜆𝑧.
Table 1
The first three natural frequencies 𝜛 of the non-axisymmetric vibration with 𝑚 = 𝑛 = 1 of a thin and slender SEA tube (𝜂 = 0.9
and 𝐿∕𝐻 = 10) based on the SSM with different numbers of discretized layers (NoL) (𝜆𝑧 = 2, 𝑉 = 0.2 and 𝐺 = 97.2).
NoL 20 40 60 80 100 120 140 160

1st 0.30495 0.30495 0.30495 0.30495 0.30495 0.30495 0.30495 0.30495
2nd 0.35255 0.35255 0.35255 0.35255 0.35255 0.35255 0.35255 0.35255
3rd 0.44378 0.44378 0.44378 0.44378 0.44378 0.44378 0.44378 0.44378
Table 2
The first three natural frequencies 𝜛 of the non-axisymmetric vibration with 𝑚 = 𝑛 = 1 of a thick and short SEA tube (𝜂 = 0.2
and 𝐿∕𝐻 = 2.5) based on the SSM with different numbers of discretized layers (NoL) (𝜆𝑧 = 2, 𝑉 = 0.2 and 𝐺 = 97.2).
NoL 20 40 60 80 100 120 140 160

1st 1.20181 1.20180 1.20180 1.20180 1.20180 1.20180 1.20180 1.20180
2nd 1.97680 1.97698 1.97702 1.97703 1.97704 1.97704 1.97704 1.97704
3rd 2.85347 2.85284 2.85273 2.85269 2.85267 2.85266 2.85265 2.85265
t

a
L
v

𝑉 EMI (i.e., 𝑉 EMI = 0.5002 for 𝜆𝑧 = 2, 𝑉 EMI = 1.0004 for 𝜆𝑧 = 1, and
𝑉 EMI = 1.3338 for 𝜆𝑧 = 0.75) for the neo-Hookean model under three
ifferent pre-stretches for reference. For a fixed 𝐺 value, when subject

to larger axial pre-stretch, lower radial voltage is required to obtain
equal circumferential stretch 𝜆𝑎, which means physically that the SEA
ube is easier to deform for a larger axial pre-stretch.

.2. Validation of the state space method (SSM)

The effectiveness of the SSM is first verified in terms of its conver-
ence and accuracy for the 3D free vibration analysis of the Gent SEA
ube subject to biasing fields in this section.

For the convergence analysis, we list in Tables 1 and 2 the first three
atural frequencies 𝜛 of the non-axisymmetric vibration calculated
y the SSM with different numbers of discretized layers (NoL) for
thin and slender SEA tube and a thick and short SEA tube of the

ent ideal dielectric model, respectively. Moreover, the circumferential
ode number 𝑚 and axial mode number 𝑛 are all equal to one.
learly, we can find the natural frequencies with arbitrary precision
sing the current SSM because the results clearly indicate an excellent
onvergence rate with increasing NoL. The calculated frequencies based
n the SSM are close to those of the original SEA tube that is subject
o radially inhomogeneous biasing fields. Thus, 120 discretized layers
ill be chosen hereafter, which is assumed to have high accuracy.

The radially inhomogeneous biasing fields are induced by the ap-
lied radial electric voltage. However, when there is no applied radial
lectric voltage, the deformation of the pre-stretched SEA tube is ho-
ogeneous, which makes it feasible to obtain the exact frequency

olutions to the non-axisymmetric vibrations through the conventional
10
displacement method. The detailed derivations for the analytical fre-
quency equations of the non-axisymmetric vibrations were provided in
Appendix C of our previous work (Zhu et al., 2020) for an arbitrary
energy function. Appendix in this paper additionally gives the effective
material parameters and analytical frequency equations of three kinds
of special vibrations (including the breathing mode, T vibrations and
prismatic vibrations) in a pre-stretched hyperelastic tube characterized
by the Gent model. Therefore, the accuracy of SSM can be verified by
making a comparison to the results obtained from the exact solutions.

Based on the SSM and the exact solutions, we carry out an accuracy
analysis of the first two dimensionless vibration frequencies 𝜛 versus
he axial mode number 𝑛 or the circumferential mode number 𝑚 for

the pre-stretched (𝜆𝑧 = 2) thin and slender (𝜂 = 0.9, 𝐿∕𝐻 = 10) SEA
tube and for the thick and short (𝜂 = 0.2, 𝐿∕𝐻 = 2.5) SEA tube with no
pplied voltage, for the following four kinds of vibrations: Fig. 3(a) for
vibrations including the breathing mode (𝑚 = 𝑛 = 0), Fig. 3(b) for T

ibrations (𝑚 = 0), Fig. 3(c) for non-axisymmetric vibrations (𝑚 = 1),
and Fig. 3(d) for prismatic vibrations (𝑛 = 0). For the Gent material
model, the dimensionless Gent constant 𝐺 is chosen to be 97.2.

In Fig. 3(a), regardless of geometric sizes, there is only one radial
vibration frequency for the breathing mode 𝑚 = 𝑛 = 0 as a result of the
tube incompressibility. Moreover, the natural frequency of breathing
mode in a thin and slender SEA tube is lower than those of other first-
order L vibration modes (𝑛 ≥ 1), while in the case of thick and short
tube, the natural frequency of the breathing mode is larger than those
of the three L vibration modes (𝑛 = 1, 2, 3) of the first order. In addition,
we make the link with the data in the case of a thick and short neo-
Hookean SEA tube from Zhu et al. (2020) and that of the Gent model

4
with a large 𝐺 (𝐺 = 10 ) in both Figs. 3(a) and 3(b), denoted by the
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Fig. 3. Accuracy analysis of the first two dimensionless vibration frequencies 𝜛 obtained by the exact solutions and the SSM for the pre-stretched (𝜆𝑧=2) thin and slender (𝜂 = 0.9
nd 𝐿∕𝐻 = 10) SEA tube and thick and short (𝜂 = 0.2 and 𝐿∕𝐻 = 2.5) SEA tube of the Gent and neo-Hookean models, without applied radial electric voltage: (a) L vibrations
ncluding the breathing mode (𝑚 = 0, 𝑛 = 0); (b) T vibrations (𝑚 = 0); (c) Non-axisymmetric vibrations (𝑚 = 1); (d) Prismatic vibrations (𝑛 = 0).
b

black-dashed line and green diamond, respectively. As expected, the
natural frequencies of the Gent tube with a large 𝐺 coincide with those
of the neo-Hookean tube. For the four kinds of vibrations shown in
Fig. 3, it is clear that the vibration frequencies calculated by the SSM
agree with those predicted from the exact solutions in the entire axial
and circumferential mode number range.

In conclusion, the SSM-based numerical results are highly accurate
for the 3D free vibration analysis because of the great convergence rate
and the excellent agreement with the exact solutions.

4.3. Strain-stiffening effect on axisymmetric and prismatic vibrations

In this subsection, we investigate how the strain-stiffening effect
affects the natural frequencies of axisymmetric vibrations (including
the L vibrations and T vibrations) and prismatic vibrations. If not
otherwise stated, we consider a thin and slender tube with the geometric
sizes set as 𝜂 = 0.9 and 𝐿∕𝐻 = 10.

First, for a pre-stretched (𝜆𝑧 = 2) thin and slender Gent ideal SEA
ube with 𝐺 = 97.2, the variations of the first-order dimensionless
atural frequency 𝜛 with the axial mode number 𝑛 are displayed in
igs. 4(a) and 4(b) under different radial electric voltages for the L and
vibrations, respectively. In Fig. 4(c), we exhibit the variation trend

f the first-order natural frequency 𝜛 with the circumferential mode
umber 𝑚 for the prismatic vibrations.
11
It is seen from Fig. 4(a) that the first-order frequency of L vibrations
goes up monotonously with increasing 𝑛. As the voltage 𝑉 increases,
the natural frequency 𝜛 decreases in the entire axial mode number
range. Specifically, we find that a relatively low voltage (e.g., 𝑉 < 0.3)
arely affects the L vibration frequency, but as 𝑉 continues growing,

there exists a big gap between the two frequency spectra stimulated by
𝑉 = 0.4 and 𝑉 = 0.5. Such a dramatic change occurs due to the tube’s
rapid expansion, resulting in the sharp decrease of the global stiffness
when 𝑉 < 𝑉 EMI.

For the T vibrations shown in Fig. 4(b), the vibration frequency 𝜛
increases monotonously and linearly with the axial mode number 𝑛 for
an arbitrary applied radial voltage 𝑉 . Taking the electro-mechanical
instability voltage 𝑉 EMI exclusive to the neo-Hookean SEA tube as the
demarcation point, the change of voltage makes no difference to the
vibration frequency for this kind of thin and slender pre-stretched SEA
tube for 𝑉 < 𝑉 EMI. However, for 𝑉 > 𝑉 EMI, the natural frequency has a
remarkable rise with the applied voltage because of the strain-stiffening
effect.

For the prismatic vibrations depicted in Fig. 4(c), it is found that the
circumferential mode number 𝑚 corresponding to the lowest natural
frequency depends on the applied voltage when 𝑉 < 𝑉 EMI. For exam-
ple, the lowest vibration frequency is obtained at 𝑚 = 2 for 𝑉 = 0, while
for 𝑉 = 0.2, it occurs at 𝑚 = 3. For 𝑉 > 𝑉 EMI (such as the cases 𝑉 = 0.6
and 𝑉 = 0.7), the natural frequency increases monotonically with the
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Fig. 4. Dimensionless frequency spectra in a pre-stretched (𝜆𝑧 = 2) thin and slender SEA tube (𝜂 = 0.9, 𝐿∕𝐻 = 10) employing the Gent model (𝐺 = 97.2) for different values of
adial electric voltage: (a) the first-order frequency of L vibrations (𝜛 versus 𝑛); (b) the first-order frequency of T vibrations (𝜛 versus 𝑛); (c) the first-order frequency of prismatic
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ncreasing circumferential mode number and the lowest frequency is
chieved at 𝑚 = 1. Moreover, the natural frequency for 𝑉 > 𝑉 EMI goes

up monotonically with the applied voltage in the entire circumferential
mode number range.

Then, to clearly reveal the influences of voltage and strain-stiffening
effect on the vibration behaviors, we exhibit in Fig. 5 the variations of
the natural frequency 𝜛 with the dimensionless radial voltage 𝑉 for an
SEA tube characterized by the Gent (𝐺 = 97.2) and neo-Hookean models
at three different axial pre-stretches. Four specific cases are included
in Fig. 5: breathing mode (𝑚 = 𝑛 = 0) in Fig. 5(a); L vibration mode
(𝑚 = 0, 𝑛 = 1) in Fig. 5(b); T vibration mode (𝑚 = 0, 𝑛 = 1) in Fig. 5(c)
and prismatic vibration mode (𝑚 = 1, 𝑛 = 0) in Fig. 5(d).

For the breathing mode (which can be seen as a special case of L
vibrations) shown in Fig. 5(a), the lines correspond to the Gent model
while the symbols denote the neo-Hookean model, and different line
and symbol styles represent different axial pre-stretches. Clearly, the
natural frequencies for the neo-Hookean SEA tube decrease nonlinearly
to zero with the increase in voltage. The voltage corresponding to
𝜛 = 0 is called the critical voltage 𝑉 cr and this threshold is referred
to as the breathing mode instability. Axisymmetric barreling instabil-
ities (Simpson and Spector, 1984; Chen et al., 2017; Wu et al., 2020)
in the SEA tube arise from the global stiffness rapidly decreasing when
the applied voltage gets closer to the critical value 𝑉 cr . The critical
voltages of the breathing mode for the neo-Hookean SEA tube are
12
𝑉 cr = 0.50, 1.00, 1.33 at the axial pre-stretches 𝜆𝑧 = 2, 1, 0.75,
respectively, which are identical to the electro-mechanical instability
voltages 𝑉 EMI mentioned in Section 4.1. Meanwhile, we find that a
larger axial pre-stretch results in a lower critical voltage 𝑉 cr , which

eans the axial pre-stretch destabilizes the neo-Hookean SEA tube.
oreover, the curves for the neo-Hookean model all start from an

dentical point when 𝑉 = 0, because the natural frequency of the
breathing mode is independent of axial pre-stretch in the absence of
voltage (Zhu et al., 2020). For the Gent SEA tube, the natural frequency
of the breathing mode goes down at first due to the decrease of the
global stiffness and then increases conversely and rapidly because of
the strain-stiffening effect when the voltage gradually grows, and the
breathing mode instability is eliminated. In addition, the analytical
solution Eq. (A.6) to the breathing mode of the Gent SEA tube when
𝑉 = 0 demonstrates that although its natural frequency varies with the
axial pre-stretch 𝜆𝑧, the chosen value of Gent constant 𝐺 = 97.2 is large
enough to eliminate the effect of the pre-stretch considered; that is why
the curves for the Gent model almost start from an identical point when
𝑉 = 0, which is similar to the result of the neo-Hookean model.

For the L vibration mode (𝑚 = 0, 𝑛 = 1) depicted in Fig. 5(b),
the variation curves of the first-order vibration frequency 𝜛 with the
applied voltage 𝑉 are presented for the Gent and neo-Hookean models
𝐺 = 10, 97.2,∞) at three cases of axial pre-stretch. Generally, the

natural frequencies 𝜛 of this L vibration mode for both neo-Hookean
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Fig. 5. Variation curves of the first-order dimensionless vibration frequency 𝜛 as functions of the dimensionless radial voltage 𝑉 in a thin and slender SEA tube (𝜂 = 0.9, 𝐿∕𝐻 = 10)
or the Gent and neo-Hookean models under different axial pre-stretches: (a) breathing mode (𝑚 = 𝑛 = 0); (b) L vibration mode (𝑚 = 0, 𝑛 = 1); (c) T vibration mode (𝑚 = 0, 𝑛 = 1);
d) prismatic vibration mode (𝑚 = 1, 𝑛 = 0). Note: The results for a thick and short SEA tube (𝜂 = 0.2, 𝐿∕𝐻 = 2.5) are also displayed in Fig. 5(c) for comparison purpose.
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nd Gent models all decline nonlinearly to zero with an increase in
𝑉 . The phenomenon that a larger axial pre-stretch results in a lower
critical voltage 𝑉 cr exists for both the neo-Hookean model and Gent
model with 𝐺 = 97.2, which is qualitatively similar to that of the
breathing mode for the neo-Hookean model. However, for the Gent
model with 𝐺 = 10, the critical voltage of an SEA tube subject to
either axial pre-extension (𝜆𝑧 = 2) or pre-compression (𝜆𝑧 = 0.75) is
larger than that without axial pre-stretch (𝜆𝑧 = 1) because of the earlier
strain-stiffening effect.

For the T vibration mode (𝑚 = 0, 𝑛 = 1), we plot the first-order
natural frequency of a thin and slender or thick and short SEA tube
for three different axial pre-stretches in Fig. 5(c). The Gent model
(𝐺 = 97.2) and neo-Hookean model are all presented for comparison.
The neo-Hookean numerical data for a thick and short SEA tube is
taken from Zhu et al. (2020). Lines represent the Gent model while
symbols denote the neo-Hookean model. For the neo-Hookean model,
it is obvious that the horizontal first-order natural frequencies for the
SEA tubes in two geometries are independent of the applied voltage and
axial pre-stretch within the range of 𝑉 EMI, as explained in Appendix
D of Zhu et al. (2020). As for the Gent model, the natural frequency
curves of the thin and slender tube are also horizontal when 𝑉 < 𝑉 EMI,
ut as 𝑉 exceeds 𝑉 EMI, its natural frequency curves rise with the

increase of voltage. However, when it comes to the thick and short
Gent tube, it is apparent that the frequency curves change nonlinearly
and finally reduce to zero when the applied voltage gradually increases
13

d

from zero. Thus, we can find that the increase of the Gent tube thickness
strengthens its sensitivity of natural frequency to the voltage. Moreover,
although the analytical solution Eq. (A.9) to the first-order T vibration
mode of the Gent SEA tube shows that its natural frequency at 𝑉 = 0
relies on the axial pre-stretch 𝜆𝑧, the Gent constant value 𝐺 = 97.2
is large enough to weaken the effect from 𝜆𝑧, making the natural
frequencies at different axial pre-stretches almost start from an identical
point when 𝑉 = 0.

In Fig. 5(d), we display the variation curves of prismatic vibration
ode (𝑚 = 1, 𝑛 = 0) in a thin and slender SEA tube for the first-

rder vibration frequency in response to the applied voltage. A similar
ariation trend to the breathing mode in Fig. 5(a) is observed for both
he neo-Hookean and Gent models. For example, the natural frequency
or the neo-Hookean SEA tube reduces nonlinearly to zero when the
oltage increases. The point where 𝜛 = 0 for the neo-Hookean model
n Fig. 5(d) corresponds to the prismatic diffuse instability (Haughton
nd Ogden, 1979; Bortot and Shmuel, 2018). We observe from Fig. 7(a)
hat the shape of tube cross-section of the prismatic vibration mode
or 𝑚 = 1 is analogous to that of the breathing mode; at the same
ime, we are considering the case of a thin-walled tube, which explains
hy the critical voltages of prismatic vibration mode 𝑚 = 1 for the
eo-Hookean model in Fig. 5(d) are very close to those of breathing
ode for the neo-Hookean model in Fig. 5(a). For the Gent SEA tube,
hen the applied voltage increases, the natural frequency first goes
own to a small value because of the decrease of the global stiffness
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Fig. 6. The first-order dimensionless frequencies 𝜛 of prismatic vibration modes 𝑚 = 1 ∼ 5 as functions of the dimensionless radial voltage 𝑉 in a pre-stretched (𝜆𝑧 = 2) thin and
slender SEA tube (𝜂 = 0.9, 𝐿∕𝐻 = 10): (a) the neo-Hookean model; (b) the Gent model (𝐺 = 97.2).
Fig. 7. Prismatic vibration mode shapes in a pre-stretched (𝜆𝑧 = 2) thin and slender Gent SEA tube (𝜂 = 0.9, 𝐿∕𝐻 = 10) subject to 𝑉 = 0.2 for different circumferential mode
numbers: (a) 𝑚 = 1; (b) 𝑚 = 2; (c) 𝑚 = 3; (d) 𝑚 = 4.
and then increases due to the strain-stiffening effect. Therefore, for this
specific prismatic vibration mode (𝑚 = 1, 𝑛 = 0), the Gent SEA tube
with strain-stiffening effect eliminates the prismatic diffuse instability
that can occur in the neo-Hookean tube. However, for other prismatic
vibration modes with 𝑚 ≥ 2, the prismatic diffuse instabilities might
occur in the Gent SEA tube (Bortot and Shmuel, 2018), as described
below.

We further plot the curves of prismatic vibration frequency as
functions of the radial voltage for 𝑚 = 1 ∼ 5 in Fig. 6 for both
the neo-Hookean and Gent SEA tubes. We observe from Fig. 6(a) for
the neo-Hookean model that all of the prismatic vibration frequencies
decrease nonlinearly to zero in response to the continuously increasing
radial voltage. The critical voltage for 𝑚 = 1 is higher than those for 𝑚 =
2 ∼ 5 and the critical voltage goes up with 𝑚 for 𝑚 ≥ 2. Specifically, the
critical voltages 𝑉 cr of prismatic vibrations for different circumferential
mode numbers are: 𝑉 cr = 0.502 for 𝑚 = 1, 𝑉 cr = 0.157 for 𝑚 = 2,
𝑉 cr = 0.275 for 𝑚 = 3, 𝑉 cr = 0.356 for 𝑚 = 4, and 𝑉 cr = 0.404 for
𝑚 = 5. However, we notice from Fig. 6(b) that prismatic instability of
𝑚 = 1 for the neo-Hookean model does not exist for the Gent model.
Similar to Fig. 6(a), as the radial voltage gradually increases, the first-
order vibration frequency decreases to zero with 𝑉 cr = 0.160 for 𝑚 = 2,
𝑉 cr = 0.280 for 𝑚 = 3, 𝑉 cr = 0.361 for 𝑚 = 4, and 𝑉 cr = 0.409 for
𝑚 = 5, respectively. The critical voltage for the Gent model increases
monotonically when increasing the circumferential mode number 𝑚
for 𝑚 ≥ 2. Moreover, the critical voltage of the same circumferential
mode number for the Gent model is slightly larger than that for the
neo-Hookean model. These phenomena agree well with the results
14
obtained by Bortot and Shmuel (2018) and their Fig. 4(a-c) illustrated
the critical voltage for the prismatic diffuse instability as a function of
thickness-to-mean radius ratio of the SEA tubes clamped without axial
pre-stretch or clamped after pre-stretch, where cases for both the Gent
and neo-Hookean models were presented for various circumferential
mode numbers.

For a better illustration, we present in Fig. 7 four prismatic vibration
mode shapes for 𝑚 = 1 ∼ 4 in a pre-stretched (𝜆𝑧 = 2) thin and
slender Gent SEA tube subject to a radial voltage 𝑉 = 0.2. The intensity
of circumferential gridlines represents the distribution of radial dis-
placement, while the radially scattered gridlines denote the distribution
of circumferential displacement. According to Eq. (44), the prismatic
vibrations only have two coupled components: the radial displacement
component 𝑢𝑟 and the circumferential displacement component 𝑢𝜃 .
Thus, the SEA tube remains prismatic in axial direction while its cross-
section loses its circular shape for 𝑚 ≠ 0. The circumferential mode
number 𝑚 plays an important role in shaping the prismatic-vibrating
mode shape. It can be seen from Fig. 7 that 𝑚 vibration crests and
troughs are distributed in the prismatic mode shapes for the 𝑚th order
circumferential mode number.

To better understand how strain stiffening affects axisymmetric
and prismatic vibrations, we present variation curves of the first-order
natural frequency 𝜛 with the Gent parameter 𝐺 in Fig. 8 for a thin
and slender SEA tube under different axial pre-stretches and voltages.
We examine the strain-stiffening effect under two circumstances: no
radial voltage 𝑉 = 0 and high radial voltage close to the 𝑉 EMI of the
neo-Hookean model. We see in Fig. 8 that as the Gent parameter 𝐺
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Fig. 8. Variation curves of the first-order dimensionless vibration frequency 𝜛 with the Gent parameter 𝐺 in a pre-stretched thin and slender (𝜂 = 0.9, 𝐿∕𝐻 = 10) SEA tube under
ifferent axial pre-stretches and voltages: (a) breathing mode (𝑚 = 0, 𝑛 = 0); (b) L vibration mode (𝑚 = 0, 𝑛 = 1); (c) T vibration mode (𝑚 = 0, 𝑛 = 1); (d) prismatic vibration mode
𝑚 = 1, 𝑛 = 0).
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ncreases to infinity, the frequency tends to converge to that of the
eo-Hookean model, as expected. Recalling Figs. 5(a), 5(b) and 5(d),
he natural frequencies approach zero as the applied radial voltage
pproaches 𝑉 EMI in a neo-Hookean SEA tube. Therefore, for the high
adial voltage close to the 𝑉 EMI, the vibration frequency 𝜛 decreases

monotonically to zero with the increase of 𝐺, as shown in the bottom
subplots of Figs. 8(a), 8(b) and 8(d). However, the natural frequency
for the T vibration mode in Fig. 8(c) decreases to a finite value when
increasing 𝐺 to infinity, because the first-order T vibration frequency in
a thin and slender SEA tube is independent of radial voltage and axial
pre-stretch within the range of 𝑉 EMI, regardless of whether the neo-
Hookean or Gent model is considered, as displayed in Fig. 5(c). When
there is no radial voltage in each top subplot of Figs. 8(a)–(d), the SEA
tube subject to pre-extension or pre-compression gets stiffened rapidly
with the strain as 𝐺 becomes relatively small, which explains that
the natural frequency increases drastically when 𝐺 decreases further
from the small value. In other words, the stronger the strain-stiffening
effect is, the easier it is to achieve a strain-stiffened state under a
small deformation. Additionally, it can be seen from the top subplots of
Figs. 8(a)–(d) that for a fixed pre-stretch 𝜆𝑧 = 1 and zero radial voltage,
the natural frequencies for all vibration modes are independent of the
Gent parameter 𝐺, which physically means that the strain-stiffening
effect has no influence on the vibration frequency of a SEA tube without
electro-mechanical biasing fields.
15
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4.4. Effect of electro-mechanical biasing fields on non-axisymmetric vibra-
tions

In this subsection, we expound on how the electro-mechanical
biasing fields influence the non-axisymmetric vibration characteristics
in a thin and slender (𝜂 = 0.9, 𝐿∕𝐻 = 10) SEA tube.

First, we display in Fig. 9 the variation of the first-order dimen-
sionless frequency 𝜛 with the axial mode number 𝑛 in a pre-stretched
(𝜆𝑧 = 2) Gent SEA tube for different values of radial voltage. Two
representative circumferential mode numbers 𝑚 = 1 and 𝑚 = 8 are
selected in Figs. 9(a) and 9(b), respectively. It can be seen that the
vibration frequency increases almost linearly with the increase of axial
mode number 𝑛. For 𝑚 = 1, a low radial voltage (e.g., 𝑉 < 0.4)
arely affects the natural frequency, whereas the natural frequency
ecreases rapidly when the SEA tube is subject to a relatively higher
adial voltage (e.g., 𝑉 = 0.5). Moreover, when comparing Fig. 9(b) with
= 8 to Fig. 9(a), we observe a more noticeable frequency change

ithin the range of small 𝑛 (e.g., 𝑛 = 1 ∼ 4) when increasing the radial
oltage with 𝑉 ≤ 0.4.

Then, to investigate the influence of circumferential mode number
, we plot in Fig. 10 the dimensionless frequency spectra (𝜛 versus

𝑚) in a pre-stretched (𝜆𝑧 = 2) Gent SEA tube for different values of
xial mode number and radial voltage. Specifically, in Fig. 10(a), we
llustrate the first two vibration frequencies without radial voltage for
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Fig. 9. The first-order dimensionless frequency 𝜛 of non-axisymmetric vibrations versus the axial mode number 𝑛 in a pre-stretched (𝜆𝑧 = 2) thin and slender Gent SEA tube
𝜂 = 0.9, 𝐿∕𝐻 = 10, 𝐺 = 97.2) for different values of radial electric voltage and two circumferential mode numbers: (a) 𝑚 = 1; (b) 𝑚 = 8.
Fig. 10. The dimensionless frequency 𝜛 of non-axisymmetric vibrations versus the circumferential mode number 𝑚 in a pre-stretched (𝜆𝑧 = 2) thin and slender Gent SEA tube
(𝜂 = 0.9, 𝐿∕𝐻 = 10, 𝐺 = 97.2): (a) the first two frequencies for three axial mode numbers (𝑛 = 1, 2 and 5) with 𝑉 = 0; (b) the first-order frequency for different radial voltages
(𝑉 = 0, 0.2, 0.4 and 0.45) and two axial mode numbers (𝑛 = 1 and 2).
three axial mode numbers 𝑛 = 1, 2, 5. We observe that the first-order
frequency change is very small when 𝑚 ≤ 4, and that the frequency then
goes up gradually with the increase of 𝑚. In addition, the second-order
frequency increases significantly and monotonically with the axial
mode number 𝑚. In Fig. 10(b), we consider two axial mode numbers
𝑛 = 1, 2 and four radial voltages 𝑉 = 0, 0.2, 0.4, 0.45. We see that the
overall frequency curves of non-axisymmetric vibration decline when
increasing the radial voltage across the entire range of circumferential
mode number. In particular, the voltage-induced frequency reduction
of a large circumferential mode number is more obvious than that of a
small one.

In Fig. 11, we depict the variation curves of the natural frequency 𝜛
of non-axisymmetric vibration mode 𝑚 = 𝑛 = 1 with the radial voltage
𝑉 for four representative axial pre-stretches (𝜆𝑧 = 2, 1, 0.92, 0.75). Both
the Gent model (𝐺 = 97.2) and neo-Hookean model are shown for
comparison. Lines represent the results based on the Gent model, while
symbols indicate those predicted by the neo-Hookean model.

Fig. 11(a) shows the variation curves of 𝜛 versus 𝑉 with the SEA
ube subject to a fixed pre-extension 𝜆𝑧 = 2. The first-order frequency
oes down to zero monotonically when increasing the voltage for both
he neo-Hookean and Gent models. The point where 𝜛 = 0 for the
on-axisymmetric vibrations corresponds to the 3D non-axisymmetric
16
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buckling instability (Haughton and Ogden, 1979; Su, 2020). In the
context of voltage-controlled non-axisymmetric instabilities, Su (2020)
illustrated the critical stretch and pattern shapes associated with the
buckling of SEA tubes in his Fig. 10 and considered specific radius
ratios and length aspect ratios, under various applied voltages and
torsions. We note from Fig. 11(a) that the veering phenomenon occurs
between the second-order mode (Mode 2) and third-order mode (Mode
3) for the Gent model, while mode crossing happens for the neo-
Hookean model. The term ‘veering’ here refers to the situation where
two branches approach each other and then veer away and diverge
instead of crossing. Mathematically, veering is accompanied by rapid
changes in the eigenvectors (Mace and Manconi, 2012; Wu et al.,
2017). The sequence of mode order needs to be clarified here: for the
mode veering phenomenon, since there is no mode crossing among
branches, the sequence is still defined based on the frequency, from
low to high. However, for the mode-crossing phenomenon, the modes
that remain the same before and after the crossing point are defined as
modes with the same order, rather than being based on their frequency.

To proceed, we provide the mode veering validation for the Gent
model with top view of the vibration modes in the veering progress in
Fig. 12. Four representative radial voltages (𝑉 = 0, 0.4, 0.45, 0.5) are
hosen. The second- and third-order vibration modes at 𝑉 = 0 are
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Fig. 11. The first three or two vibration frequencies 𝜛 of non-axisymmetric mode with 𝑚 = 𝑛 = 1 as functions of radial voltage 𝑉 in a thin and slender (𝜂 = 0.9, 𝐿∕𝐻 = 10) SEA
tube for both the neo-Hookean model and Gent model (𝐺 = 97.2) under four different axial pre-stretches: (a) 𝜆𝑧 = 2; (b) 𝜆𝑧 = 1; (c) 𝜆𝑧 = 0.92; (d) 𝜆𝑧 = 0.75.

Fig. 12. Cross-section view of mode veering validation of non-axisymmetric vibration with 𝑚 = 𝑛 = 1 for the Gent model in a pre-stretched (𝜆𝑧 = 2) SEA tube for Fig. 11(a)
between Mode 2 (a–d) and Mode 3 (e–h): (a, (e) 𝑉 = 0; (b, (f) 𝑉 = 0.4; (c, (g) 𝑉 = 0.45; (d, (h) 𝑉 = 0.5.
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Fig. 13. Mode-crossing validation (top and front views) of non-axisymmetric vibration with 𝑚 = 𝑛 = 1 for the Gent model in an SEA tube without pre-stretch (𝜆𝑧 = 1) for Fig. 11(b)
between Mode 2 (a, c) and Mode 3 (b, d): (a, (b) 𝑉 = 0; (c, (d) 𝑉 = 0.9.
illustrated in Figs. 12(a) and 12(e) for reference as the initial vibration
modes. A circular end surface and evenly distributed thickness in
Fig. 12(a) demonstrate that the circumferential variations of radial dis-
placement 𝑢𝑟 are hardly noticeable, while large circumferential changes
in 𝑢𝑟 are illustrated in Fig. 12(e), where the tube thickness is not
distributed uniformly. As the voltage grows to 0.4 (before the mode
veering point), the second- and third-order vibration mode shapes keep
consistent with the initial vibration modes with 𝑉 = 0. However,
when the voltage is further increased to 0.45 or 0.5, the mode shapes
between Mode 2 and Mode 3 switch. In Fig. 12(d), the circumferential
change in 𝑢𝑟 is exhibited, which is consistent with the mode shape in
Fig. 12(e). In Fig. 12(h), the tube end surface remains circular and its
thickness is evenly distributed, which corresponds to the mode shape
shown in Fig. 12(a). Therefore, when the applied voltage is close to
triggering the veering, a slight change in voltage can significantly alter
the vibration mode shape. Usually, it leads to a flow of mechanical
energy between adjacent vibration modes, which physically expresses
a modal transformation. The validation of mode crossing predicted by
the neo-Hookean model follows the results in Figs. 13 and 14 for 𝜆𝑧 = 1
and 𝜆𝑧 = 0.75, respectively.

In Fig. 11(b), there is no axial pre-stretch, 𝜆𝑧 = 1. As the radial
voltage increases, the first- and third-order natural frequencies decrease
monotonically towards zero (i.e., the 3D non-axisymmetric buckling
instability occurs (Haughton and Ogden, 1979; Su, 2020)), while the
second-order natural frequency remains independent of the voltage
within the range of 𝑉 EMI for both the neo-Hookean and Gent models.
Moreover, a mode-crossing phenomenon appears between Mode 2 and
Mode 3 for both energy models, and its validation for the Gent model
is illustrated in Fig. 13, where we provide the vibration mode shapes of
Mode 2 and Mode 3 stimulated by two selected radial voltages 𝑉 = 0
and 𝑉 = 0.9 before and after the mode-crossing point. When examining
the second-order mode shape at 𝑉 = 0 in Fig. 13(a), the top view
reveals that the circumferential changes in 𝑢𝑟 are barely noticeable
and the cross-section remains circular, while the sharp spiral gridlines
observed from the front view indicate that 𝑢𝜃 undergoes significant
changes along the axial direction. Then, considering the third-order
mode shape at 𝑉 = 0 in Fig. 13(b), the top view reveals significant
circumferential change in 𝑢 leading to uneven thickness distribution
18

𝑟

in the cross-section, while from the front view, only slight change in 𝑢𝜃
along the axial direction can be observed. For 𝑉 = 0.9 (after the mode-
crossing point), the vibration mode shapes of Mode 2 in Fig. 13(c) and
Mode 3 in Fig. 13(d) remain the same as those at 𝑉 = 0. Therefore, we
refer to the branch crossing between Mode 2 and Mode 3 in Fig. 11(b)
as the mode crossing, where it is important to emphasize again that the
definition of the same order modes is based on the similarity of modes
before and after the crossing point, rather than the frequency values
of modes. Numerical calculations (not reproduced here) show that a
similar phenomenon of mode crossing also exists in the neo-Hookean
model.

In Figs. 11(c) and 11(d), the axial pre-stretch is compressive, as
𝜆𝑧 = 0.92 and 𝜆𝑧 = 0.75, respectively. Clearly, the vibration frequencies
of the second-order mode in Fig. 11(c) and of the first-order mode in
Fig. 11(d) are all independent of the radial voltage within the range
of 𝑉 EMI. However, as the radial voltage increases, the frequencies
of other vibration modes decrease to zero monotonically, where the
3D non-axisymmetric buckling instabilities occur. In particular, the
critical voltage of the first vibration mode initially increases and then
decreases until it reaches zero as the axial pre-stretch changes from
axial pre-extension to axial pre-compression. Similar to Fig. 11(b), the
mode-crossing phenomenon happens between Mode 2 and Mode 3 in
Fig. 11(c) and between Mode 1 and Mode 2 in Fig. 11(d) for both the
neo-Hookean and Gent models. This mode-crossing phenomenon can
be validated by comparing the vibration modes before and after the
crossing point. As shown in Fig. 14, the mode shape variations of Mode
1 and Mode 2 for the Gent model and 𝜆𝑧 = 0.75, before (𝑉 = 0) and
after (𝑉 = 0.9) the crossing point, are essentially the same as those
depicted in Fig. 13.

To demonstrate the diversity of modes, we present in Fig. 15 the
3D mode shapes of non-axisymmetric vibrations with different com-
binations of circumferential and axial mode numbers for 𝜆𝑧 = 2 and
𝑉 = 0.2. The illustrated 3D mode shapes are composed of three coupled
displacement components: the radial displacement 𝑢𝑟, circumferential
displacement 𝑢𝜃 , and axial displacement 𝑢𝑧. The SEA tube vibrates sinu-
soidally in the axial and circumferential directions following Eq. (40).
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Fig. 14. Mode-crossing validation (top and front views) of non-axisymmetric vibration with 𝑚 = 𝑛 = 1 for the Gent model in a pre-stretched (𝜆𝑧 = 0.75) SEA tube for Fig. 11(d)
between Mode 1 (a, c) and Mode 2 (b, d): (a, (b) 𝑉 = 0; (c, (d) 𝑉 = 1.19.
Fig. 15. Non-axisymmetric vibration mode shapes in a pre-stretched (𝜆𝑧 = 2) thin and slender Gent SEA tube (𝜂 = 0.9, 𝐿∕𝐻 = 10, 𝐺 = 97.2) subject to 𝑉 = 0.2 for different
circumferential and axial mode numbers: (a) 𝑚 = 1, 𝑛 = 1; (b) 𝑚 = 2, 𝑛 = 3; (c) 𝑚 = 3, 𝑛 = 4; (d) 𝑚 = 4, 𝑛 = 6.
Moreover, the axial and circumferential mode numbers are integer mul-
tiples of the half-wavelength in the axial direction and the wavelength
in the circumferential direction, respectively.

To clearly reveal the effect of axial pre-stretch on non-axisymmetric
vibration characteristics, the variation curves of the first three natural
frequencies 𝜛 with the axial pre-stretch 𝜆𝑧 in a Gent SEA tube are
plotted in Fig. 16 for 𝑚 = 𝑛 = 1 and under four different radial
voltages 𝑉 = 0, 0.2, 0.4, and 0.5. Taking Fig. 11 into consideration, it
is clear from Fig. 16 that the second-order natural frequency is barely
affected by the axial pre-stretch when 𝑉 ≤ 0.4. But when 𝑉 > 0.4
(e.g., 𝑉 = 0.5), a noticeable frequency veering phenomenon occurs near
𝜆𝑧 ≈ 1.7 between Mode 2 and Mode 3, which explains that the second-
order frequency for 𝑉 = 0.5 decreases with the axial pre-stretch for
𝜆𝑧 > 1.7, as shown in Fig. 16. Additionally, we observe that the first-
order frequency for 𝑉 = 0.5 also decreases when the axial pre-stretch
increases from 1.7 to 2. This is because the geometric sizes of the tube
increase and the overall stiffness declines as a result of the high voltage
close to 𝑉 EMI. Nevertheless, the first- and third-order natural frequency
curves diverge from the second-order one in opposite directions when
19
decreasing the axial pre-stretch for 𝜆𝑧 < 1.7. To be specific, the third-
order natural frequency continues to increase as 𝜆𝑧 decreases, while
the first-order frequency goes down gradually as 𝜆𝑧 decreases from
axial pre-extension to axial pre-compression. In particular, the first-
order frequency curve disappears (i.e., the first-order frequency drops
to 𝜛 = 0 and the 3D non-axisymmetric buckling instability happens)
when the axial pre-stretch reaches a critical value 𝜆cr𝑧 . For example, the
critical axial pre-stretches are 𝜆cr𝑧 = 0.911, 0.918, 0.941, and 0.962 for
𝑉 = 0, 0.2, 0.4, and 0.5, respectively. Thus, the critical axial pre-stretch
has a rise when increasing the radial voltage, which destabilizes the
SEA tube. This disappearance can also be observed in Fig. 11, where
the first-order frequency curve gradually disappears when 𝜆𝑧 decreases
from axial pre-extension to axial pre-compression.

Moreover, in order to study the strain-stiffening effect on the non-
axisymmetric vibration behaviors, particularly when the SEA tube is
subject to low and high radial voltages, the first three natural fre-
quencies 𝜛 of the non-axisymmetric vibration mode 𝑚 = 𝑛 = 1 are
depicted in Fig. 17 as functions of the Gent parameter 𝐺 for a pre-
stretched (𝜆𝑧 = 2) SEA tube. It can be seen that for both low (𝑉 = 0.2)
and high (𝑉 = 0.45) radial voltages, the first three natural frequencies
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Fig. 16. The first three frequencies 𝜛 of non-axisymmetric vibration mode with
= 𝑛 = 1 as functions of axial pre-stretch 𝜆𝑧 in a thin and slender Gent SEA tube

𝜂 = 0.9, 𝐿∕𝐻 = 10, 𝐺 = 97.2) subject to four different radial voltages 𝑉 = 0, 0.2, 0.4,
and 0.5.

decrease rapidly at first with the increase of 𝐺, and then gradually
tend to the straight lines representing the results predicted by the neo-
Hookean model. Furthermore, comparing Fig. 17(a) with Fig. 17(b), the
corresponding Gent parameter 𝐺, for which the frequency predictions
based on the Gent model start to deviate from those by the neo-
Hookean model, increases from approximately 𝐺 ≈ 100 for 𝑉 = 0.2
o 𝐺 ≈ 200 for 𝑉 = 0.45. In other words, the strain-stiffening effect
anifests itself earlier at relatively high voltages. We note that, as the
ent parameter 𝐺 further decreases from the deviation point between

he Gent and neo-Hookean models, the strain-stiffening effect becomes
ncreasingly pronounced, resulting in a rapid increase in frequency.
imilar phenomena can be observed for axial pre-compression and are
ot shown here for brevity.

When there is no axial pre-stretch (i.e., 𝜆𝑧 = 1), it can be found from
Fig. 11(b) that the 3D non-axisymmetric buckling instability voltage
(𝑉 cr = 0.6008) of the first mode for the Gent model is far less than the
electro-mechanical instability voltage 𝑉 EMI = 1.0004. According to the
esults when 𝜆𝑧 = 1 in Fig. 2(b), the Gent SEA tube does not get strain-
tiffened for 𝑉 < 𝑉 EMI, even when the Gent parameter 𝐺 decreases

to 10. Thus, the first-order natural frequency of the SEA tube for the
mode 𝑚 = 𝑛 = 1 does not change with the Gent parameter 𝐺 unless it
is chosen to be extremely small (e.g., 𝐺 < 0.5).

In order to more clearly demonstrate the voltage-controlled vibra-
tion frequency of a specific material and discuss the failure possibility of
electric breakdown (EB) under the combination of extreme deformation
and high voltage conditions for the Gent model, we have selected
Silicone CF19-2186 (Shmuel and Pernas-Salomón, 2016) by the man-
ufacturer Nusil as a specific numerical example, with its material
properties being 𝜌 = 1100 kg∕m3, 𝜇 = 333 kPa, 𝜀𝑟 = 2.8, 𝐸EB =
235 MV∕m and 𝐺 = 46.3, where 𝜀𝑟 and 𝐸EB are the relative permittivity
and dielectric strength, beyond which the EB phenomenon occurs.
Using the material properties of Silicone CF19-2186, the dimensionless
breakdown electric field is calculated as 𝐸EB = 𝐸EB

√

𝜀∕𝜇 = 2.027,
here 𝜀 = 𝜀0𝜀𝑟 is the material permittivity with 𝜀0 = 8.85 pF∕m. For

he static axisymmetric deformation of SEA tubes subject to axial pre-
tretch and radial voltage, the radial electric field can be derived as
𝑟 = 𝑄(𝑎)∕(2𝜋𝑟𝜀𝜆𝑧𝐿) based on the ideal dielectric energy model (17)2
nd constitutive Eq. (10)3. Thus, based on Eq. (18) the radial electric
ield of the SEA tube is expressed as 𝐸𝑟 = −𝑉 ∕(𝑟 ln 𝜂), which is inversely

proportional to the radial coordinate 𝑟. Clearly, the maximum value of
20
the radial electric field is obtained at inner surface of the SEA tube and
its dimensionless form is 𝐸

max
𝑟 = 𝐸max

𝑟
√

𝜀∕𝜇 = −𝑉 (1 − 𝜂)∕(𝜆𝑎𝜂 ln 𝜂).
For a pre-stretched (𝜆𝑧 = 2) thin and slender Gent SEA tube (𝜂 =

0.9, 𝐿∕𝐻 = 10, 𝐺 = 46.3) made of Silicone CF19-2186, we plotted in
ig. 18(a) the lowest dimensionless vibration frequencies of five differ-
nt vibration modes as functions of dimensionless radial voltage. It is
een that similar to the previous results, the vibration frequency of the
reathing mode first decreases and then increases because of the strain-
tiffening effect, while that of the T vibration mode remains unchanged
t first and then rises quickly. The frequencies of the L vibration,
rismatic vibration and non-axisymmetric vibration modes decrease
onotonically to zero, corresponding to the relevant instabilities. The
imensionless instability voltages are marked in Fig. 18(a), which are
𝑉 cr = 0.164 for the prismatic vibration mode (𝑚 = 2, 𝑛 = 0), 𝑉 cr = 0.521
for the L vibration mode (𝑚 = 0, 𝑛 = 1), and 𝑉 cr = 0.765 for the non-
xisymmetric vibration mode (𝑚 = 1, 𝑛 = 1). The EB failure possibility
an be determined by comparing 𝐸

max
r with 𝐸EB for different applied

voltages, as shown in Fig. 18(b). It is apparent from Fig. 18 that the
dimensionless EB voltage is larger than the instability voltages of the
relevant vibration modes, which means that the buckling instability or
prismatic diffuse instability of a SEA tube made of Silicone CF19-2186
occur before its electric breakdown. In addition, Fig. 18 demonstrates
that electrostatically tunable vibration characteristics of SEA tubes
made of Silicone CF19-2186 is feasible over a wide voltage range.

5. Conclusions

We investigated the electrostatically tunable non-axisymmetric vi-
bration characteristics of an SEA cylindrical tube with strain-stiffening
effect under inhomogeneous biasing fields induced by an axial pre-
stretch and a radial electric voltage. First, we used the finite electro-
elasticity theory to derive the governing equations of nonlinear ax-
isymmetric static response and radially inhomogeneous biasing fields of
an incompressible SEA tube characterized by the Gent ideal dielectric
model. Next, based on the relevant linearized theory for incremental
fields proposed by Dorfmann and Ogden, we employed the State-Space
Method (SSM) to tackle the inhomogeneous biasing fields and obtain
the frequency equations for small-amplitude prismatic vibrations and
non-axisymmetric vibrations of the activated SEA tube. Finally, we
conducted numerical calculations to verify the accuracy and conver-
gence of the SSM in dealing with the non-axisymmetric vibrations,
and to thoroughly study the influence of the strain-stiffening effect on
the axisymmetric and prismatic vibrations, as well as the influences
of electro-mechanical biasing fields and strain-stiffening effect on the
non-axisymmetric vibrations. We can summarize our main results as
follows:

(1) The SSM is a highly efficient and accurate method to study the
superimposed non-axisymmetric vibrations of SEA tubes subject
to inhomogeneous biasing fields.

(2) As the radial voltage increases, the vibration frequency of the
breathing mode predicted by the neo-Hookean model monoton-
ically decreases to zero due to the reduction in global stiffness,
while that anticipated by the Gent model first reduces to a
small value owing to the attenuation of global stiffness, and then
increases conversely because of the strain-stiffening effect.

(3) For the L vibrations, the vibration frequencies predicted by
both the neo-Hookean and Gent models exhibit a nonlinear
decline towards zero with the increase of radial voltage and the
axisymmetric barreling instabilities occur.

(4) For the T vibrations of thin SEA tubes characterized by the Gent
model, the lowest vibration frequency does not change with
the radial voltage when it is less than the electro-mechanical
instability voltage 𝑉 EMI. However, as the voltage exceeds 𝑉 EMI,
the lowest vibration frequency starts to increase significantly as
a result of the strain-stiffening effect.
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Fig. 17. Variation curves of the first three frequencies 𝜛 of non-axisymmetric vibration mode 𝑚 = 𝑛 = 1 with the Gent parameter 𝐺 in a pre-stretched (𝜆𝑧 = 2) SEA tube subject
to (a) 𝑉 = 0.2 (a low radial voltage) and (b) 𝑉 = 0.45 (a high radial voltage).
Fig. 18. (a) The lowest dimensionless vibration frequencies 𝜛 of the breathing mode (𝑚 = 𝑛 = 0), L vibration mode (𝑚 = 0, 𝑛 = 1), T vibration mode (𝑚 = 0, 𝑛 = 1), prismatic
ibration mode (𝑚 = 2, 𝑛 = 0) and non-axisymmetric vibration mode (𝑚 = 𝑛 = 1) as functions of the dimensionless radial voltage 𝑉 and (b) the comparison between the dimensionless

breakdown electric field and maximum radial electric field in a pre-stretched (𝜆𝑧 = 2) thin and slender Gent SEA tube (𝜂 = 0.9, 𝐿∕𝐻 = 10, 𝐺 = 46.3) made of Silicone CF19-2186.
(5) For the prismatic vibration with a circumferential mode number
𝑚 ≥ 2, its lowest vibration frequencies for both the neo-Hookean
and Gent models decrease nonlinearly to zero when continu-
ously increasing the voltage and prismatic diffuse instabilities
appear in the SEA tube. The critical instability voltage increases
monotonically with the circumferential mode number.

(6) For the non-axisymmetric vibrations, the lowest vibration fre-
quencies monotonically go down to zero when increasing the
voltage for both the neo-Hookean and Gent models and 3D
non-axisymmetric buckling instabilities happen. The lowest fre-
quency curve gradually disappears when the axial pre-stretch
goes from pre-extension to pre-compression. Mode veering or
crossing phenomena exist in two higher-order vibration modes
resulting in modal conversion, which can be judged by analyzing
the modal shape evolution.

(7) As the axial pre-stretch reduces from axial pre-extension to
axial pre-compression, the lowest vibration frequency of non-
axisymmetric vibrations continues to go down and eventually
21
reaches zero, indicating the 3D non-axisymmetric buckling in-
stability. The critical axial pre-stretch increases with the radial
voltage, which destabilizes the SEA tube.

(8) Regardless of the vibration type, the vibration frequencies at
first decrease rapidly with an increase of the value of the Gent
parameter, and then gradually tend to the results predicted by
the neo-Hookean model. The strain-stiffening effect manifests
itself earlier at relatively high voltages.

Our results indicate the possibility of exploiting electro-mechanical
biasing fields to realize on-demand tunability of small-amplitude vi-
bration behaviors of SEA tubes exhibiting the strain-stiffening effect.
The present study provides guidelines for further experimental research
and design of SEA tube-based electrostatically tunable resonant sys-
tems, which may find a wide range of potential applications, including
active vibration isolators, tunable energy harvesters, tunable sound
generators, as well as biomedical actuators and sensors.

It is emphasized that the main focus of this work is to investigate
the influence of strain-stiffening effect on the vibration behaviors of
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SEA tubes. Note that Arora et al. (2022) explored the influence of
strain-stiffening effect on the stability of soft periodic laminates and
achieved deformation-activated negative group velocity by customizing
the stiffening behavior of the non-Gaussian soft phases. Thus, how
the strain-stiffening effect modulates the buckling instability and wave
characteristics of negative group velocity for SEA structures is a topic
worthy of further investigation.
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Appendix. Frequency equations of free vibrations in a pre-stretched
hyperelastic tube characterized by the gent model

In this appendix, we use the conventional displacement method to
derive the frequency equations of four kinds of vibrations (i.e. non-
axisymmetric vibrations, L vibrations (including the breathing mode),
T vibrations and prismatic vibrations) in a pre-stretched hyperelastic
tube characterized by the Gent model. For arbitrary energy function
models, the detailed derivations of the frequency equations of the first
three kinds of vibrations in a pre-stretched hyperelastic tube have been
provided in our previous work (Zhu et al., 2020).

Three displacement functions 𝜓 , 𝐹 , and 𝐾 to express the displace-
ment components are introduced as:

𝑢𝑟 =
1
𝑟
𝜕𝜓
𝜕𝜃

− 𝜕𝐹
𝜕𝑟
, 𝑢𝜃 = −

𝜕𝜓
𝜕𝑟

− 1
𝑟
𝜕𝐹
𝜕𝜃
, 𝑢𝑧 = 𝐾, (A.1)

where 𝜓 , 𝐹 , 𝐾 and 𝑝̇ have the following assumed formal solutions:

𝜓 = 𝜓 (𝑟) sin (𝑚𝜃) cos (𝑛𝜋𝜁 ) 𝑒i𝜔𝑡, 𝐹 = 𝐹 (𝑟) cos (𝑚𝜃) cos (𝑛𝜋𝜁 ) 𝑒i𝜔𝑡,

= 𝐾 (𝑟) cos (𝑚𝜃) sin (𝑛𝜋𝜁 ) 𝑒i𝜔𝑡, 𝑝̇ = 𝑝 (𝑟) cos (𝑚𝜃) cos (𝑛𝜋𝜁 ) 𝑒i𝜔𝑡.

(A.2)
22
The specific derivation process for the frequency equation of the
non-axisymmetric and axisymmetric vibrations can be found in the
Appendix C in the paper of Zhu et al. (2020) and is omitted here for
brevity. Specifically, we can refer to the frequency equations (C.11)
and (C.12) for the non-axisymmetric vibrations and (C.13) for the
axisymmetric vibrations (including the L vibrations and T vibrations)
in that paper.

Now consider an axially pre-stretched hyperelastic tube character-
ized by the incompressible Gent model with strain–energy function
Eq. (17) with 𝐼4 = 𝐼5 = 0. We obtain the required effective material
arameters as:

11 = 01111 + 𝑝 = 2𝜆2𝜃𝛺1 + 4𝜆4𝜃𝛺11 + 𝑝,

𝑐12 = 01122 = 4𝜆4𝜃𝛺11, 𝑐13 = 01133 = 4𝜆−2𝜃 𝛺11,

𝑐33 = 03333 + 𝑝 = 4𝜆−8𝜃 𝛺11 + 2𝜆−4𝜃 𝛺1 + 𝑝,

𝑐58 = 01331 + 𝑝 = 𝑝, 𝑐55 = 01313 = 2𝜆2𝜃𝛺1,

𝑐66 = 𝑐55, 𝑐69 = 01221 + 𝑝 = 𝑝, 𝑐77 = 03131 = 2𝜆−4𝜃 𝛺1,

(A.3)

where 𝛺1 = 𝜇𝐺∕[2
(

𝐺 − 𝐼1 + 3
)

], 𝛺11 = 𝜇𝐺∕[2
(

𝐺 − 𝐼1 + 3
)2], and

𝜆𝜃 = 𝜆−1∕2𝑧 for the homogeneous deformation in the hyperelastic tube
without the electro-mechanical coupling. According to Eq. (9)1, the
Lagrange multiplier 𝑝 can be obtained from 𝜏𝑟𝑟 = 0 as

𝑝 = 2𝜆−1𝑧 𝛺1. (A.4)

A.1. Breathing mode

For the breathing mode with 𝑚 = 𝑛 = 0 and 𝑢𝜃 = 𝑢𝑧 = 0, we recall the
frequency equation from Eq. (C.20) in the paper of Zhu et al. (2020),

𝜌𝜔2 =
(

𝑐12 − 𝑐11
)

(

1
𝑎2

− 1
𝑏2

)

∕ ln 𝑎
𝑏
, (A.5)

which, when combined with Eqs. (A.3) and (A.4), results in the fol-
lowing frequency equation of the breathing mode for the pre-stretched
Gent hyperelastic tube:

𝜛2 = 𝜌𝜔2𝐻2∕𝜇 = − 2𝐺
𝐺 − 𝐼1 + 3

(1 − 𝜂)2
(

1 − 𝜂2
)

∕
(

𝜂2 ln 𝜂
)

, (A.6)

here 𝜂 = 𝐴∕𝐵 and 𝐼1 = 2𝜆−1𝑧 +𝜆2𝑧. Thus, the vibration frequency of the
reathing mode of the Gent hyperelastic tube depends on the inner-
o-outer radius ratio 𝜂 and axial pre-stretch 𝜆𝑧 appearing in 𝐼1, but
s independent of the length-to-thickness ratio 𝐿∕𝐻 . When 𝐺 is large
nough, the effect of axial pre-stretch can be counteracted, as with the
esult of the neo-Hookean model (Zhu et al., 2020).

.2. Purely torsional vibrations (T vibrations)

For the T vibrations with 𝑚 = 0 and 𝑢𝑟 = 𝑢𝑧 = 𝑝̇ = 0, the only
on-zero displacement component is 𝑢𝜃 = 𝑣 (𝑟) cos (𝑛𝜋𝜁 ) 𝑒i𝜔t . Inserting
q. (A.3) into Eq. (C.13) of Zhu et al. (2020), the elements (𝑑23, 𝑑26,
𝑑53, 𝑑56) related to the T vibrations can be rewritten as

𝑑23 = 𝐺1𝛼3𝜆

[

𝛼3𝜆𝐽0

(

𝛼3𝜆
1 − 𝜂

)

− 2 (1 − 𝜂) 𝛼3𝜆𝐽1

(

𝛼3𝜆
1 − 𝜂

)]

,

𝑑26 = 𝐺1𝛼3𝜆

[

𝛼3𝜆𝑌0

(

𝛼3𝜆
1 − 𝜂

)

− 2 (1 − 𝜂) 𝛼3𝜆𝑌1

(

𝛼3𝜆
1 − 𝜂

)]

,

𝑑53 = 𝐺1𝛼3𝜆

[

𝛼3𝜆𝐽0

(

𝜂𝛼3𝜆
1 − 𝜂

)

− 2
(

𝜂−1 − 1
)

𝛼3𝜆𝐽1

(

𝜂𝛼3𝜆
1 − 𝜂

)]

,

𝑑56 = 𝐺1𝛼3𝜆

[

𝛼3𝜆𝑌0

(

𝜂𝛼3𝜆
)

− 2
(

𝜂−1 − 1
)

𝛼3𝜆𝑌1

(

𝜂𝛼3𝜆
)]

,

(A.7)
1 − 𝜂 1 − 𝜂
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where 𝐺1 = 𝐺∕
(

𝐺 − 2𝜆−1𝑧 − 𝜆2𝑧 + 3
)

, 𝛼3𝜆 = 𝛼3𝜆
−1∕2
𝑧 =

√

𝜛2∕𝐺1 − 𝜅
2

with 𝛼23 = [𝜌𝜔2 − (𝑛𝜋∕𝑙)2𝑐77]∕𝑐66 and 𝜅 = 𝑛𝜋𝐻∕𝐿, and 𝐽𝑚(⋅) and
𝑚(⋅) are the Bessel functions of the first and second kinds of order 𝑚,
espectively. Thus, we obtain the frequency equation of the T vibrations
or the Gent hyperelastic tube as

𝛼23𝜆

[

𝐽2

(

𝛼3𝜆
1 − 𝜂

)

𝑌2

(

𝜂𝛼3𝜆
1 − 𝜂

)

− 𝐽2

(

𝜂𝛼3𝜆
1 − 𝜂

)

𝑌2

(

𝛼3𝜆
1 − 𝜂

)]

= 0. (A.8)

It is clear from Eq. (A.8) that the natural frequency of the T vibrations
depends on the axial pre-stretch 𝜆𝑧 in 𝐺1, the length-to-thickness ratio
𝐿∕𝐻 in 𝜅 and the inner-to-outer radius ratio 𝜂 = 𝐴∕𝐵. Furthermore, we
note from Eqs. (A.3) and (A.8) that 𝛼23𝜆 = 𝜛2∕𝐺1 − 𝜅

2 = 0 is one of the
solutions to the frequency equation of the T vibrations, which yields

𝜛 =
√

𝐺1𝜅 =

√

𝐺
𝐺 − 2𝜆−1𝑧 − 𝜆2𝑧 + 3

𝑛𝜋𝐻
𝐿

. (A.9)

The solution (A.9) represents the torsional displacement proportional to
the radius (i.e., each cross-section of the tube rotates around its center
during the vibration), and we see that its natural frequency depends on
the axial pre-stretch and length-to-thickness ratio, but is independent
of the inner-to-outer radius ratio.

A.3. Prismatic vibrations

For the case of prismatic vibrations with 𝑚 ≠ 0, 𝑛 = 0 and 𝑢𝑧 = 0, we
have 𝐾 = 0 and its corresponding assumed solutions can be rewritten
from Eq. (A.2) as

𝜓 = 𝜓 (𝑟) sin (𝑚𝜃) 𝑒i𝜔𝑡, 𝐹 = 𝐹 (𝑟) cos (𝑚𝜃) 𝑒i𝜔𝑡, 𝑝̇ = 𝑝 (𝑟) cos (𝑚𝜃) 𝑒i𝜔𝑡.

(A.10)

oreover, its corresponding incremental governing equations (see
q. (C.4) of Zhu et al. (2020)) reduce to

𝛬 + 𝛼23
)

𝜓 = 0, 𝛬𝐹 = 0,

(

𝑐11 − 𝑐13 − 𝑐58
)

𝛬 + 𝜌𝜔2]𝐹 + 𝑝 = 0,
(A.11)

where 𝛬 = d2∕d𝑟2 + (1∕𝑟)d∕d𝑟 − 𝑚2∕𝑟2 and 𝛼23 = 𝜌𝜔2∕𝑐66. Obviously,
Eq. (A.11)2 is a homogeneous Euler equation, with general solution

𝐹 (𝑟) = 𝐴1𝑟
𝑚 + 𝐵1𝑟

−𝑚, (A.12)

where 𝐴1 and 𝐵1 are the undetermined constants. Substituting
q. (A.11)2 into Eq. (A.11)3 and using Eq. (A.12), we obtain the
olution of 𝑝 (𝑟) as

𝑝 (𝑟) = −𝜌𝜔2 (𝐴1𝑟
𝑚 + 𝐵1𝑟

−𝑚) . (A.13)

In addition, Eq. (A.11)1 is clearly a Bessel equation of order 𝑚, and
its solution is

𝜓 (𝑟) = 𝐴2𝐽𝑚
(

𝛼3𝑟
)

+ 𝐵2𝑌𝑚
(

𝛼3𝑟
)

, (A.14)

where 𝐴2 and 𝐵2 are arbitrary constants to be determined. Substituting
Eqs. (A.12)–(A.14) into Eqs. (A.1) and (37)1,4,8, we obtain the non-zero
incremental transverse stress components as

𝑇̇0𝑟𝑟 = 𝛴𝑟𝑟 cos (𝑚𝜃) 𝑒i𝜔𝑡, 𝑇̇0𝑟𝜃 = 𝛴𝑟𝜃 sin (𝑚𝜃) 𝑒i𝜔𝑡, (A.15)

where

𝛴𝑟𝑟 = 𝑐11
(𝑚
𝑟
𝜓 ′ − 𝑚

𝑟2
𝜓 − 𝐹

′′)
+ 𝑐12

1
𝑟

[

𝑚
(

−𝜓 ′ + 𝑚
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𝐹
)

+ 𝑚
𝑟
𝜓 − 𝐹

′]
− 𝑝,

𝑟𝜃 = 𝑐66
(
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𝑟
𝐹

′
− 𝑚
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𝐹
)

− 𝑐69
1
𝑟
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𝑚
(𝑚
𝑟
𝜓 − 𝐹

′)
− 𝜓 ′ + 𝑚

𝑟
𝐹
]

,

(A.16)

n which the prime denotes differentiation with respect to 𝑟.
23
To satisfy the imposed mechanical boundary conditions (52)2 and
ensure that the determinantal condition for non-trivial solutions exists,
we obtain the frequency equation of the prismatic vibrations as
|

|

|

𝑑𝑖𝑗
|

|

|

= 0, (𝑖, 𝑗 = 1 ∼ 4) , (A.17)

here the first two rows 𝑑𝑖𝑗 (𝑖 = 1, 2) of the determinant’s elements that
orrespond to the boundary conditions on the inner surface 𝑟 = 𝑎 are
ritten as

11 =
𝑚
𝑎2

(

𝑐12 − 𝑐11
)
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,
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,
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(A.18)

For the mechanical boundary conditions on the outer surface 𝑟 = 𝑏,
we replace the inner radius 𝑎 with the outer radius 𝑏 in Eq. (A.18) to
obtain the elements 𝑑𝑖𝑗 (𝑖 = 3, 4) of the final two rows of the determinant
Eq. (A.17).
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