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This article presents the potentiality of inflatable, functionally-graded auxetic membranes to produce wrinkles
and necks. We obtain elastic instabilities at desired locations in axisymmetric membranes and with prescribed
patterns in square membranes. First, we use an analytical approach to obtain a series of universal results
providing insights into the formation of wrinkles and necks in inflated, axisymmetric membranes. For example,
we prove analytically that necks and wrinkles may never overlap in pressurized, axially symmetric membranes.
Second, we implement the relaxed strain energy of tension field theory into a Finite Element solver (COMSOL).

By tuning spatial inhomogeneities of the material moduli, we corroborate our universal results, describe the
onset of wrinkling in an averaged way, and also generate non-trivial instabilities at desired locations. This
study on membranes with morphing or corrugation on demand has potential applications in Braille reading

and haptics.

1. Introduction

Artificially designed materials with negative Poisson’s ratio thicken
when stretched, in contrast to classical elastic materials, which be-
come thinner in the directions lateral to an applied loading direction.
These so-called auxetic materials have been studied in several fields,
including ferromagnetics [1], crystal elasticity [2], foam structures [3],
microporous materials [4], and composites [5].

Theoretically, for isotropic materials which satisfy the pointwise
energy stability criterion, the Poisson ratio can take values between
—1 and 0.5 for 3D solids [6,7]. For 2D solids such as membranes, the
allowable Poisson’s ratio value lies between —1 and 1 [8]. In contrast,
Poisson’s ratio for anisotropic structures has no bounds [9], which is
why some biological tissues exhibit auxeticity [10-12].

Auxetic materials can be fabricated using additive manufacturing
techniques, such as powder bed fusion [13,14] or subtractive manu-
facturing techniques, such as laser cutting for thin structures [15,16].
With the rapid advancement in additive manufacturing techniques,
even complex auxetic structures can be produced at large scales in a
short time. With a careful design of voids or holes at the micro-scale,
auxetic properties can be obtained at the continuum level [17,18].
Recently, solution electrospinning has been used to produce auxetic
biomembranes [19].

These structures have a wide range of applications, from superhy-
drophobic materials, with unique wetting properties [24], to soft robots
with compliant actuators [25] or compliant grippers [26], to biomedi-
cal applications, with auxetic stents [27], dynamic organ patches [23],
or skin grafts [28]. Fig. 1 displays examples of recent applications.

Due to their thin-walled, lightweight, and impressive tensile proper-
ties, nonlinear elastic membranes play a prominent role in many fields
such as automobile, aerospace, civil and biomedical engineering [29-
31]. However, thin membranes lose their mechanical stability under in-
plane compressive stresses due to negligible bending rigidity, leading to
interesting behaviors [7,32,33]. Inflatable membranes under large elas-
tic deformations experience various kinds of bifurcation phenomena
such as limit-point (snap-through), wrinkling, and necking instabilities.
Some of the most common and significant applications of inflatable
auxetic materials can be seen in stent deployment for angioplasty [34],
in morphing structures [35], and for smart biomaterials [36].

Over the past several decades, there has been extensive research
on finite inflation of incompressible circular membranes. Early experi-
mental works by Flint and Naunton [37], Treloar [38], and Rivlin and
Saunders [39] present a detailed analysis of the deformation shape and
strain distributions over the surface of inflated incompressible isotropic
balloons. Adkins and Rivlin [40] studied theoretically pressurized cir-
cular and spherical thin shells using incompressible neo-Hookean and
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Fig. 1. Examples of applications and behaviors for auxetic materials. (a) Hip implants
can be designed to include regions with a negative Poisson ratio to minimize retraction
from the bone under biomechanical loading [20]. (b) Auxetic tubular lattice stents
exhibit increased ductility compared to conventional diamond tubular lattices [21].
(c) Auxetic thin membranes under tension wrinkle in the neighborhood of clamps, in
contrast to conventional membranes, which wrinkle in their central region [22]. (d)
Auxetic patches glued onto balloon membranes can undergo larger deformations than
conventional patches, a property which can help with the healing of puncture wounds
to the bladder for example [23].

Mooney-Rivlin strain energy functions, to obtain the relationship be-
tween inflating pressure, extension ratio, and radius of curvature near
the pole. The book by Green and Adkins [41] covers the mathematical
theory of finite strain deformations in nonlinear membranes extensively
for both isotropic and anisotropic materials. More recent experimental
works include that by Machado et al. [42], who proposed a method
to determine curvatures and membrane stresses using an axisymmetric
bulge test for isotropic circular membranes and a three-dimensional
digital image correlation technique.

Finite element analysis (FEA) is very useful in understanding the be-
havior of complex geometries and loading conditions. Many researchers
have developed numerical methods based on FEA to study finite infla-
tion in nonlinear membranes using different material models and for
different geometries. For example, see the works on axisymmetric mem-
branes by Oden and Sato [43], Wriggers and Taylor [44], Gruttmann
and Taylor [45], Jiang and Haddow [46], Rumpel et al. [47], Eriksson
and Nordmark [48], and Selvadurai [49], on rectangular membranes
using finite difference iterative scheme by Yang and Lu [50], and on
rectangular membranes using FEA by Adler and Mikulas [51], Lee and
Youn [52], Barsotti and Ligaro [53], Chen et al. [54], and Li et al.
[55,56].

Analytical solutions associated with the finite inflation of nonlinear
membranes are scarce in the literature due to strong material and
geometrical nonlinearities. However, analytical solutions play an im-
portant role in providing simplified and direct solutions to predict the
mechanical behavior of inflated membranes. With an assumption of
linear elastic constitutive behavior and spherical deformation shape
for a pressurized incompressible isotropic circular membrane, Fichter
[57] provided closed-form analytical solutions for small deformations,
later extended by Coelho et al. [58] for finite strains. Relaxing the
constraint of linear elastic material behavior but still assuming the
spherical deformation shape of the membrane, Yuan et al. [59], Foster
[60], and Yang et al. [61] derived analytical solutions for pre-stretched
circular membranes under inflation using different incompressible hy-
perelastic material models. Dropping the hypothesis of spherical de-
formation shape and considering compressibility, pressure-deflection
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formulas for inflated isotropic circular membranes with compressible
Mooney-Rivlin model are provided by Pelliciari et al. [62] without
pre-stretch, by Sirotti et al. [63] with pre-stretch, and by Pelliciari
and Tarantino [64] for anisotropic pressurized graphene membranes
without prestretch.

Many of the above-mentioned works dealt with limit-point insta-
bility in inflatable circular membranes, but little attention has been
drawn in the past to the study of wrinkling and necking instabilities
for functionally-graded inflatable auxetic circular membranes under
mechanical loads.

Several theories exist in the literature for studying wrinkles in
nonlinear elastic membranes. For example, the theory of incremental
deformations [65,66], the Foppl-von Karman theory of plates [67,68],
the reduced-order finite element membrane theory [69], the numerical
bifurcation-continuation analysis [70], and an algorithm coupling the
Asymptotic Numerical Method and the Chebyshev spectral collocation
approach [71]. Although these advanced and refined models provide
comprehensive details on the wavelength and amplitude of wrinkles,
they are computationally expensive to implement.

That is because the characteristic length scale of wrinkles is typically
much smaller than that of the structure and, to accurately predict
wavelength and amplitude, the mesh size in finite element simulations
must be much smaller than the wrinkle size [72]. Additionally, the
wavelength of wrinkles decreases with the thickness of the membrane,
resulting in high computational costs when shell elements are employed
for simulations of large-scale membrane geometries [73]. Hence Pagitz
and Pellegrino [74] mention that current scientific balloons have a
diameter of 80 m and a thickness of 0.04 mm, requiring 10'! degrees
of freedom using shell elements to accurately model the instability
behavior of the pressurized balloons.

In this study, we focus on determining the average deformation
in the wrinkled region along with finding the location and orienta-
tion of wrinkles, but not their amplitude and wavelength. Therefore,
we employ tension field theory, originally proposed by Wagner [75]
and Reissner [76]. Tension field theory has the advantage of being
computationally viable and mathematically elegant [72-74]. According
to tension field theory, membranes are assumed to have zero out-
of-plane bending stiffness and cannot sustain in-plane compressive
stresses. In the 1980s, in order to account for compressive stresses, Pip-
kin [77] extended the theory by introducing the concept of “relaxed
strain energy function”, see also Pipkin [78], Steigmann and Pipkin
[79], Steigmann [80], and Pipkin [81]. Relaxed models have been
used to study wrinkles in anisotropic membranes [82], electroactive
elastomeric membranes [83-87], pressurized magnetoelastic circular
membranes [88], and inflatable isotropic membranes under uniform
pressure load [89-91].

Alongside wrinkling, necking is another interesting bifurcation phe-
nomenon observed in nonlinear membranes, although less explored in
hyperelastic isotropic circular membranes. Chaudhuri and DasGupta
[92] found negative Gaussian curvature and circumferential wrinkling
at the fixed rim of the hyperelastic isotropic circular membrane under
inflation. Necking in pressurized elasto-plastic spherical membranes
has been investigated by Needleman [93] and in pressurized elasto-
plastic circular membranes by Chater and Neale [94]. However, a study
on necking and multi-layered bubbling phenomenon in pressurized
functionally-graded hyperelastic isotropic auxetic circular membranes
is still missing in the literature.

In this work, as a proof-of-a-concept, we study the effect of varying
material properties such as the Young modulus and the Poisson ratio
on limit-point instabilities (snap-through), necking, and wrinkling in
pressurized isotropic auxetic membranes (circular and square geome-
tries). Through molecular dynamics simulations, Ulissi et al. [95] have
shown that it is, in principle, possible to tune the mechanical properties
of auxetic membranes. Here use the Blatz—Ko strain energy function
to model the membrane’s hyperelastic mechanical behavior. We study
the effect of pre-stretches on wrinkling instabilities in auxetic circular
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Fig. 2. Deformation profiles of the axisymmetric auxetic circular membrane. (a): Circular membrane with initial radius of R;, and thickness H. (b): Deformed profile of the circular
membrane under radial pre-stretch with the radius Rg,. Note that the thickness of the membrane is increased with the in-plane stretching due to auxeticity. (c): Deformed profile
of the inflated circular membrane subjected to uniform pressure P and fixed on its circumferential boundary. Point P, in the undeformed configuration is displaced to the positions
P, and P; with pre-stretch and inflation, respectively. A point in the final configuration has coordinates (p, @,#), where p is radial position and # is the vertical deflection.

membranes. For the onset of limit-point instabilities, we investigate the where the index 1 refers to meridians and 2 to parallels in the current
effect of pre-stretches and material parameters for circular geometries. configuration.

Finally, we show how to obtain wrinkling patterns in specific mem- In the membrane approximation, it is assumed the deformation is
brane areas by tuning the spatial distribution of Young’s modulus and normal preserving. Therefore the gradient of deformation admits the
Poisson’s ratio, both for square and circular membranes. diagonal representation F = diag(4;,1,,43) in a local basis, where

The paper is organized as follows. In Section 2, we introduce the the eigenvalue /5 is relative to the membrane normal direction. By
problems of interest and the constitutive equations, and we derive the introducing the volumetric variation coefficient J = detF, we may
kinematics of the deformation. We also briefly summarize the main therefore write
features of the relaxed strain energy functional based on tension field J

43

3= e 2

theory to derive the membrane stresses. Finally, we write down the
equilibrium conditions along with the applied boundary conditions.
In Section 3, with the help of membrane theory, we derive the equa-
tions linking curvatures and principal stresses, which are necessary for
wrinkling and necking in the circular membrane. We establish several
universal insights, valid for all hyperelastic isotropic membranes. These

With F written this way, we may now compute the 2D membrane
energy from any 3D energy. Specifically here, to model the compress-
ible behavior of the membrane, we use the three-dimensional Blatz—Ko
strain energy density [97,98],

include the results that regions of necking and wrinkling cannot over- 3D —o M [ I -3+ 1-2v < [—ﬁ _ 1)] +d-a) H [ L 3
lap, and that necking and wrinkling cannot occur in the center of an ! 3 2 | L
inflated circular membrane. 1-2v (5
In Section 4, we compare the results of our finite element simu- + B (13 1)] ’ 3

lations in COMSOL [96] with the universal predictions of Section 3.

_ T -2 I = T\-1
Conclusions and limitations of the current work, along with possible ~ Where Iy = tr(FF"), I3 = J%, I, = Ltr(FF )™, and 0 < < 1, 4 > 0,

directions for future works are detailed in Section 5. These include -1 <v .5_1/ 2 are rna‘terial constants. The infinitesimal shear modulus 4

some preliminary results on square membranes which can be inflated and infinitesimal Poisson ratio v are related through y = E/2(1+v), where

to exhibit a desired wrinkling pattern. These results could be used in E is the infinitesimal Young modulus. From hereon, it is understood

applications involving haptics. that both E and v are functions of R in the case of axisymmetric circular
membranes: E = E(R) and v = v(R).

. . P 3D _

2. Membrane deformations, energy and stress With the help of the plane-stress state condition [99,100], P;}° =0,

where P3P = gW 3P /F is the first Piola—Kirchhoff stress, we find the
In this work, we describe the behavior of inflated elastic membranes out-of-plane principal stretch ratio 4; as

that are rotationally symmetric about an axis. In the so-called “mem-
brane approximation”, the membrane thickness is small in comparison

to its diameter and bending effects are neglected. In this approxima- Now, by substituting Eq. (4) in Eq. (3), we obtain W, i.e. the membrane
tion, the 3D deformation is deduced from the 2D deformation of the strain energy function, in terms of the two in-plane principal stretch

membrane mid-surface. ratios A; and A,, as follows
We consider a circular membrane with radius R;, and we use
a cylindrical coordinate system to represent the kinematics of the

v 2v
= (i) 77 = A2, where A= (A4) . @

a(B+2)+U-a) (42 +47) -1

W =E
deformation. We identify the position of a point on the mid-surface 4(1+v)
of the membrane in its undeformed configuration with P, (R, ®,0). (@=DA T —aA)(v=1)-1
As the membrane is radially stretched axisymmetrically, the point P, + 2 +v) : ©)

moves to position P, (py, P,0) in the membrane with radius Rg,. Upon
axisymmetric inflation of the pre-stretched membrane (with a fixed
circumference) under a uniform pressure P from the side Z = 0,

Using Eq. (5), we then compute the non-zero components of the first
Piola—Kirchhoff stress P = 0W /JF in the membrane as

the membrane bulges out of the plane towards Z = 0%, and the b W _ EA‘1 (2=A)(1+a(224-1)) Ly ©

point P, is displaced to position P; (p(R), @, n(R)). Here, p(R) and #n(R) P a_/1, - 22301 +v) ’ t=he

represent the radial and transverse deflections of the point P; in the '

final configuration, respectively, as shown in Fig. 2. and the components of the principal Cauchy stress T = J~'PF"
The in-plane stretches of the 2D membrane are calculated as associated with the membrane energy, as

A (Z2-A)(1+a(224-1))
222, (1+v)

, (€Y T,=E , i=12. )

1N

2 2
/(8 dn -
M= <dR> +<dR> A =
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W (A1, 4) if A 247 (4,v), Ay 245 (4,v), Taut region with biaxial tension,
. W (44, 25 (A.v)) if A =1, A <A} (4;,v), Wrinkled region with uniaxial tension, ®
w (/1? (A.v), 4y) i M2 1, A S AY (42,v), Wrinkled region with uniaxial tension,
0 if 4, <1, Ay <1, Slack region with no tension.
Box I.

Note that in axially symmetric membranes, the Cauchy stress has only
in-plane components (7},7,) representing the principal stresses along
meridians and parallels, respectively. With stretches given by Eq. (1),
these are functions of R only.

It is worth noting that the Cauchy stress components Eq. (7) satisfy
the Baker-Ericksen inequality (T, — T;)(4, — 4;) > 0 for all choices
of the material parameters. This condition is fundamental to ensure
that an inflated, elastically homogeneous spherical membrane in its
reference configuration remains spherical for all values of applied
pressure, see De Tommasi et al. [101] and De Tommasi et al. [102].
In this paper we demonstrate that an initially flat membrane with elas-
tic inhomogeneities can attain non-trivial geometries (other than the
spherical configuration) under a uniform pressure load. Furthermore,
wrinkles and necks may be achieved at desired locations.

2.1. Tension field theory: Relaxed strain energy functional

Ideally, membranes with negligible bending stiffness may only
achieve non-negative stress states as they cannot sustain in-plane
compression. Real membranes, however, possess a small (albeit non-
negligible) bending stiffness which effectively slightly delays the onset
of wrinkling when compressive stresses arise.

Lack of resistance to compression may be seen as a unilateral
constitutive constraint. This is embedded in tension field theory by
constructing a “relaxed strain energy density” W*(A;, 4,) from the
parent energy W (4,,4,), which sets an in-plane stress component to
zero whenever it would be negative in the parent energy. Clearly, in
taut regions W* = W(4,, 4,), whereas in completely slack regions
w* =0.

Following Pipkin [77], we may formalize the above by taking (see
the Eq. (8) in Box I).

The function A7 (4 ;»Vv) is called “natural width in tension” and is the
main player of the relaxed energy construction. Now consider a strip of
membrane with energy Eq. (5), oriented along the principal directions.
If the membrane is pulled by so that 4, > 1 along the direction 1, while
being free in the direction 2, the membrane contracts laterally with
stretch ratio 4, = 47 (4, v). This value is found by solving T,(4, 4,) = 0
for 4,. Therefore if A, < A7 (4;,v), then T;, < 0, and the membrane would
be compressed in the non-relaxed energy. In tension field theory, this
problem is avoided by assuming that if the membrane is compressed
further than A3, its energy does not change once A} is attained: namely,
WAy, ) = W (A, A5 (A4, V)).

Physically, if 4, is kept fixed, there would be no energetic ex-
penditure in shortening the membrane in the direction 2, below the
natural width 2}. The same considerations apply to the perpendicular
direction, whereas in the fully slack region, the energy is directly
set to zero. For auxetic materials (v < 0), “lateral contraction” is
changed to “lateral expansion”, while all the remaining considerations
are unchanged.

Remarkably, for membranes with energy defined by Eq. (5), the
natural width depends on the Poisson ratio v only, as follows,

() =(4)".  hi=L2 i#) ©)

Note that for v = 1/2, we recover the expression for the natural width
obtained in Steigmann and Pipkin [103] and Steigmann and Pipkin
[79] for incompressible and isotropic membranes.

The dependence of the natural width in tension on the Poisson
coefficient v has not been explored much so far. However, this feature
can be powerfully exploited to achieve non-trivial wrinkling patterns
on demand. Indeed, as already illustrated by Venkata et al. [104] for
stretched membranes, by carefully tuning the spatial distribution of E
and v, one can achieve unusual wrinkling patterns. This has a great
potential in technological applications [105,106].

Auxetic materials have interesting properties: when A, > 1, then
45 > 1, indicating that the membrane expands in all directions. This
is a very strong difference between auxetic and classical membranes.
Classical membranes always contract laterally when pulled in the per-
pendicular direction. In the next section, we discuss the implications
of these features for both classical and auxetic functionally graded
membranes.

2.2. Equilibrium of a pressurized membrane

Equilibrium equations of axially symmetric pressurized membranes
are written along the meridian and normal directions [41,107,108].
If the reference membrane is flat, all involved fields depend on the
reference radius R only, and the equilibrium equations take the form

/
T/ + ”7 (T, -T,) =0,  T; +x,T, = —P, (10)

where (+)) = d/dR and the membrane curvatures k, (curvature along
a meridian line) and «, (curvature along a parallel line) in axial
symmetry may be calculated as

o = 'y _ (}‘ZR),’V] — (4L, R4,

Kl = 13 > s
1 224/ 22 = ((A,RY
VA - (RR) an
2
" n-e, A3 = ((A,RY)
Ky = — = — = —_—
> ok p A1 4R

Note that for x, we have also used the alternative expression based
on the outward normal n to the current surface, and on the radial
unit vector e, pointing outwards radially and perpendicularly to the
membrane axis z. This expression exemplifies that the curvature of
a parallel does not coincide, in general, with the curvature of the
membrane along the parallel unless of course n =e,.

Because the membrane is flat in its reference configuration, the
fields p, n must satisfy the following boundary conditions,

P(Rgy) =0, n(Rgy) = 0. 12)

Also, because point loads are not applied to the membrane, the suitable
boundary conditions to be imposed on the functions p, ; to avoid stretch
and curvature singularities at the origin are

410)= 2,0, K,(0) = ky(0). a3

Finally, to account for the presence of wrinkling, it is sufficient
to write the equilibrium equations in terms of the relaxed counter-
parts (T, T;) as obtained from the relaxed energy through T* =
J=1(0W* /oF)FT. This will automatically ensure that no compressive
states can be achieved on the inflated membrane.
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3. General insights into necks and wrinkles

Due to constitutive and geometric non-linearities, it would appear
that little can be said in general on the placement of wrinkles and necks
in an inflated membrane undergoing large deformations. Surprisingly, a
careful analysis of the equilibrium equations of an inflated membrane,
together with the implementation of tension field theory, provides
a deep and fully general characterization of what type of instability
patterns may or may not be expected in an inflated membrane.

Even more remarkably, these characterizations are universal, in the
sense that they are independent of the choice of the (isotropic and
elastic) constitutive behavior of the material. One such remarkable
universal result is that necks and wrinkles can never overlap: this insight
will be used in the sequel to produce alternating patterns of regions
with wrinkling and necking.

In this section we collect these universal characterizations, calling
them “insights”, that apply to all isotropic, axisymmetric and inflated
membranes. Their relevance to the present study is that one can use
them as general guidelines to design the spatial distribution of elastic
moduli to obtain desired patterns of wrinkles and necks in the inflated
membrane. The insights also provide interesting characterizations of
the membrane shape when wrinkles or necks occur, therefore helping
to understand what type of shapes may, or may not, be obtained in an
inflated membrane undergoing such instabilities.

As we deal with thin membranes that offer no resistance to com-
pression, we use tension field theory and base our analysis on the
equilibrium equations Eq. (10), expressed in terms of the relaxed
Cauchy principal stress components 7, T,".

+ Insight 1: The membrane curvature along the parallels is always
negative: k, < 0.
First note that the equilibrium of a cap above a parallel can
be written, in global form, by balancing pressure P > 0 and
membrane tension, to give

Tri+ 2 =0 a4

Because, by definition, Tl* > 0, equilibrium imposes TI* > 0 and
Kk, < 0 everywhere, which concludes the proof.

In passing, note that x, = n’/(pA;) so that n(R) is a decreasing
function from R = 0 to R = Ry,. But n(Rg,) = 0, which means
that 7(0) > n(R) > 0, in agreement with the fact that a membrane
inflated from below (z < 0) displaces upwards.

Insight 2: Wrinkles can never be aligned with parallels.

If such wrinkles were to occur it would result in Tl* =0, but from
Insight 1 we know this is not possible. Therefore, wrinkles can
only be aligned with meridians.

Insight 3: The following inequality is always satisfied in the mem-
brane: k| > —2|k,|.

To prove this, we use Egs. (10) and (14) to get!

P Ky
Tr=-21(1--L). 15
: K2 ( 2K2> 1>
Because T, > 0 and x, < 0, and by setting x, = —|«,|, we obtain
K > —2|Ky]. (16)

It can also be interpreted as «, /x, < 2, always.

Insight 4: When wrinkles occur, the membrane curvatures are linked
through: k| = -2|k,|.

This result follows from the previous point with T)* = 0.

1 Note sign difference with respect to Hill [109] and Machado et al. [42]
due to different notations.
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« Insight 5: Neck regions (where k; = k k, < 0) and wrinkled regions
can never overlap.

If there is wrinkling, then x; = —2|x,| < 0; therefore the Gaussian
curvature becomes positive, k; = k k, > 0, and thus, no necking
can occur in the region of wrinkling.

Insight 6: For necking to happen, the principal stresses must satisfy:
TS 22T/

By using Egs. (14) to (15), we obtain the principal curvatures in
terms of stresses

P Ty P
Ki=——x\|\1-7= ), Ky = ——r-,
T 2T 2T1

1 1
P? 7
KG =K1Ky = > (l -—=)- a7
2T1* 2T1
For necking, we need k; < 0, and the result follows.?
This insight may be also used to prove that wrinkles can never
overlap necks. Indeed, for necks 2T1* <T 2*, for wrinkles Tz* =0,

and combining both we get 2T < T)* = 0, which cannot occur
because T} must be strictly positive.

Insight 7: Neither wrinkling nor necking can take place at the apex
of the membrane.

According to Eq. (13), both principal stretches are equal at the
center of the membrane, i.e. 4; = 4, at R = 0. Therefore, we have
T} =T) and k| = Kk, at R = 0. Then, from Insights 4 and 6, we
conclude that neither wrinkling nor necking can occur at the apex
of the membrane.

Based on Insight 2, we conclude that slack regions and wrinkles
aligned with parallels can never occur in the inflated membranes. These
observations help us to simplify the relaxed energy function in Eq. (8)
is given in Box I as follows,

W (A1, 4y) if
W (441,45 (44,v))  if

W* =

18

We emphasize here that not all insights are directly helpful in
providing guidance on how to design the functionally graded mem-
brane to get desired instabilities. From Insights 1, 2, 3, 4, 5, and 7 we
deduce important information on the shape of an inflated membrane,
with remarkable bounds on the membrane curvatures in regions with
and without instabilities. These insights dictate what shapes may be
expected (or not expected) in an inflated membrane, regardless of its
constitutive response.

From Insight 6, together with the consideration that T* = 0 leads
to the appearance of wrinkles, we conclude that it is possible to create
necks and wrinkles by tuning the ratio between T, and T/. This
method is used in the following sections to create instability patterns
at desired locations.

4. Designing instabilities

In principle, it is logical to assume that the spatial distributions of
the elastic moduli E(R), v(R) may be tuned to achieve wrinkles and
necks at given locations. However, in practice, the inverse problem
is difficult to solve due to geometric and constitutive nonlinearities.
Here, through a semi-analytical formulation, we show that in auxetic
membranes with elastic inhomogeneities, wrinkles occur in soft regions

2 Using this condition, we can design a membrane material with alternating
regions of low and high Young’s modulus to create alternating regions of
necking and wrinkling under a uniform pressure load.
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Fig. 3. Variation of 4, — A} with respect to 4,. To simulate the behavior of this curve,
any physically admissible arbitrary value of 4, can be chosen; here we take 4, = 7.
For wrinkling to occur, we need 4, — 43 <0, which is equivalent to the natural width
condition, see Eq. (9).

(where E is low) and do not occur in stiff regions (where E is high),
when there are no external boundary effects.

We recall that T} > 0 always, which results in the relaxed principal
stress along the meridian T}* being strictly positive and continuous
across the boundary between stiff and soft regions. As we do not
consider rupture, A, and the deformed radial component p are also
continuous. Hence, across a boundary of radius R between elastically
inhomogeneous regions, the following jump conditions apply for a
physically valid solution,

[4,1 =0, 19)

where [f] := lim._o(f(R + €) — f(R — ¢)). We see that across such
a boundary, we may have a sharp jump in the tension [7;] along
the parallels, while the value of T along the meridians remains
continuous across the boundary. As a result of the continuity conditions
in Eq. (19), we need T, < 0 (and therefore Tz* = 0) to produce wrinkles.
From Eq. (7), we observe that T, < 0 implies /@ — A <0, as all the other
terms (A, 1+v,1 —a+a/1§A) are strictly positive. Therefore, for wrinkles
to occur, it must result 4, — /1; < 0, where we made use of Eq. (4).

Let us now consider a phase boundary I' between a wrinkled region
and a non-wrinkled region. From Eq. (19) we know that 1, must be
continuous over I' and due to auxetic behavior —v/i-v > 0, therefore,
Fig. 3 demonstrates that 1, — A7 is a decreasing function of 4,: Implying
that when we move from a non-wrinkled region (where 4, — A; > 0)
to a wrinkled region (where 4, — ﬂ;‘ < 0), the meridian stretch 1, must
increase.

But since we know from Eq. (19) that 7| must be continuous across
the phase boundary, this implies that the Young modulus E should
decrease as one moves from a non-wrinkled region to a wrinkled
region. Although this reasoning is certainly altered in the presence
of boundary effects, we deduce from continuity considerations that
wrinkling can be achieved by playing on the elastic stiffness contrast
between neighboring regions. Specifically, to obtain wrinkles on the
membrane, we can create patches of softer (low E) and stiffer (high E)
regions, and wrinkles will occur in the softer regions, where the sudden
increase of 4, will make 4, — 4] negative.

This observation is corroborated by a numerical example, described
in Fig. 4. We consider the inflation of a prestretched (4, = 2) circular
membrane, fixed along its edge. The membrane is designed to have
annular regions with high contrast of the Young modulus. Then, we
find that upon inflation, wrinkles form only in soft regions (regions
with low Young’s modulus), confirming our predictions that wrinkles
are generated when moving from a stiff towards a soft region.

1771 =0,
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Similarly, by tuning the ratio Eg;¢/E,o between the Young modu-
lus of two neighboring regions (now called “stiff” and “soft”), we can
act on the ratio 7,°/T}* which, as the insights above reveal, regulates
the onset of wrinkles (when Tz* /Tl* is decreased toward 0) or the onset
of necks (when Tz* /T 1* is increased above 2).

The Poisson ratio v is also a key player. Hence, when this coefficient
is negative, the membrane expands laterally and creates compressive
stresses (Tz* =0).

The complexity of the problem requires a trial and error approach
to determine appropriate elastic inhomogeneity patterns to achieve the
sought instabilities. By using the commercial software COMSOL, we
implement the Blatz-Ko relaxed strain energy function, Eq. (8), for
functionally-graded, inflated membranes.

In the simulations, we inflate pre-stretched membranes by keeping
the external rim fixed. Then we solve Eq. (10) to obtain the Pressure—
Volume (P-V) curves (see the next section) and the deformation profiles
of the membranes. The P-V plot is a global curve, and it cannot
easily provide local information on some specific types of instabilities
such as wrinkles. The softening or snap-through induced by necks
is easily revealed in the P-V curve, because necks result in double-
bubbling. This has been reported in experiments to be connected to a
sudden jump in the volume. On the other hand, wrinkling, as we prove
in general, can never induce double-bubbling. Therefore, there is no
sudden variation in volume and qualitatively, we may expect that the
effects of necks are more apparent in the P-V curve than the effects of
wrinkles.

The numerical implementation is explained in Appendix A. Our
simulations are consistent with the universal insights developed above:
notably, we see that necking cannot occur in wrinkling regions and that
only wrinkles aligned with meridians can occur. By playing on the ratio
Egitr/ Esofe and on the location of elastically inhomogeneous regions, we
show that a desired number of wrinkling and necking regions can be
obtained at prescribed locations.

For the sake of brevity, the effects of pre-stretch and of the Blatz—Ko
material parameters are not discussed in detail. Here, we focus on the
most relevant design parameters: v and Eg;¢/ oo

4.1. Necks and no wrinkles

To ensure that the inflated membrane develops necks without wrin-
kles, we have to create regions where the ratio 7, /T* exceeds 2, while
maintaining T > 0 everywhere in the membrane. To achieve this goal,
in Section 4.1, we use a one-step variation of the Young modulus. The
reference membrane has a central region with low Young’s modulus
(E,of) surrounded by a region of high Young’s modulus (Eg;g) which
extends up to the boundary, as shown in Fig. 5. Moreover, to avoid
that T)° approaches zero, we set 0 < v < -0.6 which ensures a
low-to-moderate auxeticity.

Our simulations show that if Eg;e/Egor is small (<1.5), the mem-
brane displays a smooth necking during inflation. If Eg;sq/Esf iS
moderate (1.5 < Eg;s/ Egore < 3), the necking region is more prominent.

On the left panel of Fig. 6, we plot the P-V profiles of pre-stretched
circular membranes with different sizes of the E . region. From Case
A to Case D, the radius or size of Ey region increases (see Eq. (B.1b)).
We observe that, as the size of the soft region increases, the value of
the limit-point pressure Py, decreases. This clearly occurs because the
bigger the soft region, the smaller the effective Young modulus.

The deformation profile at the end of the inflation process is shown
for each case on the right panel of Fig. 6. Notice that, by adjusting the
size of the low Young modulus region, we can shift the boundary of
the necking region. Therefore necks may be obtained at any desired
location. Note that the simulations confirm that necking cannot occur
at the tip of the membrane, in agreement with Insight 7.
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Fig. 4. Inflation of a prestretched (4, = 2) circular membrane fixed along its circumference. (a) Prescribed variation of the first principal stretch obtained using membrane strain
energy function (Eq. (5)) with respect to the referential radial coordinate R. (b) Two-step variations of the Young modulus distribution and of three times the relaxed Cauchy
stress along the parallels with R. (c) Corresponding deformed profile of the pressurized circular membrane with regions of wrinkles highlighted in black (73 = 0). We observe that

wrinkles occur either in soft regions or in the region of the fixed boundary.

[ Soft
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Fig. 5. Schematic representation of the one-step variation of the Young modulus
distribution E in the reference configuration. The circular membrane has a softer region
in the center surrounded by a stiffer region that extends to the disc circumference, see
Eq. (B.1a).

Special case: Double bubbling

Membranes with a high stiffness ratio (Eg;s/Eqf > 3) undergo
a transition into a double-bubbled shape, due to a sudden inflation of
the softer region after the limit-point pressure, as shown in Fig. 7. In
this figure, we plot the P-V curves for two different cases of one-step
variation of the Young modulus.

It is important to note that the behavior of the P-V curve is strongly
dependent on the size of the softer core. In Fig. 7(a), the volume
decreases immediately after the limit point, whereas in Fig. 7(b) the
volume keeps increasing while the pressure decreases after the limit
point. Note that case (a) is also studied by Selvadurai [49] for pressur-
ized incompressible elliptical membranes with the Ogden strain energy
model.

We also show the deformed shapes at four different stages of infla-
tion. Note that the formation of the second bubble corresponds to the
necking point on the P-V curve.

Highly auxetic membranes (with v < —0.8) develop wrinkles in
the region between the two bubbles. Indeed, high auxeticity results in
high compressive stresses. Note that in line with Insight 5, wrinkles
(black color regions) are never observed in the necking region, but only
slightly above the neck.

4.2. Necks and wrinkles

In this section, we extend the findings from Section 4.1 to the
general case where the Young modulus has an n-step variation across
the membrane, while v = —0.9 is uniform throughout the membrane.
Again, we use alternating stiff and soft regions to create multiple
necks. Depending on the size of these regions we may or may not

achieve lateral compression, and therefore wrinkling, in the membrane.
Interestingly, the complexity of the problem leads to wrinkling regions
appearing and disappearing during the inflation process.

The simulations show that membranes with n-step variations of
the Young modulus develop n — 1 wrinkled regions during the pre-
stretching process, consistent with the findings of Venkata et al. [104].
We recall that during pre-stretching, the membrane remains flat. These
simulations are reported in Fig. 8, showing the onset of wrinkling
patterns in laterally pre-stretched membranes with two- and three-step
variations of the elastic moduli.

Following the pre-stretch, we simulate the inflation. The deforma-
tion profiles for the inflation process are shown in Fig. 9(b). Wrinkling
and necking regions are represented by black (right half of the figure)
and blue (left half) colors, respectively. Our simulations show that
stiff regions inflate relatively less than soft regions. Moreover, this
difference leads to the formation of a neck at the boundary between
the two regions. Interestingly, the wrinkles generated during the pre-
stretch phase tend to be preserved during the inflation process. Also,
the wrinkles never overlap with the necking regions, which is consistent
with the findings of Insight 5.

Furthermore, depending on the stiffness ratio between soft and
stiff regions, the spacing between the necks and the wrinkles can be
modulated. In particular, the higher the ratio Eg;¢/ Eqo, the closer the
two patterns are, and vice-versa.

The spatial heterogeneity of the elastic moduli affects also the P-
V curve, as shown in Fig. 9(a). Interestingly, for membranes with a
two-step variation of the Young modulus, the pressure increases until
the limit-point instability and later drops, whereas it remains nearly
constant in the three-step variation case. In all simulations, no further
increase of pressure past the limit point is observed, irrespective of the
material constant 0 < a < 1.

Finally, we highlight two important features. First, configurations
containing multiple regions of necks and wrinkles can be obtained by
increasing the number of stiff-soft regions in the original membrane.
Second, the pre-stretch 4, may be used as a parameter to unwrinkle,
during inflation, the regions of the membrane that are close to the
boundary.

4.3. Wrinkles and no necks

Our results from the previous sections suggest that a high contrast
between stiff and soft regions (i.e. high Eg;s/E,os) leads to necking.
Therefore, to avoid necks, we now consider a homogeneous (or nearly
homogeneous) distribution of the Young modulus across the membrane.
Although different types of distributions (constant, linear, step, and
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Fig. 6. (a) Inflation process: Pressure-Volume curves of a pre-stretched circular membrane with four different cases of one-step variation of the Young modulus. From Case A to
Case D, the radius or size of Ey region is assumed to be increasing (see Eq. (B.1b)), (b) Deformation profiles of the membrane at the end of inflation process are shown here
for each case. The inflation process of each membrane is continued until the apex of the membrane reaches a height of five times the value of radius R;,. For each profile, the
region in blue highlights the necking area (x; < 0). Blatz-Ko parameter « = 0.4, pre-stretch A, = 2, Poisson’s ratio v = —0.4, and referential radius R;, = 1 cm.
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Fig. 7. Pressure-Volume curves of pre-stretched circular membranes for two different cases of one-step variation of the Young modulus (see, Eq. (B.1c)) are shown: (a) One-step
variation-I, (b) One-step variation-II. The deformation profiles of the membrane are shown at four different points along the inflation path. The black region in the deformation
profiles (at the end of the inflation process) denotes wrinkling regions. Parameters: R;, = 1 cm, 4, =2, « =04 and v =-09.
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Fig. 8. First column: two-step (Egs. (B.2a) to (B.2b)) and three-step (Egs. (B.3a) to
(B.3b)) variations in the Young modulus E. Right column: the corresponding wrinkling
profiles appearing during the pre-stretch process. Here, the pre-stretch is 1, = 2, with
material parameters: a = 0.4 and v =-0.9.

Gaussian) of the Poisson ratio are explored for this case, they all yield
similar deformation behaviors.

For the sake of brevity, we consider the case where the material
properties E, v are spatially uniform throughout the membrane. We also
compare our results with existing solutions in the literature.

In Fig. 10, we see that for an auxetic membrane with homogeneous
Young’s modulus, the pressure increases with the volume up to the
limit point, where the membrane loses stability and wrinkles appear

near the base of the membrane. Beyond the limit point, the pressure
decreases with increasing volume. The results in Fig. 10 also show
that the membrane attains a spherical shape, and indeed no necks are
developed. These findings are consistent with previous experiments on
pressurized incompressible circular membranes [38,42,110] and with
several analytical and numerical studies [49,111,112].

For auxetic membranes, we predict the formation of wrinkles
aligned with meridians. We note that Chaudhuri and DasGupta [92]
predict wrinkles aligned with parallels in inflated incompressible mem-
branes with homogeneous material properties. However, according to
our Insight 2, such wrinkles are not possible in any axisymmetrically
inflated isotropic circular membranes.

Additionally, we find that for a Blatz—Ko material with homo-
geneous material properties, tensile stresses exist everywhere in the
membrane, except near the fixed circumferential edge. Hence, wrinkles
are obtained only near the fixed boundary.

Finally, we mention that wrinkles, if present, may also be sup-
pressed by tuning the Poisson ratio of the membrane and the pre-stretch
applied to the membrane before inflating. We also observed separately
that the limit-point pressure P,;, increases linearly with the Blatz—Ko
material constant « and nonlinearly with the pre-stretch, respectively.

5. Conclusions

We demonstrated the possibility of harnessing various forms of
instabilities such as wrinkling and necking using spatial material in-
homogeneities in inflated hyperelastic auxetic membranes. In the finite
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Fig. 9. (a) Inflation process: Pressure-Volume curves of a pre-stretched circular membrane with two-step (solid curve) and three-step (dash-dotted curve) variations of the Young
modulus, (b) Deformation profiles of the membrane at three different locations are shown for each variation case. For each profile, the left half highlights the necking area in
blue (kg < 0) and the right half highlights the wrinkling area in black (7, = 0). Parameters: 1, =2, a = 0.4 and v = —-0.9.
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Fig. 10. (a) Pressure-Volume curve of pre-stretched circular membranes with constant material properties. The deformation profiles of the membrane are shown at four different
points along the inflation path. The black region in the deformation profiles denotes wrinkling region, (b) Relaxed Cauchy stress along the meridians and parallels is denoted by
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element software (COMSOL), we implemented a relaxed strain energy
function based on tension field theory to study the stability of an
inflated compressible, hyperelastic membrane of the Blatz—Ko type for
arbitrary geometry. Using an analytical formulation, we also derived
a set of universal results for pressurized axisymmetric membranes.
Finally, with inferences from universal results and through numerical
simulations, we identified spatial inhomogeneity distributions across
the undeformed membrane that result in wrinkles alone, necks alone,
and simultaneous (but not overlapping) wrinkles and necks in the
inflated membrane.

Our study is limited by various factors. For example, typical auxetic
membranes are anisotropic in nature and their material properties
are deformation-dependent: these features might greatly affect the
results presented in this work. This aspect is not addressed in the
current work but could be studied with the methods we have developed
here. Another avenue of interest is to investigate the inflation of
non-axisymmetric membranes. For example, in Fig. 11, we show 2D
distributions of material properties in square membranes. The mem-
brane is fixed on its edges and inflated under a uniform pressure load.
We show that material properties can be tuned in the membranes to
produce desired wrinkling patterns, as shown in Fig. 11. This concept
could potentially be used in Braille reading and haptics.
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Appendix A. Numerical model in COMSOL

We adjust the pre-stretch 4, by changing the radius of the unde-
formed membrane R;,, while holding the radius of the pre-stretched
membrane Ry, fixed. Following [112,113], we represent the radial
position of point P, in the stretched membrane as

_ Rﬁn

po = A, R, A = .
P P Rin

(A1)
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Fig. 11. (a) Square membranes with two different Young’s modulus profiles (top) and wrinkling patterns (bottom); (b) Associated Pressure-Volume curves. FG-SQ-1: The circular
region in the center and the rest of the membrane have E = 0.3 MPa and E = 0.03 MPa, respectively. FG-SQ-2: The triangular and rectangular strips have E = 0.63 MPa and
E = 4.03 MPa, respectively, while the rest of the membrane has E = 0.03 MPa. The Poisson ratio is v = —0.1, pre-stretch 4, = 1, and the Blatz-Ko coefficient is @ = 0.4. Wrinkling
patterns at two points Q; and Q, on the inflation curves corresponding to FG-SQ-1 and FG-SQ-2, respectively, are shown at the bottom of (a).

We assume that the pre-stretched circular membrane is fixed on its
boundaries, i.e. u(Rg,) = 0, where u is the displacement field in the
deformed membrane and Rg, is the radius of the pre-stretched circular
membrane.

The initial thickness of the circular membrane is considered to be
negligible in comparison to its radius (we take H = R;;,/200). We take
the Young modulus to vary spatially as a function of the referential
radial coordinate R.

From an experimental viewpoint, the volume-controlled inflation
process is performed by increasing the mass of the gas in the mem-
brane [114]. However, in our simulations, we do not model the be-
havior of the gas. Instead, we implement the inflation by using a
volume-controlled (or displacement-controlled) procedure as proposed
by Yang and Feng [111], Pujara and Lardner [115], and Patil and
DasGupta [112]. We prescribe a vertical displacement at the center
of the membrane and calculate the corresponding pressure through a
global optimization process using an inbuilt function in COMSOL.

The volume enclosed by the surface of the deformed membrane is
computed as:

V=1/<Q-n)da,
3Jo

where Q represents the surface domain of the deformed membrane. The
position vector of any point on the deformed surface of the membrane
is represented by Q with n being the outward unit normal at that
membrane point.

Here we briefly summarize the main features of that relaxed strain
energy implementation in COMSOL software for axisymmetric circular
membrane (see Venkata et al. [104]):

(A.2)

1. By taking advantage of axisymmetry around the Z-axis, we con-
sider a line segment (which lies on mid-plane of the membrane)
in (R, Z) plane with membrane elements for our analysis in a
cylindrical coordinate system.

2. The relaxed energy functional (Eq. (8)) depends only on the
principal stretches and material properties. In COMSOL, by us-
ing variable definitions under the component section in the
model builder, we define mathematical expressions for the ma-
terial properties. Principal stretches and invariants of the right
Cauchy-Green tensor are then obtained by using internal vari-
ables in the software. Once the expressions for natural widths
are defined, the relaxed strain energy functional is written in the
definition window under the component section, which will be
assigned as a user-defined hyperelastic model to the simulation
geometry.

10

3. Once the boundary conditions and loading are assigned to the
geometry with a desired mesh, different numerical solvers can
be employed for the analysis.

4. In the post-processing stage, we obtain the location and orien-
tation of wrinkles using logical operators based on the natural
width conditions mentioned in Eq. (8).

Appendix B. Circular membranes

B.1. One-step variation in material properties

The variation in the Young modulus for the membrane is according

to the following function:
exp{A%} -1
-E| ——— ). (B.1a)
exp{AB2y 4

D
Y, =1.1cm, D =0.003 cm,
Y, =0.105 cm, (for Case B),
Y, = 0.45 cm, (for Case D),

(B.1b)

exp{a} — 1

ER =E +E| —2 —
exp{A(R;DY')} +1

B.1.1. Only necks

E, =10kPa, E,=5kPa, A=2,
Y, =0.07875 cm, (for Case A),
Y, =0.16125 cm, (for Case C),

B.1.2. Double bubbling

E, =10kPa, E,=30kPa, A=2, Y,=1.1cm, D=0.003cm,
Y, =0.115 cm, (for one-step variation-I),

Y, =0.145 cm, (for one-step variation-II).

(B.1c)

B.2. Multi-step variations in material properties: Interplay of necking and
wrinkling behaviors

The two-step variation in the Young modulus for the membrane is
expressed as
exp{ASS ) —
—E <R—1Y )
exp{A——21) +1
D,

N, exp{A(R;—yﬁ)} -1
-E, RS —

exp{A—(Rfyﬁ) }+1
D,

(R-Y3)
exp{AD—] }—1

E(R) =E, +E2<—_
exp{A(’:)—]Y})}+1

R-Y.
exp{A(D—IS)} -1
+ B ———————

exp{A—(R;Y5) J+1
1

(B.2a)
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where
E, =10kPa, E,=30kPa, A=2, D, =0.0085 cm, N, =12,
Y; =0.05 cm, Y, =0.1375 cm, Y5 =0.225 cm, Y = 1.075 cm.
(B.2b)

Similarly, the three-step variation in the Young modulus for the mem-
brane is expressed as

exp{A—(R;:7) } =1
E(R)= Ey + Ey| — o | - E
exp{AD—27}+1

eXp{A—(R;ZYS) }-1
exp{A%} +1

(R-Yy) (R=Y}9)
exp{AD—z}—l exp{AD—z}—l

+ E, @ @ (B.3a)
exp{A%}—l N, exp{A%}_l
o m " eXP{A%}H |
where

E, =10kPa, E,=30kPa, A=2, D,=0006cm, N;,=12,

Y; = 0.085 cm,

Yz = 0.1625 cm, Yy =0.325 cm, Y, =0.5125 cm, Y;; = 0.7375 cm,
Y|, = 1.0375 cm.

(B.3b)
Appendix C. Square membranes

C.1. Distribution of the Young modulus in the auxetic square membranes

The mathematical expression for the spatially varying Young’s mod-
ulus of a quarter of the square membrane (FG-SQ-1) reads

E(X,Y)=]-'<%—X,5)]—' \/)(é)z—xﬂ—y,a E,

L L
+]-'<E—X,5)]-'<E—Y,5>E2,
M M3 M\
where .F(M,N)—O.5+O.9375<W)—0.625<W) +0.1875<W> ,
and E; =027 MPa, E, =003 MPa, §=10"2, L=1m,
L
0<X,Y <—.
= 2
(C.1a)

Here, the left bottom vertex of the quarter square membrane is located
at (X =0,Y = 0). The side length of the quarter square membrane in
the undeformed configuration is L/2. The smoothed Heaviside function
with a continuous second derivative is represented by F, it is an
inbuilt function in the COMSOL software. The function, |(s)|, returns
the absolute value of any variable, ().

Similarly, for the full square membrane (FG-SQ-2) with side length
L in the undeformed configuration, the Young modulus can be mathe-
matically expressed as

3
XF (Y +¢,6)E,

2L
E(X.Y) =F<X+ —1,5> Fe-X.6)F (3X+ L, -Y,5)

2L,
+F<T —X,é)]—'(X -68)F(-3X+ L, -Y,5)
X F (Y +¢,8) E,

L L
+JT<5—X,5)I(E —Y,§>E2

LosYr(-L_xs)F 2Ly _y s
3 6 3

XF (Y + Ly, 8) Ey

+F<X+
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L L, 2L,
+f<3 X,5>}'<X 6,6)]-'( Sy

X F (Y + L,,5) Es,

E, =0.6 MPa, E, =003 MPa, E; =4 MPa,L=1m, L, = 27L
=5
2= 5
L, L L
Ly=2,6=e=10%, - Z <X, Y<=.
3 € )
(C.1b)
References

[1]1 Popereka MY, Balagurov V. Ferromagnetic films having a negative Poisson ratio.
Sov Phys Solid state 1970;11(12):2938-43.

Milstein F, Huang K. Existence of a negative Poisson ratio in FCC crystals. Phys
Rev B 1979;19(4):2030. http://dx.doi.org/10.1103/PhysRevB.19.2030.

Lakes R. Foam structures with a negative Poisson’s ratio. Science
1987;235(4792):1038-40. http://dx.doi.org/10.1126/science.235.4792.1038.
Evans K, Caddock B. Microporous materials with negative Poisson’s ratios.
II. Mechanisms and interpretation. J Phys D: Appl Phys 1989;22(12):1883.
http://dx.doi.org/10.1088/0022-3727/22/12/013.

Milton GW. Composite materials with Poisson’s ratios close to -1. J Mech Phys
Solids 1992;40(5):1105-37. http://dx.doi.org/10.1016/0022-5096(92)90063-8.
Love AEH. A treatise on the mathematical theory of elasticity. New York: Dover
Publications I; 1944.

Timoshenko S. History of strength of materials: with a brief account of the
history of theory of elasticity and theory of structures. New York: Dover
Publications; 1983.

Wojciechowski K, Brailka A. Negative Poisson ratio in a two-dimensional
“isotropic” solid. Phys Rev A 1989;40(12):7222. http://dx.doi.org/10.1103/
physreva.40.7222.

Ting TCT, Chen T. Poisson’s ratio for anisotropic elastic materials can have
no bounds. Quart J Mech Appl Math 2005;58(1):73-82. http://dx.doi.org/10.
1093/qjmamj/hbh021.

Frolich L, LaBarbera M, Stevens W. Poisson’s ratio of a crossed fibre sheath:
the skin of aquatic salamanders. J Zool 1994;232(2):231-52. http://dx.doi.org/
10.1111/j.1469-7998.1994.tb01571.x.

Bowick M, Cacciuto A, Thorleifsson G, Travesset A. Universal negative
Poisson ratio of self-avoiding fixed-connectivity membranes. Phys Rev Lett
2001;87(14):148103. http://dx.doi.org/10.1103/PhysRevLett.87.148103.

Lakes R. A broader view of membranes. Nature 2001;414(6863):503-4. http:
//dx.doi.org/10.1038/35107190.

King WE, Anderson AT, Ferencz RM, Hodge NE, Kamath C, Khairal-
lah SA, Rubenchik AM. Laser powder bed fusion additive manufacturing
of metals; physics, computational, and materials challenges. Appl Phys Rev
2015;2(4):041304. http://dx.doi.org/10.1063/1.4937809.

Sun S, Brandt M, Easton M. Powder bed fusion processes: An overview.
Laser Addit Manuf 2017;55-77. http://dx.doi.org/10.1016/B978-0-08-100433-
3.00002-6.

Mueller S, Kruck B, Baudisch P. LaserOrigami: Laser-cutting 3D objects. In:
Proceedings of the SIGCHI conference on human factors in computing systems.
CHI ’13, New York, NY, USA: Association for Computing Machinery; 2013, p.
2585-92. http://dx.doi.org/10.1145/2470654.2481358.

Bhullar SK, Rana D, Lekesiz H, Bedeloglu AC, Ko J, Cho Y, Aytac Z, Uyar T,
Jun M, Ramalingam M. Design and fabrication of auxetic PCL nanofiber
membranes for biomedical applications. Mater Sci Eng: C 2017;81:334-40.
http://dx.doi.org/10.1016/j.msec.2017.08.022.

Lakes R. Advances in negative Poisson’s ratio materials.
1993;5(4):293-6. http://dx.doi.org/10.1002/adma.19930050416.
Bertoldi K, Vitelli V, Christensen J, Van Hecke M. Flexible mechanical metama-
terials. Nat Rev Mater 2017;2(11):1-11. http://dx.doi.org/10.1038/natrevmats.
2017.66.

Ahmadi Bonakdar M, Chen XY, Sarbanha AA, Rodrigue D. Polybutylene
succinate auxetic membrane produced by solution electrospinning. Adv Energy
Mater 2023;25(21):2300699. http://dx.doi.org/10.1002/adem.202300699.
Kolken HM, Janbaz S, Leeflang SM, Lietaert K, Weinans HH, Zadpoor AA.
Rationally designed meta-implants: A combination of auxetic and conventional
meta-biomaterials. Mater Horiz 2018;5(1):28-35. http://dx.doi.org/10.1039/
C7MHO00699C.

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17] Adv Mater

[18]

[19]

[20]


http://refhub.elsevier.com/S0020-7403(24)00074-2/sb1
http://refhub.elsevier.com/S0020-7403(24)00074-2/sb1
http://refhub.elsevier.com/S0020-7403(24)00074-2/sb1
http://dx.doi.org/10.1103/PhysRevB.19.2030
http://dx.doi.org/10.1126/science.235.4792.1038
http://dx.doi.org/10.1088/0022-3727/22/12/013
http://dx.doi.org/10.1016/0022-5096(92)90063-8
http://refhub.elsevier.com/S0020-7403(24)00074-2/sb6
http://refhub.elsevier.com/S0020-7403(24)00074-2/sb6
http://refhub.elsevier.com/S0020-7403(24)00074-2/sb6
http://refhub.elsevier.com/S0020-7403(24)00074-2/sb7
http://refhub.elsevier.com/S0020-7403(24)00074-2/sb7
http://refhub.elsevier.com/S0020-7403(24)00074-2/sb7
http://refhub.elsevier.com/S0020-7403(24)00074-2/sb7
http://refhub.elsevier.com/S0020-7403(24)00074-2/sb7
http://dx.doi.org/10.1103/physreva.40.7222
http://dx.doi.org/10.1103/physreva.40.7222
http://dx.doi.org/10.1103/physreva.40.7222
http://dx.doi.org/10.1093/qjmamj/hbh021
http://dx.doi.org/10.1093/qjmamj/hbh021
http://dx.doi.org/10.1093/qjmamj/hbh021
http://dx.doi.org/10.1111/j.1469-7998.1994.tb01571.x
http://dx.doi.org/10.1111/j.1469-7998.1994.tb01571.x
http://dx.doi.org/10.1111/j.1469-7998.1994.tb01571.x
http://dx.doi.org/10.1103/PhysRevLett.87.148103
http://dx.doi.org/10.1038/35107190
http://dx.doi.org/10.1038/35107190
http://dx.doi.org/10.1038/35107190
http://dx.doi.org/10.1063/1.4937809
http://dx.doi.org/10.1016/B978-0-08-100433-3.00002-6
http://dx.doi.org/10.1016/B978-0-08-100433-3.00002-6
http://dx.doi.org/10.1016/B978-0-08-100433-3.00002-6
http://dx.doi.org/10.1145/2470654.2481358
http://dx.doi.org/10.1016/j.msec.2017.08.022
http://dx.doi.org/10.1002/adma.19930050416
http://dx.doi.org/10.1038/natrevmats.2017.66
http://dx.doi.org/10.1038/natrevmats.2017.66
http://dx.doi.org/10.1038/natrevmats.2017.66
http://dx.doi.org/10.1002/adem.202300699
http://dx.doi.org/10.1039/C7MH00699C
http://dx.doi.org/10.1039/C7MH00699C
http://dx.doi.org/10.1039/C7MH00699C

S. Pamulaparthi Venkata et al.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Jiang H, Ziegler H, Zhang Z, Zhang H, Le Barbenchon L, Atre S, Chen Y. 3D
printed tubular lattice metamaterials for mechanically robust stents. Composites
B 2022;236:109809. http://dx.doi.org/10.1016/j.compositesb.2022.109809.
Bonfanti A, Bhaskar A. Elastic stabilization of wrinkles in thin films by auxetic
microstructure. Extreme Mech Lett 2019;33:100556. http://dx.doi.org/10.1016/
j.eml.2019.100556.

Chansoria P, Blackwell J, Etter EL, Bonacquisti EE, Jasiewicz N, Neal T, Ka-
mal SA, Hoque J, Varghese S, Egan T, Nguyen J. Rationally designed anisotropic
and auxetic hydrogel patches for adaptation to dynamic organs. Adv Funct
Mater 2022;32(43):2207590. http://dx.doi.org/10.1002/adfm.202207590.
Armstrong S, McHale G, Alderson A, Mandhani S, Meyari M, Wells GG, Carter E,
Ledesma-Aguilar R, Semprebon C. Wetting transitions on superhydrophobic
auxetic metamaterials. Appl Phys Lett 2023;123(15):151601. http://dx.doi.org/
10.1063/5.0173464.

Lazarus A, Reis PM. Soft actuation of structured cylinders through auxetic
behavior. Adv Energy Mater 2015;17(6):815-20. http://dx.doi.org/10.1002/
adem.201400433.

Kaur M, Kim WS. Toward a smart compliant robotic gripper equipped with
3D-designed cellular fingers. Adv Intell Syst 2019;1(3):1900019. http://dx.doi.
org/10.1002/aisy.201900019.

Dolla WJS, Fricke BA, Becker BR. Structural and drug diffusion models of
conventional and auxetic drug-eluting stents. J Med Devices 2006;1(1):47-55.
http://dx.doi.org/10.1115/1.2355691.

Gupta S, Gupta V, Chanda A. Biomechanical modeling of novel high expansion
auxetic skin grafts. Int J Numer Methods Biomed Eng 2022;38(5):e3586. http:
//dx.doi.org/10.1002/cnm.3586.

Beatty MF. Topics in finite elasticity: Hyperelasticity of rubber, elastomers,
and biological tissues—With examples. Appl Mech Rev 1987;40(12):1699-734.
http://dx.doi.org/10.1115/1.3149545.

Evans SL. On the implementation of a wrinkling, hyperelastic membrane
model for skin and other materials. Comput Methods Biomech Biomed Eng
2009;12(3):319-32. http://dx.doi.org/10.1080/10255840802546762.

Fu B, Sperber E, Eke F. Solar sail technology—A state of the art review. Prog
Aerosp Sci 2016;86:1-19. http://dx.doi.org/10.1016/j.paerosci.2016.07.001.
Roddeman D, Drukker J, Oomens C, Janssen J. The wrinkling of thin
membranes: Part [—Theory. 1987, http://dx.doi.org/10.1115/1.3173133.
Cerda E, Ravi-Chandar K, Mahadevan L. Wrinkling of an elastic sheet under
tension. Nature 2002;419(6907):579-80. http://dx.doi.org/10.1038/419579b.
Amin F, Ali MN, Ansari U, Mir M, Minhas MA, Shahid W. Auxetic coronary
stent endoprosthesis: Fabrication and structural analysis. J Appl Biomater Funct
Mater 2015;13(2):127-35. http://dx.doi.org/10.5301/jabfm.5000213.

Sun J, Gao H, Scarpa F, Lira C, Liu Y, Leng J. Active inflatable auxetic
honeycomb structural concept for morphing wingtips. Smart Mater Struct
2014;23(12):125023. http://dx.doi.org/10.1088/0964-1726/23/12/125023.
Bhullar SK, Lala NL, Ramkrishna S. Smart biomaterials-a review. Rev Adv Mater
Sci 2015;40(3):303-14.

Flint C, Naunton W. Physical testing of latex films. Rubber Chem Technol
1937;10(3):584-614. http://dx.doi.org/10.5254/1.3539012.

Treloar L. Strains in an inflated rubber sheet, and the mechanism of burst-
ing. Rubber Chem Technol 1944;17(4):957-67. http://dx.doi.org/10.5254/1.
3546716.

Rivlin RS, Saunders D. Large elastic deformations of isotropic materials VIIL.
Experiments on the deformation of rubber. Philos Trans R Soc Lond Ser A
1951;243(865):251-88. http://dx.doi.org/10.1098/rsta.1951.0004.

Adkins JE, Rivlin RS. Large elastic deformations of isotropic materials
IX. The deformation of thin shells. Philos Trans R Soc Lond Ser A
1952;244(888):505-31. http://dx.doi.org/10.1098/rsta.1952.0013.

Green AE, Adkins JE. Large elastic deformations and non-linear continuum
mechanics. Oxford: Clarendon Press; 1960.

Machado G, Favier D, Chagnon G. Membrane curvatures and stress-strain full
fields of axisymmetric bulge tests from 3D-DIC measurements. Theory and
validation on virtual and experimental results. Exp Mech 2012;52:865-80.
http://dx.doi.org/10.1007/s11340-011-9571-3.

Oden J, Sato T. Finite strains and displacements of elastic membranes by the
finite element method. Int J Solids Struct 1967;3(4):471-88. http://dx.doi.org/
10.1016/0020-7683(67)90002-9.

Wriggers P, Taylor R. A fully non-linear axisymmetrical membrane element
for rubber-like materials. Eng Comput 1990;7(4):303-10. http://dx.doi.org/10.
1108/eb023817.

Gruttmann F, Taylor R. Theory and finite element formulation of rubberlike
membrane shells using principal stretches. Internat J Numer Methods Engrg
1992;35(5):1111-26. http://dx.doi.org/10.1002/NME.1620350511.

Jiang L, Haddow J. A finite element formulation for finite static axisymmetric
deformation of hyperelastic membranes. Comput Struct 1995;57(3):401-5. http:
//dx.doi.org/10.1016,/0045-7949(94)00629-H.

Rumpel T, Schweizerhof K, HaBler M. Efficient finite element modelling
and simulation of gas and fluid supported membrane and shell structures.
Text Compos Inflatable Struct 2005;153-72. http://dx.doi.org/10.1007/1-4020-
3317-6_10.

12

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

International Journal of Mechanical Sciences 268 (2024) 109031

Eriksson A, Nordmark A. Instability of hyper-elastic balloon-shaped space
membranes under pressure loads. Comput Methods Appl Mech Engrg
2012;237:118-29. http://dx.doi.org/10.1016/j.cma.2012.05.012.

Selvadurai A. Mechanics of pressurized planar hyperelastic membranes. Phil
Trans R Soc A 2022;380(2234):20210319. http://dx.doi.org/10.1098/rsta.2021.
0319.

Yang WH, Lu CH. General deformations of Neo-Hookean membranes. J Appl
Mech 1973;40(1):7-12. http://dx.doi.org/10.1115/1.3422977.

Adler A, Mikulas M. Application of a wrinkled membrane finite element
approach to advanced membrane structures. In: AIAA space 2001 conference
and exposition. 2001, p. 4646. http://dx.doi.org/10.2514/6.2001-4646.

Lee E-S, Youn S-K. Finite element analysis of wrinkling membrane structures
with large deformations. Finite Elem Anal Des 2006;42(8-9):780-91. http:
//dx.doi.org/10.1016/j.finel.2006.01.004.

Barsotti R, Ligaro SS. Static response of elastic inflated wrinkled membranes.
Comput Mech 2014;53:1001-13. http://dx.doi.org/10.1007/500466-013-0945-
5.

Chen L, Nguyen-Thanh N, Nguyen-Xuan H, Rabczuk T, Bordas SPA, Limbert G.
Explicit finite deformation analysis of isogeometric membranes. Comput Meth-
ods Appl Mech Engrg 2014;277:104-30. http://dx.doi.org/10.1016/j.cma.2014.
04.015.

Li M, Zhu K, Qi G, Kang Z, Luo Y. Wrinkled and wrinkle-free membranes.
Internat J Engrg Sci 2021;167:103526. http://dx.doi.org/10.1016/j.ijengsci.
2021.103526.

Li M, Li Y, Zhang C, Qi G, Sui Y, Luo Y, Liu J. Stiffness modulation-driven
wrinkle-free membrane. Appl Eng Sci 2022;9:100087. http://dx.doi.org/10.
1016/j.apples.2022.100087.

Fichter W. Some solutions for the large deflections of uniformly loaded circular
membranes. Technical report, 1997.

Coelho M, Roehl D, Bletzinger K-U. Numerical and analytical solutions with
finite strains for circular inflated membranes considering pressure—volume
coupling. Int J Mech Sci 2014;82:122-30. http://dx.doi.org/10.1016/j.ijmecsci.
2014.03.012.

Yuan J, Liu X, Xia H, Huang Y. Analytical solutions for inflation of pre-stretched
elastomeric circular membranes under uniform pressure. Theor Appl Mech Lett
2021;11(3):100243. http://dx.doi.org/10.1016/j.taml.2021.100243.

Foster HO. Inflation of a plane circular membrane. J Eng Ind 1967;89(3):403-7.
http://dx.doi.org/10.1115/1.3610067.

Yang X, Yu L, Long R. Contact mechanics of inflated circular membrane under
large deformation: Analytical solutions. Int J Solids Struct 2021;233:111222.
http://dx.doi.org/10.1016/j.ijsolstr.2021.111222.

Pelliciari M, Sirotti S, Aloisio A, Tarantino AM. Analytical, numerical and
experimental study of the finite inflation of circular membranes. Int J Mech
Sci 2022;226:107383. http://dx.doi.org/10.1016/j.ijmecsci.2022.107383.
Sirotti S, Pelliciari M, Aloisio A, Tarantino AM. Analytical pressure-deflection
curves for the inflation of pre-stretched circular membranes. Eur J Mech A
Solids 2023;97:104831. http://dx.doi.org/10.1016/j.euromechsol.2022.104831.
Pelliciari M, Tarantino AM. A continuum model for circular graphene mem-
branes under uniform lateral pressure. J Elasticity 2022;151(2):273-303. http:
//dx.doi.org/10.1007/510659-022-09937-w.

Haughton D, Ogden R. On the incremental equations in non-linear elasticity—I.
Membrane theory. J Mech Phys Solids 1978;26(2):93-110. http://dx.doi.org/
10.1016/0022-5096(78)90016-9.

Haughton D, Ogden R. On the incremental equations in non-linear
elasticity—II. bifurcation of pressurized spherical shells. J Mech Phys Solids
1978;26(2):111-38. http://dx.doi.org/10.1016/0022-5096(78)90017-0.

Dym CL, Shames IH, et al. Solid mechanics. Springer; 1973, http://dx.doi.org/
10.1007/978-1-4614-6034-3.

Puntel E, Deseri L, Fried E. Wrinkling of a stretched thin sheet. J Elasticity
2011;105:137-70. http://dx.doi.org/10.1007/s10659-011-9340-7.

Damil N, Potier-Ferry M. Influence of local wrinkling on membrane behaviour:
a new approach by the technique of slowly variable Fourier coefficients. J
Mech Phys Solids 2010;58(8):1139-53. http://dx.doi.org/10.1016/j.jmps.2010.
04.002.

Healey TJ, Li Q, Cheng R-B. Wrinkling behavior of highly stretched rect-
angular elastic films via parametric global bifurcation. J Nonlinear Sci
2013;23:777-805. http://dx.doi.org/10.1007/s00332-013-9168-3.

Wang T, Yang Y, Fu C, Xu F. Competition between Mullins and curvature effects
in the wrinkling of stretched soft shells. Int J Solids Struct 2022;241:111473.
http://dx.doi.org/10.1016/j.ijsolstr.2022.111473.

de Rooij R, Abdalla M. A finite element interior-point implementation of
tension field theory. Comput Struct 2015;151:30-41. http://dx.doi.org/10.
1016/j.compstruc.2015.01.007.

Pagitz M, Abdalla M. Simulation of tension fields with in-plane rotational
degrees of freedom. Comput Mech 2010;46(5):747-57. http://dx.doi.org/10.
1007/s00466-010-0513-1.

Pagitz M, Pellegrino S. Maximally stable lobed balloons. Int J Solids Struct
2010;47(11):1496-507. http://dx.doi.org/10.1016/j.ijsolstr.2010.02.013.
Wagner H. Flat sheet metal girders with very thin metal web. Part I: General
theories and assumptions. Technical report, 1931.


http://dx.doi.org/10.1016/j.compositesb.2022.109809
http://dx.doi.org/10.1016/j.eml.2019.100556
http://dx.doi.org/10.1016/j.eml.2019.100556
http://dx.doi.org/10.1016/j.eml.2019.100556
http://dx.doi.org/10.1002/adfm.202207590
http://dx.doi.org/10.1063/5.0173464
http://dx.doi.org/10.1063/5.0173464
http://dx.doi.org/10.1063/5.0173464
http://dx.doi.org/10.1002/adem.201400433
http://dx.doi.org/10.1002/adem.201400433
http://dx.doi.org/10.1002/adem.201400433
http://dx.doi.org/10.1002/aisy.201900019
http://dx.doi.org/10.1002/aisy.201900019
http://dx.doi.org/10.1002/aisy.201900019
http://dx.doi.org/10.1115/1.2355691
http://dx.doi.org/10.1002/cnm.3586
http://dx.doi.org/10.1002/cnm.3586
http://dx.doi.org/10.1002/cnm.3586
http://dx.doi.org/10.1115/1.3149545
http://dx.doi.org/10.1080/10255840802546762
http://dx.doi.org/10.1016/j.paerosci.2016.07.001
http://dx.doi.org/10.1115/1.3173133
http://dx.doi.org/10.1038/419579b
http://dx.doi.org/10.5301/jabfm.5000213
http://dx.doi.org/10.1088/0964-1726/23/12/125023
http://refhub.elsevier.com/S0020-7403(24)00074-2/sb36
http://refhub.elsevier.com/S0020-7403(24)00074-2/sb36
http://refhub.elsevier.com/S0020-7403(24)00074-2/sb36
http://dx.doi.org/10.5254/1.3539012
http://dx.doi.org/10.5254/1.3546716
http://dx.doi.org/10.5254/1.3546716
http://dx.doi.org/10.5254/1.3546716
http://dx.doi.org/10.1098/rsta.1951.0004
http://dx.doi.org/10.1098/rsta.1952.0013
http://refhub.elsevier.com/S0020-7403(24)00074-2/sb41
http://refhub.elsevier.com/S0020-7403(24)00074-2/sb41
http://refhub.elsevier.com/S0020-7403(24)00074-2/sb41
http://dx.doi.org/10.1007/s11340-011-9571-3
http://dx.doi.org/10.1016/0020-7683(67)90002-9
http://dx.doi.org/10.1016/0020-7683(67)90002-9
http://dx.doi.org/10.1016/0020-7683(67)90002-9
http://dx.doi.org/10.1108/eb023817
http://dx.doi.org/10.1108/eb023817
http://dx.doi.org/10.1108/eb023817
http://dx.doi.org/10.1002/NME.1620350511
http://dx.doi.org/10.1016/0045-7949(94)00629-H
http://dx.doi.org/10.1016/0045-7949(94)00629-H
http://dx.doi.org/10.1016/0045-7949(94)00629-H
http://dx.doi.org/10.1007/1-4020-3317-6_10
http://dx.doi.org/10.1007/1-4020-3317-6_10
http://dx.doi.org/10.1007/1-4020-3317-6_10
http://dx.doi.org/10.1016/j.cma.2012.05.012
http://dx.doi.org/10.1098/rsta.2021.0319
http://dx.doi.org/10.1098/rsta.2021.0319
http://dx.doi.org/10.1098/rsta.2021.0319
http://dx.doi.org/10.1115/1.3422977
http://dx.doi.org/10.2514/6.2001-4646
http://dx.doi.org/10.1016/j.finel.2006.01.004
http://dx.doi.org/10.1016/j.finel.2006.01.004
http://dx.doi.org/10.1016/j.finel.2006.01.004
http://dx.doi.org/10.1007/s00466-013-0945-5
http://dx.doi.org/10.1007/s00466-013-0945-5
http://dx.doi.org/10.1007/s00466-013-0945-5
http://dx.doi.org/10.1016/j.cma.2014.04.015
http://dx.doi.org/10.1016/j.cma.2014.04.015
http://dx.doi.org/10.1016/j.cma.2014.04.015
http://dx.doi.org/10.1016/j.ijengsci.2021.103526
http://dx.doi.org/10.1016/j.ijengsci.2021.103526
http://dx.doi.org/10.1016/j.ijengsci.2021.103526
http://dx.doi.org/10.1016/j.apples.2022.100087
http://dx.doi.org/10.1016/j.apples.2022.100087
http://dx.doi.org/10.1016/j.apples.2022.100087
http://refhub.elsevier.com/S0020-7403(24)00074-2/sb57
http://refhub.elsevier.com/S0020-7403(24)00074-2/sb57
http://refhub.elsevier.com/S0020-7403(24)00074-2/sb57
http://dx.doi.org/10.1016/j.ijmecsci.2014.03.012
http://dx.doi.org/10.1016/j.ijmecsci.2014.03.012
http://dx.doi.org/10.1016/j.ijmecsci.2014.03.012
http://dx.doi.org/10.1016/j.taml.2021.100243
http://dx.doi.org/10.1115/1.3610067
http://dx.doi.org/10.1016/j.ijsolstr.2021.111222
http://dx.doi.org/10.1016/j.ijmecsci.2022.107383
http://dx.doi.org/10.1016/j.euromechsol.2022.104831
http://dx.doi.org/10.1007/s10659-022-09937-w
http://dx.doi.org/10.1007/s10659-022-09937-w
http://dx.doi.org/10.1007/s10659-022-09937-w
http://dx.doi.org/10.1016/0022-5096(78)90016-9
http://dx.doi.org/10.1016/0022-5096(78)90016-9
http://dx.doi.org/10.1016/0022-5096(78)90016-9
http://dx.doi.org/10.1016/0022-5096(78)90017-0
http://dx.doi.org/10.1007/978-1-4614-6034-3
http://dx.doi.org/10.1007/978-1-4614-6034-3
http://dx.doi.org/10.1007/978-1-4614-6034-3
http://dx.doi.org/10.1007/s10659-011-9340-7
http://dx.doi.org/10.1016/j.jmps.2010.04.002
http://dx.doi.org/10.1016/j.jmps.2010.04.002
http://dx.doi.org/10.1016/j.jmps.2010.04.002
http://dx.doi.org/10.1007/s00332-013-9168-3
http://dx.doi.org/10.1016/j.ijsolstr.2022.111473
http://dx.doi.org/10.1016/j.compstruc.2015.01.007
http://dx.doi.org/10.1016/j.compstruc.2015.01.007
http://dx.doi.org/10.1016/j.compstruc.2015.01.007
http://dx.doi.org/10.1007/s00466-010-0513-1
http://dx.doi.org/10.1007/s00466-010-0513-1
http://dx.doi.org/10.1007/s00466-010-0513-1
http://dx.doi.org/10.1016/j.ijsolstr.2010.02.013
http://refhub.elsevier.com/S0020-7403(24)00074-2/sb75
http://refhub.elsevier.com/S0020-7403(24)00074-2/sb75
http://refhub.elsevier.com/S0020-7403(24)00074-2/sb75

S. Pamulaparthi Venkata et al.

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

Reissner E. On tension field theory. In: Proceedings of the fifth international
congress for applied mechanics. Harvard University & MIT; 1938, p. 88-92.
Pipkin AC. The relaxed energy density for isotropic elastic membranes. IMA J
Appl Math 1986;36:85-99. http://dx.doi.org/10.1093/imamat/36.1.85.

Pipkin A. Continuously distributed wrinkles in fabrics. Arch Ration Mech Anal
1986;95(2):93-115. http://dx.doi.org/10.1007/BF00281083.

Steigmann DJ, Pipkin AC. Wrinkling of pressurized membranes. J Appl Mech
1989;56(3):624-8. http://dx.doi.org/10.1115/1.3176137.

Steigmann D. Tension-field theory. Proc R Soc Lond Ser A Math Phys Eng Sci
1990;429(1876):141-73. http://dx.doi.org/10.1098/rspa.1990.0055.

Pipkin AC. Relaxed energy densities for large deformations of membranes. IMA
J Appl Math 1994;52(3):297-308. http://dx.doi.org/10.1093/imamat/52.3.297.
Pipkin AC. Relaxed energy densities for anisotropic membranes. In: Parker DF,
England AH, editors. IUTAM symposium on anisotropy, inhomogeneity and
nonlinearity in solid mechanics. Dordrecht: Springer Netherlands; 1995, p.
333-8. http://dx.doi.org/10.1007/978-94-015-8494-4 45,

De Tommasi D, Puglisi G, Zurlo G. Compression-induced failure of electroactive
polymeric thin films. Appl Phys Lett 2011;98(12):123507. http://dx.doi.org/10.
1063/1.3568885.

De Tommasi D, Puglisi G, Zurlo G. Taut states of dielectric elastomer mem-
branes. Int J Non-Linear Mech 2012;47(2):355-61. http://dx.doi.org/10.1016/
j.ijnonlinmec.2011.08.002.

Greaney P, Meere M, Zurlo G. The out-of-plane behaviour of dielectric mem-
branes: Description of wrinkling and pull-in instabilities. J Mech Phys Solids
2019;122:84-97. http://dx.doi.org/10.1016/j.jmps.2018.09.006.

Khurana A, Joglekar M, Zurlo G. Electromechanical stability of wrinkled
dielectric elastomers. Int J Solids Struct 2022;246-247:111613. http://dx.doi.
0rg/10.1016/j.ijsolstr.2022.111613.

Khurana A, Kumar D, Sharma AK, Zurlo G, Joglekar M. Taut domains in
transversely isotropic electro-magneto-active thin membranes. Int J Non-Linear
Mech 2022;147:104228. http://dx.doi.org/10.1016/j.ijnonlinmec.2022.104228.
Saxena P, Reddy NH, Pradhan SP. Magnetoelastic deformation of a circular
membrane: Wrinkling and limit point instabilities. Int J Non-Linear Mech
2019;116:250-61. http://dx.doi.org/10.1016/j.ijnonlinmec.2019.07.006.
Dhavale NN, Tamadapu G, DasGupta A. Finite inflation analysis of two
circumferentially bonded hyperelastic circular flat membranes. J Appl Mech
2014;81(9):091012. http://dx.doi.org/10.1115/1.4027972.

Barsotti R. Approximated solutions for axisymmetric wrinkled inflated
membranes. J Appl Mech 2015;82(11):111007. http://dx.doi.org/10.1115/1.
4031243.

Pamulaparthi Venkata S, Saxena P. Instabilities in the free inflation of a nonlin-
ear hyperelastic toroidal membrane. J Mech Mater Struct 2019;14(4):473-96.
http://dx.doi.org/10.2140/jomms.2019.14.473.

Chaudhuri A, DasGupta A. On the static and dynamic analysis of inflated
hyperelastic circular membranes. J Mech Phys Solids 2014;64:302-15. http:
//dx.doi.org/10.1016/j.jmps.2013.11.013.

Needleman A. Necking of pressurized spherical membranes. J Mech Phys Solids
1976;24(6):339-59. http://dx.doi.org/10.1016/0022-5096(76)90008-9.

Chater E, Neale K. Finite plastic deformation of a circular membrane under
hydrostatic pressure—II: Strain-rate effects. Int J Mech Sci 1983;25(4):235-44.
http://dx.doi.org/10.1016,/0020-7403(83)90027-9.

Ulissi ZW, Govind Rajan A, Strano MS. Persistently auxetic materials: Engi-
neering the Poisson ratio of 2D self-avoiding membranes under conditions of
non-zero anisotropic strain. ACS Nano 2016;10(8):7542-9. http://dx.doi.org/
10.1021/acsnano.6b02512.

COMSOL multiphysics® version 6.0. Stockholm, Sweden: COMSOL AB; 2021,
URL https://www.comsol.com/comsol-multiphysics.

13

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

International Journal of Mechanical Sciences 268 (2024) 109031

Blatz PJ, Ko WL. Application of finite elastic theory to the deformation of
rubbery materials. Trans Soc Rheol 1962;6(1):223-52. http://dx.doi.org/10.
1122/1.548937.

Brockman RA. On the use of the Blatz-Ko constitutive model in nonlinear
finite element analysis. Comput Struct 1986;24(4):607-11. http://dx.doi.org/
10.1016/0045-7949(86)90199-9.

Haughton D, McKay B. Wrinkling of annular discs subjected to radial displace-
ments. Internat J Engrg Sci 1995;33(3):335-50. http://dx.doi.org/10.1016/
0020-7225(94)00068-U.

Haughton D, McKay B. Wrinkling of inflated elastic cylindrical membranes
under flexure. Internat J Engrg Sci 1996;34(13):1531-50. http://dx.doi.org/10.
1016/0020-7225(96)00059-6.

De Tommasi D, Puglisi G, Zurlo G. A note on strong ellipticity in two-
dimensional isotropic elasticity. J Elasticity 2012;109:67-74. http://dx.doi.org/
10.1007/510659-011-9370-1.

De Tommasi D, Puglisi G, Zurlo G. Inhomogeneous spherical configurations of
inflated membranes. Contin Mech Thermodyn 2013;25:197-206. http://dx.doi.
org/10.1007/s00161-012-0240-2.

Steigmann D, Pipkin A. Finite deformations of wrinkled membranes. Quart J
Mech Appl Math 1989;42(3):427-40. http://dx.doi.org/10.1093/gqjmam/42.3.
427.

Venkata SP, Balbi V, Destrade M, Accoto D, Zurlo G. Programmable wrin-
kling for functionally-graded auxetic circular membranes. Extreme Mech Lett
2023;63:102045. http://dx.doi.org/10.1016/j.em1.2023.102045.

Naebe M, Shirvanimoghaddam K. Functionally graded materials: A review of
fabrication and properties. Appl Mater Today 2016;5:223-45. http://dx.doi.org/
10.1016/j.apmt.2016.10.001.

Ren X, Das R, Tran P, Ngo TD, Xie YM. Auxetic metamaterials and structures:
A review. Smart Mater Struct 2018;27(2):023001. http://dx.doi.org/10.1088/
1361-665X/aaablc.

Gurtin ME, Ian Murdoch A. A continuum theory of elastic material sur-
faces. Arch Ration Mech Anal 1975;57:291-323. http://dx.doi.org/10.1007/
BF00261375.

Libai A, Simmonds JG. The nonlinear theory of elastic shells. sec-
ond ed. Cambridge University Press; 1998, http://dx.doi.org/10.1017/
CB09780511574511.

Hill R. C. a theory of the plastic bulging of a metal diaphragm by lateral
pressure. Lond Edinb Dublin Philos Mag J Sci 1950;41(322):1133-42. http:
//dx.doi.org/10.1080/14786445008561154.

Zhou L, Wang S, Li L, Fu Y. An evaluation of the Gent and Gent-Gent material
models using inflation of a plane membrane. Int J Mech Sci 2018;146:39-48.
http://dx.doi.org/10.1016/j.ijmecsci.2018.07.035.

Yang W, Feng W. On axisymmetrical deformations of nonlinear membranes. J
Appl Mech 1970;37(4):1002-11. http://dx.doi.org/10.1115/1.3408651.

Patil A, DasGupta A. Finite inflation of an initially stretched hyperelastic
circular membrane. Eur J Mech A Solids 2013;41:28-36. http://dx.doi.org/10.
1016/j.euromechsol.2013.02.007.

Gongalves PB, Soares RM, Pamplona D. Nonlinear vibrations of a radially
stretched circular hyperelastic membrane. J Sound Vib 2009;327(1-2):231-48.
http://dx.doi.org/10.1016/j.jsv.2009.06.023.

Ericksen JL. Introduction to the thermodynamics of solids, Vol. 275, Springer;
1998.

Pujara P, Lardner T. Deformations of elastic membranes—Effect of different
constitutive relations. Z Angew Math Phys ZAMP 1978;29:315-27. http://dx.
doi.org/10.1007/BF01601526.


http://refhub.elsevier.com/S0020-7403(24)00074-2/sb76
http://refhub.elsevier.com/S0020-7403(24)00074-2/sb76
http://refhub.elsevier.com/S0020-7403(24)00074-2/sb76
http://dx.doi.org/10.1093/imamat/36.1.85
http://dx.doi.org/10.1007/BF00281083
http://dx.doi.org/10.1115/1.3176137
http://dx.doi.org/10.1098/rspa.1990.0055
http://dx.doi.org/10.1093/imamat/52.3.297
http://dx.doi.org/10.1007/978-94-015-8494-4_45
http://dx.doi.org/10.1063/1.3568885
http://dx.doi.org/10.1063/1.3568885
http://dx.doi.org/10.1063/1.3568885
http://dx.doi.org/10.1016/j.ijnonlinmec.2011.08.002
http://dx.doi.org/10.1016/j.ijnonlinmec.2011.08.002
http://dx.doi.org/10.1016/j.ijnonlinmec.2011.08.002
http://dx.doi.org/10.1016/j.jmps.2018.09.006
http://dx.doi.org/10.1016/j.ijsolstr.2022.111613
http://dx.doi.org/10.1016/j.ijsolstr.2022.111613
http://dx.doi.org/10.1016/j.ijsolstr.2022.111613
http://dx.doi.org/10.1016/j.ijnonlinmec.2022.104228
http://dx.doi.org/10.1016/j.ijnonlinmec.2019.07.006
http://dx.doi.org/10.1115/1.4027972
http://dx.doi.org/10.1115/1.4031243
http://dx.doi.org/10.1115/1.4031243
http://dx.doi.org/10.1115/1.4031243
http://dx.doi.org/10.2140/jomms.2019.14.473
http://dx.doi.org/10.1016/j.jmps.2013.11.013
http://dx.doi.org/10.1016/j.jmps.2013.11.013
http://dx.doi.org/10.1016/j.jmps.2013.11.013
http://dx.doi.org/10.1016/0022-5096(76)90008-9
http://dx.doi.org/10.1016/0020-7403(83)90027-9
http://dx.doi.org/10.1021/acsnano.6b02512
http://dx.doi.org/10.1021/acsnano.6b02512
http://dx.doi.org/10.1021/acsnano.6b02512
https://www.comsol.com/comsol-multiphysics
http://dx.doi.org/10.1122/1.548937
http://dx.doi.org/10.1122/1.548937
http://dx.doi.org/10.1122/1.548937
http://dx.doi.org/10.1016/0045-7949(86)90199-9
http://dx.doi.org/10.1016/0045-7949(86)90199-9
http://dx.doi.org/10.1016/0045-7949(86)90199-9
http://dx.doi.org/10.1016/0020-7225(94)00068-U
http://dx.doi.org/10.1016/0020-7225(94)00068-U
http://dx.doi.org/10.1016/0020-7225(94)00068-U
http://dx.doi.org/10.1016/0020-7225(96)00059-6
http://dx.doi.org/10.1016/0020-7225(96)00059-6
http://dx.doi.org/10.1016/0020-7225(96)00059-6
http://dx.doi.org/10.1007/s10659-011-9370-1
http://dx.doi.org/10.1007/s10659-011-9370-1
http://dx.doi.org/10.1007/s10659-011-9370-1
http://dx.doi.org/10.1007/s00161-012-0240-2
http://dx.doi.org/10.1007/s00161-012-0240-2
http://dx.doi.org/10.1007/s00161-012-0240-2
http://dx.doi.org/10.1093/qjmam/42.3.427
http://dx.doi.org/10.1093/qjmam/42.3.427
http://dx.doi.org/10.1093/qjmam/42.3.427
http://dx.doi.org/10.1016/j.eml.2023.102045
http://dx.doi.org/10.1016/j.apmt.2016.10.001
http://dx.doi.org/10.1016/j.apmt.2016.10.001
http://dx.doi.org/10.1016/j.apmt.2016.10.001
http://dx.doi.org/10.1088/1361-665X/aaa61c
http://dx.doi.org/10.1088/1361-665X/aaa61c
http://dx.doi.org/10.1088/1361-665X/aaa61c
http://dx.doi.org/10.1007/BF00261375
http://dx.doi.org/10.1007/BF00261375
http://dx.doi.org/10.1007/BF00261375
http://dx.doi.org/10.1017/CBO9780511574511
http://dx.doi.org/10.1017/CBO9780511574511
http://dx.doi.org/10.1017/CBO9780511574511
http://dx.doi.org/10.1080/14786445008561154
http://dx.doi.org/10.1080/14786445008561154
http://dx.doi.org/10.1080/14786445008561154
http://dx.doi.org/10.1016/j.ijmecsci.2018.07.035
http://dx.doi.org/10.1115/1.3408651
http://dx.doi.org/10.1016/j.euromechsol.2013.02.007
http://dx.doi.org/10.1016/j.euromechsol.2013.02.007
http://dx.doi.org/10.1016/j.euromechsol.2013.02.007
http://dx.doi.org/10.1016/j.jsv.2009.06.023
http://refhub.elsevier.com/S0020-7403(24)00074-2/sb114
http://refhub.elsevier.com/S0020-7403(24)00074-2/sb114
http://refhub.elsevier.com/S0020-7403(24)00074-2/sb114
http://dx.doi.org/10.1007/BF01601526
http://dx.doi.org/10.1007/BF01601526
http://dx.doi.org/10.1007/BF01601526

	Designing necks and wrinkles in inflated auxetic membranes
	Introduction
	Membrane deformations, energy and stress
	Tension Field Theory: Relaxed strain energy functional
	Equilibrium of a pressurized membrane

	General insights into necks and wrinkles
	Designing instabilities
	Necks and no wrinkles
	Special case: Double bubbling

	Necks and wrinkles
	Wrinkles and no necks

	Conclusions 
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Numerical model in COMSOL
	Appendix B. Circular membranes
	One-step variation in material properties
	Only necks
	Double bubbling

	Multi-step variations in material properties: Interplay of necking and wrinkling behaviors

	Appendix C. Square membranes
	Distribution of the Young modulus in the auxetic square membranes

	References


