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A B S T R A C T   

We investigate the nonlinear vibrations of a functionally graded dielectric elastomer plate sub
jected to electromechanical loads. We focus on local and global dynamics in the system. We 
employ the Gent strain energy function to model the dielectric elastomer. The functionally graded 
parameters are the shear modulus, mass density, and permittivity of the elastomer, which are 
formulated by a common through-thickness power-law scheme. We derive the equation of motion 
using the Euler-Lagrange equations and solve it numerically with the Runge-Kutta method and a 
continuation-based method. We investigate the influence of the functionally graded parameters 
on equilibrium points, natural frequencies, and static/dynamic instability. We also establish a 
Hamiltonian energy method to detect safe regions of operating gradient parameters. Furthermore, 
we explore the effect of the functionally graded parameters on chaos and resonance by plotting 
several numerical diagrams, including time histories, phase portraits, Poincaré maps, largest 
Lyapunov exponent criteria, bifurcation diagram of Poincaré maps, and frequency-stretch curves. 
The results provide a benchmark for developing functionally graded soft smart materials.   

1. Introduction 

Polymers (elastomers and rubbers) are some of the most widely used soft materials in many systems. They display material 
nonlinearity (nonlinear strain-stress curve) and can sustain large deformations. Smart materials often rely on the so-called active 
polymers (Dorfmann & Ogden, 2014; Kim & Tadokoro, 2007; Liu et al., 2013; Meng & Hu, 2010; Xia et al., 2021), especially dielectric 
elastomers (DEs) (Behera et al., 2021; Guo et al., 2021; Gupta & Harursampath, 2015; Jiang et al., 2021; Khurana et al., 2021, 2022). 

DEs are active polymers that deform nonlinearly in response to electromechanical loads (Lu et al., 2020; Suo, 2010; Zhao et al., 
2011), and in some applications where external excitations are time-dependent, they may generate nonlinear oscillations (Wang et al., 
2016). DEs are designed as soft and flexible membranes with diverse geometries (beams (Alibakhshi et al., 2022; Feng et al., 2011), 
square and rectangular (Conroy Broderick et al., 2020; Xia et al., 2021; Zhang et al., 2016, 2018), tubular and cylindrical shells (Bazaev 
& Cohen, 2022; Bortot & Shmuel, 2018; Ghosh & Basu, 2021; Ren & Guo, 2021; Su, 2020), spherical shells (Lv et al., 2018; Yong et al., 
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2011)), with surfaces covered by compliant and flexible electrodes subjected to static or/and dynamic voltages through the thickness 
(De Tommasi et al., 2014a). In response, DEs expand in the in-plane direction and shrink in the thickness direction. Sometimes, to 
enhance their performance, a mechanical load (equal-biaxial, uniaxial, pure shear) is also applied (Zhang & Chen, 2020). The resulting 
nonlinear vibrations can be complex and accompanied by chaos, quasiperiodicity, and instability, depending on the operating 
parameters. 

For instance, Zhu et al. (2010) investigated the nonlinear vibration of a spherical DE membrane modelled by the neoHookean 
hyperelastic model with deformation-independent permittivity, and derived the governing equations by the virtual work method. Xu 
et al. (2012) analyzed the nonlinear dynamics of a thick-walled square DE neoHookean membrane with the Euler-Lagrange equations. 
Sheng et al. (2014) investigated the nonlinear vibrational response of a thin-walled DE membrane with strain-stiffening and damping 
effects. Alibakhshi and co-workers (Alibakhshi et al., 2022, 2022, 2022; Alibakhshi et al., 2021) studied the nonlinear vibration of DEs 
with different geometries and different hyperelastic models, including the Gent, neoHookean, Gent-Gent, and generalized neoHookean 
models. Cooley and Lowe (Cooley & Lowe, 2022) studied the nonlinear resonance of a circular DE using Hamilton’s principle, and 
analyzed the natural frequency and frequency amplitude response. Zou et al. (2022) presented a dynamic analysis of circular DEs with 
a focus on chaotic oscillations; they used the Gent strain energy function for modeling the nonlinearity and strain-stiffening effect, and 
employed the Lyapunov exponent to identify chaotic domains. 

Hence, there is a large volume of works investigating the nonlinear vibrations and dynamics of homogeneous DEs. However, it 
might be beneficial to consider that DEs could be designed as functionally graded materials, to improve on their performance. So far, 
only a limited number of works have treated the stability and modeling of functionally graded DEs (FGDEs). Su et al. (2021) inves
tigated the bending of an FGDE plate caused by voltage, assuming that the elastic shear modulus and the electric permittivity vary 
linearly within the thickness. Zhou et al. (2020) assessed the bifurcation response of a FGDE tube under axial stretch deformation and 
radial electric potential, also assuming a linear variation of the parameters in the thickness direction. Chen and Yang (2021) analyzed 
the performance of a FGDE energy harvester disc with graded material parameters in the radial direction. Alam and Sharma (2022) 
studied longitudinal wave band gaps in a FGDE modelled by a compressible neoHookean strain energy function and power law 
functionally graded rule; they used a finite element approach in conjunction with Bloch-Floquet theory. Wu et al. (2020) investigated 
the propagation of axisymmetric waves in a tube modelled as a (linearly) functionally graded Mooney-Rivlin ideal dielectric. 

Here we conduct a nonlinear vibration analysis on such FGDE structures and as a test case, we focus on the membrane geometry. 
We use the Gent hyperelastic model with a power law for the functional gradient in the thickness direction, common to all material 
parameters. In Section 2 we present this material and derive the governing equation of motion using the Euler-Lagrange equations. In 
Section 3 we conduct a detailed analysis of the free and forced vibration regimes, with special attention to local and global dynamics. 
The outcomes of our analysis disclose new possibilities to broaden the working range of dielectric elastomers, above all for those 
applications that are crucially based on the dynamical behavior of these devices (for example, energy harvesting (Colonnelli et al., 
2014, 2015; De Tommasi et al., 2014a, 2014b; Zurlo et al., 2018)). 

2. Mathematical modelling 

Fig. 1 is the schematic representation of a functionally graded dielectric elastomer (FGDE) planar membrane. The upper and lower 
surfaces are coated with compliant electrodes, which are subjected to an electric potential difference V. The membrane is also under an 
in-plane equi-biaxial tensile mechanical load P. It undergoes large deformations, from the undeformed, unloaded reference 

Fig. 1. Schematic representation of a functionally graded dielectric elastomer. The elastomer is very thin and the effect of inertia in the thickness 
direction is neglected. In sub-figures, we amplified the thickness for representation purpose only. 
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configuration to the current configuration where the membrane is deformed under external electromechanical loadings. The associ
ated Cartesian coordinate systems are (X1, X2, X3) and (x1, x2, x3), respectively, and the length, width, and thickness are L, L, H, and l, l, 
h, respectively. 

The principal stretches are defined as 

λ1(t) =
x1

X1
, λ2(t) =

x2

X2
, λ3(t) =

x3

X3
(1)  

in the x1, x2, and x3 directions, respectively. We assume an in-plane equi-biaxial deformation, so that λ1 = λ2 = λ, and incompres
sibility, so that λ1λ2λ3 = 1. It follows that 

λ(t) =
x1

X1
, λ(t) =

x2

X2
, λ− 2 =

x3

X3
(2)  

Next we define the kinetic energy of the system as (Xu et al., 2012) 

T =

∫x3

0

∫x2

0

∫x1

0

1
2

ρ
(
ẋ2

1 + ẋ2
2 + ẋ2

3

)
dx1dx2dx3 (3)  

where the dot denotes differentiation with respect to time. We assume that the mass density changes smoothly and continuously in the 
thickness direction, according to the following power FG law (Pascon, 2018) 

ρ(X3) = ρ2 + (ρ1 − ρ2)

(
X3

H

)K

(4)  

where ρ1 is the density at X3 = H and ρ2 is the density at X3 = 0, and K is the gradient index. Then we get 

T =

∫H

0

∫L

0

∫L

0

1
2

(

ρ2 +(ρ1 − ρ2)

(
X3

H

)K
)
(
(X1λ̇)2

+(X2λ̇)2)λ1λ2λ3⏟̅̅ ⏞⏞̅̅ ⏟
1

dX1dX2dX3 (5)  

after changing the coordinate variables from spatial to material. The result of the integration is 

T =
1
3
(ρ1 + Kρ2)

(1 + K)
HL4λ̇˙

2 (6)  

where we neglected terms of orders higher than (H/L)3, and also neglected the inertia in the thickness direction because the membrane 
is thin (effectively taking ẋ˙3 = 0). 

The total potential energy is 

U =

∫x3

0

∫x2

0

∫x3

0

(ψH +ψE)dx1dx2dx3 − WP (7)  

where ψH is the strain energy density, ψE is the electric field potential and WP is the work done by the lateral tensile mechanical load. 
Dielectric elastomers materials are commonly described as having rubber-like and elastomeric properties, as they can undergo 

large deformations and display a nonlinear relationship between stress and strain. To model this behavior, several hyperelastic 
constitutive laws have been introduced, with the neoHookean and Gent models being the most used for describing the elastic prop
erties of dielectric elastomers. The neoHookean model is appropriate for small-to-moderate deformations, and the Gent model captures 
the strain-stiffening phenomenon observed at large stretches, for example by commercially available dielectric elastomers such as 3M’s 
VHB 4905 and VHB 4910. According to the Gent model (Gent, 1996), 

ψH = −
μJm

2
ln
(

1 −
I1 − 3

Jm

)

= −
μJm

2
ln
(

1 −
2λ2 + λ− 4 − 3

Jm

)

(8)  

where μ is the infinitesimal shear modulus and I1 = λ2
1 + λ2

2 + λ2
3 is the first invariant of deformation. The dimensionless strain- 

stiffening parameter Jm gives a measure of the limiting stretch λlim, which is found as the real root of 2λ2 + λ− 4 − 3 = Jm. We point 
out that other, similar, hyperelastic models such as the Gent-Gent model (Mangan & Destrade, 2015), the generalized neoHookean 
model (Anssari-Benam & Bucchi, 2021; Horgan, 2021), the Lopez-Pamies model (Zurlo et al., 2018), etc., can be used for modelling the 
nonlinear elastic response of DEs. 

We assume that μ is a functionally graded parameter, following the same power law as the density (Pascon, 2018) 

μ(X3) = μ2 + (μ1 − μ2)

(
X3

H

)K

(9) 
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where μ1, μ2 are the shear moduli at X3 = H, X3 = 0, respectively. Substituting Eq. (9) into Eq. (8), and integrating with a change of 
variables, we obtain the total strain energy WH as 

WH =

∫H

0

∫L

0

∫L

0

ψHλ1λ2λ3⏟̅̅ ⏞⏞̅̅ ⏟
1

dX1dX2dX3 = −
(μ1 + Kμ2)JmHL2

2(1 + K)
ln
(

1 −
2λ2 + λ− 4 − 3

Jm

)

(10)  

Now we write the electric part of the potential energy as 

ψE = −
1
2

ε
(

V
H

)2

λ4 (11)  

where ε denotes the permittivity of the DE. Again, we assume a power-law variation across the thickness, as 

ε(X3) = ε2 + (ε1 − ε2)

(
X3

H

)K

(12)  

say. Using Eqs. (11) and (12), the total electric potential energy is obtained by integration over the volume of the membrane and 
change of variables, as 

WE = −
(ε1 + ε2K)HL2

2(1 + K)

(
ϕ
H

)2

λ4 (13)  

We also compute the work done by the external tensile load, as 

WP =

∫x1

X1

Pdx1 +

∫x2

X2

Pdx2 = P(x1 − X1) + P(x2 − X2) = 2PL(λ − 1) = 2σL2H(λ − 1) (14)  

in which σ = P/LH stands for the stress caused by the mechanical load. 
Finally, putting together these contributions, we find that the total potential energy of the system is 

U = −
(μ1 + μ2K)JmHL2

2(1 + K)
ln
(

1 −
2λ2 + λ− 4 − 3

Jm

)

−
(ε1 + ε2K)HL2

2(1 + K)

(
V
H

)2

λ4 − 2σHL2(λ − 1) (15)  

We may now derive the equation of motion, using the Euler-Lagrange equation (other methods include the virtual work principle and 
Hamilton’s principle (Yin et al., 2022)). Hence we write that (Amabili, 2008) 

d
dt

(
∂L

∂λ̇

)

−
∂L

∂λ
= 0 (16)  

where L = T − U is the Lagrangian. Here, we arrive at 

L2ρ1

3μ1
(1 + nK )

d2λ
dt2 + (1 + rK)

J
(
λ − λ− 5)

J − 2λ2 − λ− 4 + 3
−

ε1(1 + Km)

μ1

(
V
H

)2

λ3 −
(K + 1)σ

μ1
= 0 (17)  

where n = ρ2/ρ1, r = μ2/μ1, and m = ε2/ε1 are the inhomogeneity ratios. We introduce the following non-dimensional measures of 
time, voltage and mechanical load, 

τ =
t

L
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ρ1/3μ1

√ , V =
̅̅̅̅̅̅̅̅̅̅̅
ε1/μ1

√
(

V
H

)

, P =
σ
μ1

(18)  

so that the non-dimensional version of the equation is 

(1 + nK)
d2λ
dτ2 + (1 + rK)

Jm
(
λ − λ− 5)

(
Jm − 2λ2 − λ− 4 + 3

) − (1 + mK)V2λ3 − (1 + K)P = 0 (19)  

consistent with the homogeneous DE (Sheng et al., 2014) case when K = 0. 

3. Static and DC dynamic responses 

In this section we study the static response of the membrane to applied quasistatic mechanical loads and static voltages. Then we 
investigate how it behaves dynamically when it is first pre-stretched by a quasistatic load followed a sudden (time-step) applied static 
voltage. 

An important assumption here is that we restrict our attention to homogeneous deformations, both in the static and in the dynamic 
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cases. Due to the non-monotonicity of the voltage-stretch curves, this assumption means that we do not consider the possible 
occurrence of phase transitions in the membrane, where thin and thick regions (“phases”) may coexist inside the spinodal region of the 
loading curve. The assumption that the electromechanically actuated membrane deforms homogeneously simplifies the study, as the 
system is then described by a single degree-of-freedom variable (the planar stretch). The richer scenario with phase transitions, both in 
the static and in the dynamic regimes, is remarkably more complex and we leave this task for a future study. 

Following an energy-based method proposed by Sharma et al. (2018), we first write U
...

= U /L2Hμ1, the nondimensional form of 
the total potential energy, as 

U
...

= −
(1 + rK)Jm

2(1 + K)
ln
(

1 −
2λ2 + λ− 4 − 3

Jm

)

−
(1 + rK)

2(1 + K)
V2λ4 − 2P(λ − 1) (20)  

We then write the balance of static equilibrium as 

dU

dλ
= (1 + rK)

Jm
(
λ − λ− 5)

(
Jm − 2λ2 − λ− 4 + 3

) − (1 + mK)V2λ3 − (1 + K)P = 0 (21)  

and find critical states of instability/stability by solving 

d2U

dλ2 = (1 + rK)Jm

(
1 + 5λ− 6)

(
J − 2λ2 − λ− 4 + 3

) + (1 + rK)Jm
4
(
λ − λ− 5)2

(
J − 2λ2 − λ− 4 + 3

)2 − 3(1 + mK)V2λ2 = 0. (22)  

By solving Eqs. (21) and (22) simultaneously, we obtain two critical values λS
C and VS

C. Accordingly, we obtain the static instability 
actuation stretch λS

ac = λS
C/λP where λP is the stretch when there is no voltage applied, obtained by solving 

(1 + rK)
Jm
(
λP − λ− 5

P

)

(
Jm − 2λ2

P − λ− 4
P + 3

) − (1 + K)P = 0 (23)  

To plot the V − λ curves, we solve numerically the algebraic Eq. (21), see examples in Fig. 2. The Figure and Tables 1–3 display values 
of the critical voltage corresponding to the local maximum on the loading curve, which we refer to as the “limit point” voltage, in 
reference to the terminology employed for the inflation of rubber balloons. For the DE plates, it corresponds to the vanishing of the 

Fig. 2. Static and dynamic critical voltages of a Functionally Graded Dielectric Elastomer (FGDE) with strain-stiffening parameter Jm = 100, under 
mechanical pre-tension P = 0.5 and r = m = 0.5. (a) static critical voltage and (b) dynamic critical voltage. 

Table. 1 
Effect of parameter K on the limit point voltage (static and dynamic cases), with n = r = m = 0.5.   

Static Dynamic 

K = 0 λP = 1.10538  
VS

C = 0.51644 λS
C = 1.4379 VD

C = 0.488945 λD
C = 1.70511 

K = 0.25 λP = 1.12062  
VS

C = 0.49853 λS
C = 1.46503 VD

C = 0.472343 λD
C = 1.74176 

K = 1 λP = 1.15393 VD
C = 0.440283 λD

C = 1.82476 
VS

C = 0.463935 λS
C = 1.52614 

K = 2.5 λP = 1.19153 VD
C = 0.41002 λD

C = 1.92278 
VS

C = 0.431275 λS
C = 1.59797  
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Hessian of the free energy (Norris, 2008), and also to the onset of thin-plate inhomogeneous instability (Su et al., 2018). 
Now we incorporate the effect of inertia and motion into the system, by considering that a quasistatic mechanical pre-stretch is 

applied, followed by a DC Heaviside step voltage, so that the system responds with dynamic vibrations (Sharma et al., 2017). The 
ordinary differential equation governing these motions is Eq. (19). 

Again, we use an energy-based approach: we formulate the (non-dimensional) Hamiltonian of the system as H = U +T (where T
...

= T
3μ1L2H is the dimensionless measure of the kinetic energy) as 

H
...

(τ) = (1 + Kn)
(1 + K)

(
dλ
dτ

)2

−
(1 + rK)Jm

2(1 + K)
ln
(

1 −
2λ2 + λ− 4 − 3

Jm

)

−
(1 + mK)

2(1 + K)
V2λ4 − 2P(λ − 1) (24)  

Because the system is conservative, the Hamiltonian is constant. Its value at time τ = 0 (DE at rest, λ(0) = λP, λ̇(0) = 0) and at time τ 
= τ2 (DE at maximum overshoot, λ(τ2) = λmax , λ̇(τ2) = 0) is the same (Sharma et al., 2017), so that 

D
...

(τ2) = H
...

(τ2) − H
...

(0) = −
(1 + rK)Jm

2(1 + K)
ln
(

Jm + 3 − 2λ2
max − λ− 4

max

Jm + 3 − 2λ2
P + λ− 4

P

)

−
(1 + mK)

2(1 + K)
V2( λ4

max − λ4
P

)
− 2P(λmax − λP) = 0 (25)  

This equation can be used to plot the λmax − V curves of dynamic loading, see Fig. 2b. 
To find the critical DC dynamic overshoot stretch λD

C and corresponding voltage VD
C , we solve ∂D /∂λmax = 0, which gives 

Table. 2 
Effect of parameter r on the limit point voltage (static and dynamic cases), with n = m = 0.5, and K = 1.   

Static Dynamic 

r = 0.3 λP = 1.18847  
VS

C = 0.403763 λS
C = 1.59202 VD

C = 0.383809 λD
C = 1.91465 

r = 0.5 λP = 1.15393  
VS

C = 0.463935 λS
C = 1.52614 VD

C = 0.440283 λD
C = 1.82476 

r = 0.8 λP = 1.12062 VD
C = 0.517426 λD

C = 1.74176 
VS

C = 0.546112 λS
C = 1.46503  

Table. 3 
Effect of parameter m on the limit point voltage (static and dynamic cases), with n = r = 0.5 and K = 1.   

Static instability Dynamic instability 

m = 0.3 λP = 1.15393  
VS

C = 0.498346 λS
C = 1.52614 VD

C = 0.47294 λD
C = 1.82476 

m = 0.5 λP = 1.15393  
VS

C = 0.463935 λS
C = 1.52614 VD

C = 0.440283 λD
C = 1.82476 

m = 0.8 λP = 1.15393 VD
C = 0.401922 λD

C = 1.82476 
VS

C = 0.423513 λS
C = 1.52614  

Fig. 3. Effect of functionally graded parameters on the dynamic motion of the FGDE with Jm = 100 and P = 0.5. (a-b) Time history and phase plane 
diagram for n = r = m = 0.5, and K = 0, 1. Full/dashed lines: the DC voltage is just below/above the dynamic limit point voltage. 
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(1 + rK)
Jm
(
λmax − λ− 5

max

)

(
Jm − 2λ2

max − λ− 4
max + 3

) − (1 + mK)V2λ3
max − (1 + K)P = 0 (26)  

Simultaneously solving Eqs. (25) and (26) gives λmax = λD
C and VD

C , and consequently, the actuation stretch in the dynamic mode as λD
ac 

= λD
C/λP. 
In Table 1, we present the effect of the gradient parameter K on the static and DC dynamic limit point voltage. We increase K as K =

0.0, 0.25, 1.0, 2.5. In the static case, we see that λP increases, the critical voltage VS
C decreases, and the critical stretch λS

C increases. In 
the dynamic case, the trend is similar: the critical dynamic stretch λD

C increases while the dynamic critical voltage VD
C decreases. 

In Table 2 we look at the influence of the shear modulus gradient parameter r = μ2/μ1, and in Table 3, at the influence of the 
permittivity gradient parameter m = ε2/ε1. An important conclusion gleaned from the tables is that the dynamic critical limit point 
stretch is greater than the static critical voltage, allowing for a greater expansion of the plate before the onset of instability. 

In Fig. 3, we study the DC dynamic response numerically by plotting theλ − τ (time history) and dλ/dτ − λ (phase plane) curves. 
Here, we implement a Runge-Kutta method for the numerical time-integration of Eq. (19) with the initial conditions that the mem
brane is pre-stretched and at rest when the DC voltage is applied, i.e. λ(0) = λP and λ̇(0) = 0. 

Fig. 3 shows what happens when the applied voltage approaches the limit point voltage, in the cases n = r =m = 0.5, and K = 0, 1. 
When it is just below the limit point value identified in the tables (VD

C = 0.440283), the motion (full lines) is periodic and smooth, and 

centred around the static stretch corresponding to lowest root of Eq. (21) (VS
C = 0.463935). When it is just above, the membrane 

stretches extensively, to reach the maximum overshoot on the stiffening branch of the dynamic loading λmax − V curve, given by Eq. 
(25). It then oscillates periodically between that extreme value and λP, undergoing large amplitude motions (shown in Fig. 3 using 
dashed lines). Fig. 3 also shows the corresponding phase planes. 

4. Nonlinear resonance analysis 

In this section we investigate the resonances caused by external and parametric excitations for the fixed parameters n = r = m = 0.5 
and Jm = 100. 

To find the natural frequencies of the system, we re-write the equation of motion Eq. (19) in normal form, as d2λ /dτ2 + M (λ(τ)) =

0, where 

M (λ) =
(1 + K r )

(1 + K n )

Jm
(
λ − λ− 5)

(
Jm − 2λ2 − λ− 4 + 3

) −
(1 + Km)

(1 + K n )
V2λ3 −

(K + 1)
(1 + K n )

P (27)  

The equilibrium stretch λeq is found by solving M (λeq) = 0, which is the same as solving Eq. (21). Following the approach of Zhu et al. 
(2010), we look for small-amplitude oscillations in the neighborhood of λeq, as λ(τ) = λeq + x(τ), where x(τ) is small. Then the equation 
of motion, d2λ/dτ2 + M (λ) = 0, can be linearised to d2x/dτ2 + ω2

nx = 0, where 

ωn =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∂M

∂λ
(
λeq
)

√

(28) 

Fig. 4. Variations of the natural frequency of small-amplitude oscillations of the dielectric plate with the pre-stress load, for different values of the 
static voltage V = 0, 0.18, 0.25 when the plate is homogeneous (K = 0), and when it is functionally graded (K = 1.0, n = m = r = 0.5). 
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is the dimensionless natural frequency. 
We first focus on the role played by the tensile prestress P on the natural frequency, as illustrated in Fig. 4 for different values of the 

applied static voltage V. When the plate is homogeneous (K = 0), and the voltage is zero, the natural frequency attains its minimum 
value ωn ≈ 1.143 when P ≈ 2.055. Application of non-zero voltage acts both qualitatively and quantitatively on the dynamic response 
of the dielectric membrane. For increasing values of the applied voltage, the U shape of the curve is substantially preserved, but the 
minimum value of ωn decreases. Eventually, the voltage reaches a critical value V ≈ 0.2, as the prestress increases to a maximum value 
P ≈ 1.9. From Eqs. (27) and (28), and comparing with Eqs. (21) and (22), we see that solving ωn = 0 is equivalent to finding the critical 
limit point voltage. From the dynamical perspective, reaching the limit point voltage means that the condition ω2

n ≥ 0 is no longer 
satisfied and ωn becomes a purely imaginary quantity. Then vibrations with amplitude proportional to e±iωnt may grow unbounded, 
and the small-amplitude assumption is no longer valid. In that sense, the limit point voltage corresponds to an instability, at least in the 
linearized sense. Fig. 4 also shows the influence of the functional gradient, when K = 1.0, n = m = r = 0.5. 

The frequency-response behavior of the membrane in the proximity of the primary resonance is analysed in Fig. 5, by solving the 
nonlinear equation of motion The frequency-displacement curve begins with small-amplitude oscillations, smoothly followed by a 
small peak near half the natural frequency, corresponding to “superharmonic resonance”. As the excitation frequency approaches the 
natural frequency, the stable small-amplitude solution branch undergoes a cyclic-fold (CF) bifurcation, thus merging with the unstable 
solution branch at Ω ≈ 2.19, which is marked by CF1. Following a backward sweep at this point, the system response proceeds along 
the unstable periodic orbit, where the oscillation amplitude increases as the excitation frequency decreases, until yet another cyclic- 
fold bifurcation point is reached (not shown in the figure). This happens because the length of the stable solution branch that merges 
with the unstable branch is extremely short. 

To capture the right stable solution branch, the excitation frequency is set initially to 2.8 and is then reduced to 2.2 by backward 
sweep. We thus see that at high frequencies and far away from the resonance region, the response amplitude is attracted by small- 
amplitude periodic orbits, whose amplitude grows gradually as the excitation frequency is decreased. Following this branch, the 

Fig. 5. Frequency-response behavior of the FGDE near its primary resonance for VDC = VAC = 0.2, for (a) two different values of pre-stress load, (b) 
two different values of power law index. 

Fig. 6. Frequency-response behavior of the FGDE near principal parametric resonance, for (a) three different values of pre-stress load with VDC =

VAC = 0.36 and K = 0, (b) three different values of power law index with VDC = VAC = 0.38. 
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system dynamics loses its stability at a frequency close to 2.2, which is denoted by CF2. Note that the two bifurcation points CF1 and 
CF2 shown in the figure are not exactly on top of each other, meaning that there is a narrow frequency bandwidth in which there is no 
stable periodic response. 

The impact of pre-stress on the steady-state behaviour of the FGDE is illustrated in Fig. 5a. This figure shows that a small tensile pre- 
stress causes the bifurcation points to shift towards lower frequencies, an effect that is enhanced at higher frequencies. The impact of 
the power-law index for the functionally graded material is illustrated in Fig. 5b. Oppositely to the case where prestress is controlled, 
we now see that an increase in K results into shifting the bifurcation points toward higher frequencies; furthermore, the shift is 
frequency-independent, meaning that the bandwidth remains now constant. 

We now focus on the parametric resonance characteristics of the FGDE structure. To this end, the forcing frequency is set to be 
varying near twice the natural frequency of the structure, thus exciting the principal parametric resonance. Since here the forcing is 
proportional to the square of the applied voltage, (which is composed of both DC and AC components), two harmonic excitation terms 
are included in the system dynamics, one at the AC frequency (Ω) itself, and one at two times the AC frequency (2Ω). It is assumed that 
the AC frequency is swept near twice the AC frequency, making the first excitation term to excite the principal parametric resonance, 
whereas the second harmonic term does not produce resonance. For this reason, the activation of the principal parametric resonance is 
caused only by the first harmonic excitation term, whose frequency is the same as the AC signal frequency. 

Fig. 6 illustrates the steady-state dynamics of the FGDE structure in the neighbour of its principal parametric resonance. As shown 
in Fig. 6a, in the absence of pre-stress the frequency-displacement curve contains two almost horizontal solution branches, where 
frequency has only very mild variations. It is worth mentioning that the proposed system is under external excitation as well, creating 
an offset for the small-amplitude motion with respect to the non-zero static equilibrium. Compared to dynamic systems with equi
librium around zero, the horizontal branches correspond to the trivial solutions in the frequency-response curve. 

We note that there is a bias component in the system response, originating from the non-zero equilibrium position. According to 
Fig. 6a, as the pre-stress is increased, the level of the horizontal solution branches rises, meaning that the position of the static 
equilibrium point is shifted towards higher values. It is also observed that both subcritical and the supercritical primary Hopf bi
furcations (denoted by pH) occur. Another interesting observation is that the resonance frequency bandwidth becomes broader as the 
value of the pre-stress tensile force increases, meaning that the parametric resonance activation level drops. 

Fig. 7. Dynamic response of the FGDE at Ω = 2ω0, for two different values of the applied voltage, VDC = VAC = 0.3 and VDC = VAC = 0.31; (a) time 
history of the system response, (b) phase portrait of the steady-state response of the structure. In both cases, the gradient index is K = 0. 

Fig. 8. FFT plot of the dynamic resposne of the FGDE structure driven at Ω = 2ω0, for two different values of the applied voltage; (a) VDC = VAC =

0.3, (b) VDC = VAC = 0.31. The gradient index is K = 0. 
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On the other hand, the power-law index K plays an opposite role on the parametric resonance characteristics. Fig. 6b shows the 
dependence of the parametric resonance activation level with the order of the functionally graded material. Now, as K is increased, the 
bifurcation points loci shift towards higher frequencies, while the resonance bandwidth is reduced. 

The time history of the system and its phase portrait are further analysed in Fig. 7a and 7b. To capture the occurrence of resonance, 
the excitation frequency is now set at twice the natural frequency, because in the application of a voltage in the form of DC+AC, the 
natural frequency changes because of the bias part of the applied voltage. 

As is clear from Fig. 7, when the applied voltage is VDC = VAC = 0.3 (which is below the activation level of the parametric reso
nance), the response amplitude remains substantially close to the static equilibrium solution; however, when the voltage is further 
increased to 0.3 + 0.01, the response grows in amplitude until it reaches a stable large-amplitude orbit, with period equal to twice the 
forcing period. 

The frequency spectrum corresponding to both time-histories of Fig. 7 is analysed in Fig. 8 through a Fast Fourier Transform (FFT). 
For VDC = VAC = 0.3 (below the activation level of the parametric resonance) there is only one frequency peak at the forcing frequency 
(Ω ≈ 2ω0), corresponding to the main harmonic. When the parametric pump exceeds the activation level, VDC = VAC = 0.3 + 0.01, a 
second harmonic with large amplitude appears at Ω

2 ≈ ω0, indicating that the response is now composed of two harmonics, with the 
dominant one taking place at half the forcing frequency. This is consistent with the results based on the inspection of the time history. 

5. Chaotic oscillations 

Due to the nonlinear nature of the behavior of DEs, chaotic oscillations can be expected (Zou et al., 2022). To investigate this 
possibility, we consider the following nondimensional applied voltage, 

V = VDC + VACcos(Ωτ) (29)  

where VDC stands for the static voltage, VAC denotes the amplitude of time-varying voltage, and Ω is the dimensionless excitation 
frequency (Zhu et al., 2010). 

By substituting Eq. (29) into Eq. (19), we obtain the following ordinary differential equation for λ, 

d2λ
dτ2 +

(1 + K r )

(1 + K n )

Jm
(
λ − λ− 5)

(
Jm − 2λ2 − λ− 4 + 3

) −
(1 + Km)

(1 + K n )
V2

DC

(

1 +
VAC

VDC
cos(Ωτ)

)2

λ3 −
(K + 1)

(1 + K n )
P = 0 (30)  

After solving this equation through a Runge-Kutta method, the Poincaré maps (representing velocity dλ/dτ versus displacement λ) are 
obtained through sections of the response history, for time steps equal to 2π/Ω. This analysis is aimed at elucidating the role of the 
parameters K, n, r, m on the onset of chaotic oscillations. For the other parameters we set Jm = 100, P = 0.5, VDC =

̅̅̅̅̅̅̅
0.1

√
, VAC /VDC =

0.35. The results of the Poincaré maps are also paralleled by the study of the “Largest Lyapunov Exponent” (LLE) of the system – see 
(Amabili, 2018) for a thorough discussion on this method. 

As can be appreciated from Tables 1 to 3, the control parameters affect the equilibrium points and the natural frequency. Therefore, 
to study the response of the system we set Ω = 1.5, which is far from the natural frequency of the system. Furthermore, we set λ(τ =
0) = 1.5 for the initial stretch, which is far from the equilibrium state, and we prescribe null initial velocity. 

We first focus on the role of the control parameter K in the range between 0 and 2.55. For this analysis, the remaining in
homogeneity parameters are set as n = r = m = 0.5. The results, which are reported in Fig. 9a, highlight the presence of chaos for K 
between 0 and 1.48. Past this range, the motion ceases to be chaotic and becomes quasiperiodic. 

In the interval 0 <K < 1.48 we obtain a cloud of points mapped on the Poincaré section, a sign of chaos. In contrast, for the 
quasiperiodic motion, the points appear as part of a closed curve. Another way of identifying the presence of chaos is to plot a vertical 

Fig. 9. Nonlinear dynamic characteristics of the FGDE with n = 0.5, r = 0.5, and m = 0.5. (a) Bifurcation diagram of Poincaré map. (b) Largest 
Lyapunov exponent (LLE). 
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line in the bifurcation diagram for each value of the control parameter; if this line crosses a single point, this is a periodic motion; if it 
crosses in two points, we have a periodic-2 motion.; etc. The chaotic behavior emerges if instead there is a large number of points on 
the vertical line. 

Note that the outcomes of the bifurcation diagram are consistent with the analysis of the LLE, which is shown in Fig. 9b. We here 
recall that the value of the LLE is positive, zero and negative if the behavior of the system is chaotic, quasiperiodic and periodic, 
respectively. 

The transition between periodic, quasiperiodic and chaotic regimes can also be appreciated by studying the time history and the 
phase diagram. In Fig. 10a-b we report these plots for K = 1, whereas K = 2.5 is considered in Fig. 10c-d. These choices for K are 
motivated by the conclusions of the frequency-response analysis (see Fig. 6). When K = 1, the time history plotted in Fig. 10a has an 

Fig. 10. Nonlinear dynamic characteristics of the FGDE with n = 0.5, r = 0.5, and m = 0.5. (a-b) Time history and Poincaré map for K = 1. (c-d) 
Time history and Poincaré map for K = 2.5. 

Fig. 11. Nonlinear dynamic characteristics of the FGDE with K = 1, r = 0.5, and m = 0.5. (a) Bifurcation diagram of Poincaré map. (b) Largest 
Lyapunov exponent (LLE). 
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irregular behavior due to chaos. This figure also shows the presence of electromechanical instabilities, such as snap-through and snap- 
back, which are evident due to abrupt jumps between small and high stretches. These plots also highlight the bounding role of limit 
stretch extensibility of the Gent material. The Poincaré map for K = 1, which is obtained by sampling the excitation frequency Ω at 
every period (Ghayesh & Farokhi, 2015), is illustrated in Fig. 10b. An uncountable number points appear in this plot, again a signature 
of chaotic oscillations. 

When the control parameter K is increased to 2.5, the behavior becomes quasiperiodic, with the clear appearance of beatings. In the 
Poincaré map, the signature of quasiperiodicity is evident from the closedness of the response curve. We finally note, from Figs. 9 and 
10, that an increase of K corresponds to a reduction of the amplitude of oscillations. 

Taken together, the conclusions of the analysis above show that the parameter K plays a fundamental and well-defined role on the 
onset of chaos in the FGDE system. 

We now consider the influence of the control parameters n, r, m on the dynamic behaviour of the system. Concerning the 
dependence on n, as illustrated from Fig. 11, we see that this parameter plays a role which is analogous to the role of K: oscillations are 
chaotic for n between 0 and 0.54, and past this value the oscillations are quasiperiodic. 

Far less trivial is the role played by the parameter r, as illustrated in Fig. 12. The domain for the controlling parameter r is from 0 to 
0.9. As r increases, we find that windows of chaotic and quasiperiodic behaviour alternate. 

Finally, the parameter m does not seem to play a crucial role into the occurrence of chaos – at least, when the values of the 
remaining parameters are set in the range of interest in this manuscript. This feature can be appreciated by inspection of Fig. 13. 

6. Conclusion 

We studied the dynamical response of a functionally graded dielectric elastomer membrane, subjected to an in-plane tensile 
prestress and a time-varying voltage. The dielectric membrane is thin and incompressible, and its constitutive behavior is of the Gent 
type (strain-stiffening). The material is functionally graded in the thickness direction, with material parameters such as shear modulus, 
mass density and electrical permittivity varying according to a common power law. 

We then studied the dynamic behavior of the system, by first deriving the equation of motion in terms of the in-plane stretch λ(t), 

Fig. 12. Nonlinear dynamic characteristics of the FGDE with K = 1, n = 0.5, and m = 0.5. (a) Bifurcation diagram of Poincaré map. (b) Largest 
Lyapunov exponent (LLE). 

Fig. 13. Nonlinear dynamic characteristics of the FGDE with K = 1, n = 0.5, and r = 0.5. (a) Bifurcation diagram of Poincaré map. (b) Largest 
Lyapunov exponent (LLE). 
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and then solving this equation numerically using a fourth-order Runge-Kutta method. 
Our analysis is fundamentally aimed at elucidating the role played by the functionally graded parameters of the dielectric mem

brane on its static and dynamic behavior, with special emphasis on the occurrence of chaos. To this end, we produced voltage-stretch 
diagrams V − λ, voltage-time diagrams λ − τ, Poincaré maps, bifurcation diagrams of Poincaré maps, and Largest Lyapunov Exponent 
diagrams, and we have studied the resonance response of the system with the aid of shooting and arc-length continuation methods. 

Our study ultimately leads to the following conclusions:  

(1) Functional grading of the dielectric membrane deeply affects both its static and its dynamic behavior.  
(2) Functional grading plays an important role on the snap-through and snap-back instabilities.  
(3) Functional grading of the dielectric membrane has a very strong role on the emergence of chaos.  
(4) Relative to the primary resonance, the system undergoes a cyclic fold bifurcation.  
(5) Relative to the principal parametric resonance, both subcritical and supercritical primary Hopf bifurcations arise in functionally 

graded dielectric elastomers. 

In conclusion, our study reveals that functional grading is an effective and promising method to broaden the range of controls on 
the static and dynamic behavior of dielectric elastomers subjected to prestress and time-varying voltages. 
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