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A B S T R A C T

We consider shear wave propagation in soft viscoelastic solids of rate type. Based on objective stress rates, the
constitutive model accounts for finite strain, incompressibility, as well as stress- and strain-rate viscoelasticity.
The theory generalises the standard linear solid model to three-dimensional volume-preserving motions of
large amplitude in a physically-consistent way. The nonlinear equations governing shear motion take the form
of a one-dimensional hyperbolic system with relaxation. For specific objective rates of Cauchy stress (lower-
and upper-convected derivatives), we study the propagation of acceleration waves and shock waves. Then we
show that both smooth and discontinuous travelling wave solutions can be obtained analytically. We observe
that the amplitude and velocity of steady shocks are very sensitive to variations of the stress relaxation time.
Furthermore, the existence of steady shocks is conditional. Extension of these results to the case of multiple
relaxation mechanisms and of the Jaumann stress rate is attempted. The analysis of simple shearing motions
is more involved in these cases.
1. Introduction

Soft solids are materials that can be easily deformed through the
application of external forces. In Physics and Engineering, this term
is commonly used for highly deformable materials such as elastomers
(Haupt and Lion, 2002), bitumen (Filograna et al., 2009), dough (Phan-
Thien et al., 1997), as well as soft biological tissues (Berjamin and
Chockalingam, 2022). Due to their low stiffness, soft solids are rou-
tinely subjected to large deformations and dynamic motions of arbitrary
frequency.

The mechanical modelling of soft solids has been approached both
by the fluid mechanics and solid mechanics communities. In both cases,
incompressibility is commonly assumed, thus restricting the motion to
volume-preserving deformations (e.g., simple shear or pure torsion).
Over the years, various incompressible viscoelasticity theories have
also been proposed to describe the dynamic behaviour of soft solids,
including the modelling of dissipation. Plastic deformations are usually
neglected in soft solids for most applications given their large yield
strength.

Due to the occurrence of large deformations, related continuum
theories must be formulated within the finite strain theory (Holzapfel,
2000), in general. The simplest model consists of a Newtonian viscous
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stress added to an elastic stress contribution (Berjamin, 2023), which
results in a nonlinear three-dimensional version of the classical Kelvin–
Voigt viscoelasticity theory. Unfortunately, such a model is valid in the
low frequency range only, and it is not able to reproduce relaxation of
stress (Banks et al., 2011; Carcione, 2015).

To overcome these issues, several versions of stress- and strain-rate
incompressible viscoelasticity are found in the literature. Generalis-
ing Cormack and Hamilton (2018) to three-dimensional motions, Sac-
comandi and Vianello (2021) introduce a three-dimensional Maxwell
theory similar to the models presented by Haupt and Lion (2002). In all
these cases, the constitutive law is augmented by an evolution equation
for the viscous stress that reduces to the Kelvin–Voigt model in a given
limit. As pointed out by Morro and Giorgi (2020), the process leading
to stress rate viscoelasticity theories is very similar to the derivation of
the Maxwell–Cattaneo–Vernotte hyperbolic theory of heat conduction.

Another popular approach, known as quasi-linear viscoelasticity
(QLV), does not include any explicit constitutive assumption for the
description of the viscous stresses. Instead, the viscoelastic stress re-
sponse is directly deduced from the inviscid elastic response by means
of a hereditary integral (Boltzmann superposition). The latter can be
converted into linear differential equations when the hereditary inte-
gral is based on a Prony series (Berjamin and Chockalingam, 2022). In
vailable online 20 September 2023
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this case, connections with the Simo model can be established, see the
discussions in Yagimli et al. (2023).

One feature of the dynamic response of nonlinear viscoelastic ma-
terials is the existence of travelling wave solutions in shear, aka steady
progressive waves. These waves have the particularity of keeping an
invariant wave profile throughout the motion which occurs at a suit-
able constant speed. Similarly to other solitary waves, those perma-
nent waveforms result from the interaction between nonlinearity and
dispersion, here of dissipative nature.

In the Kelvin–Voigt case, smooth travelling wave solutions can be
derived exactly, making this one of the few examples of a purely analyt-
ical solution in nonlinear viscoelasticity (Berjamin, 2023). Implicit ana-
lytical expressions can also be obtained for a specific history-dependent
material model (Pucci and Saccomandi, 2015). In the QLV case, the
study of solitary waves in shear is less straightforward. Nevertheless,
smooth travelling wave solutions can still be obtained numerically (De
Pascalis et al., 2019).

For the model considered by Pucci and Saccomandi (2015), it was
reported that the wave profile can become multi-valued under certain
conditions, suggesting the existence of weak discontinuous solutions in
shear. Discontinuous travelling waves were also described by Cormack
and Hamilton (2018) based on an approximate one-dimensional the-
ory, which involves a generalised Burgers-type equation that governs
shearing motions (Berjamin, 2023).

The existence of steady shock waves in compression is extensively
discussed in the review by Schuler et al. (1973), which covers various
theoretical and experimental results related to the study of such waves.
In particular, it was shown that the theory of steady shocks correlates
well with one-dimensional experimental results obtained in a specific
configuration. Furthermore, similar discontinuous wave profiles were
obtained in torsion by Sugimoto et al. (1984b) based on a thin rod
approximation (Sugimoto et al., 1984a).

In relation with the above literature, we consider shear wave prop-
agation in materials of rate type governed by the three-dimensional
theory of Saccomandi and Vianello (2021), whose properties are sum-
marised in Section 2. We rewrite the equations of motion as a one-
dimensional hyperbolic system of conservation laws with relaxation, in
the particular case of the lower- and upper-convected objective stress
rates (Haupt and Lion, 2002). The propagation of shear acceleration
waves and shear shock waves is studied in Section 3, and travelling
wave solutions are detailed in Section 4, including smooth kinks and
steady shocks. Finally, we reconsider these derivations in the case of
multiple relaxation mechanisms (Section 5) and in the case of the
Jaumann stress rate (Section 6).

In summary, we show that steady shear shock waves can propagate
in soft solids of rate type, by exploiting the simplifications provided by
the lower- and upper-convected stress rates (Saccomandi and Vianello,
2021). This way, fully analytical travelling wave solutions are obtained,
including discontinuous solutions. These results are obtained using
a three-dimensional theory specialised to simple shear motions, but
without relying on any further approximation, see Berjamin (2023) for
a presentation of common approximations used in nonlinear acoustics.
Moreover, we provide elements indicating that a similar behaviour
might be obtained for multiple relaxation mechanisms and for the Jau-
mann stress rate, even though the complete mathematical derivations
are less simple in these cases.

2. Basic equations

2.1. Constitutive model

Let us introduce the deformation gradient tensor 𝑭 = 𝜕𝒙∕𝜕𝑿, which
is the gradient of the current position 𝒙 of a particle with respect
to its reference position 𝑿. We introduce also the displacement field
𝒖 = 𝒙 −𝑿. In incompressible materials, volume change is not allowed,
so that 𝑭 is unimodular (det 𝑭 ≡ 1). Moreover, the mass density 𝜌 > 0
2

p

is constant. Here, the spatial and temporal coordinates are omitted, but
we implicitly assume 𝑭 = 𝑭 (𝑿, 𝑡), etc.

We assume that the Cauchy stress tensor 𝑻 may be decomposed
additively as

𝑻 = −𝑝𝑰 + 𝑻 E, 𝑻 E = 𝑻 e + 𝑻 v, (1)

where 𝑻 e is an elastic contribution, 𝑻 v is a viscous one, and their
sum 𝑻 E is the extra stress. The first term of (1)a involves the identity
tensor 𝑰 and a scalar Lagrange multiplier 𝑝 = 𝑝(𝑿, 𝑡) accounting for the
incompressibility constraint. The undetermined stress −𝑝𝑰 is presented
in Section 6.3 of Holzapfel (2000) in the elastic case; the same principle
holds in the viscoelastic case (Haupt and Lion, 2002).

We assume that the elastic stress contribution is of Mooney–Rivlin–
Yeoh type:

𝑻 e = 2𝐶1 (1 + 𝛽 (tr𝑩 − 3))𝑩 − 2𝐶2𝑩−1, (2)

where 𝑩 = 𝑭𝑭 ⊤ is the left Cauchy–Green strain tensor. Here, 𝐶1, 𝐶2
are the Mooney parameters and 𝛽 is a coefficient of nonlinearity. The
infinitesimal shear modulus equals 𝜇 = 2 (𝐶1 + 𝐶2) > 0. The above
constitutive law has been used in relation with the modelling of brain
tissue (Berjamin and Chockalingam, 2022), but other choices of elastic
response are possible.

The evolution of the viscous stress is governed by the Maxwell-type
differential equation (Saccomandi and Vianello, 2021)

𝑻 v + 𝜏𝒟 (𝑻 v) = 2𝜂𝑫, (3)

where 𝜂 > 0 is the shear viscosity and 𝜏 > 0 is a characteristic time.
ere, the strain rate tensor 𝑫 = 1

2 (𝑳 + 𝑳⊤) is the symmetric part of
he Eulerian velocity gradient 𝑳 = 𝑭̇ 𝑭 −1, which involves the material
ime-derivative 𝑭̇ of 𝑭 . The tensor 𝒟 (𝑻 v) is a rate of viscous stress to
e specified subsequently. By virtue of incompressibility, we note that
he tensors 𝑳, 𝑫 are trace-free.

In Eq. (3), the stress tensor 𝑻 v is objective or frame-indifferent, mean-
ng that it does not depend on the motion of the observer (Holzapfel,
000). Furthermore, while 𝑭̇ and 𝑳 are not objective, the strain rate
ensor 𝑫 is objective. Thus, to ensure the consistency of Eq. (3) with
espect to objectivity, the stress rate 𝒟 (𝑻 v) therein needs to be objec-
ive as well. In general, 𝒟 (𝑻 v) should not be replaced by 𝑻̇ v, which is
ot objective.

Suitable choices for 𝒟 (𝑻 v) are not unique. Here, we consider an
bjective rate defined by

(𝑻 ) = 𝑻̇ + 𝜙−1
2

(

𝑳𝑻 + 𝑻𝑳⊤) + 𝜙+1
2

(

𝑳⊤𝑻 + 𝑻𝑳
)

(4)

here 𝜙 ∈ {−1, 0, 1}. The expression (4) combines the ‘upper-convected’
ldroyd rate for 𝜙 = −1 (also equivalent to the Truesdell rate in

he incompressible case); the ‘co-rotational’ Jaumann–Zaremba rate
or 𝜙 = 0; and the ‘lower-convected’ Cotter–Rivlin rate for 𝜙 = 1,
ee definitions in the monograph by Holzapfel (2000). This way, one
nsures that the rate Eq. (3) is frame-indifferent.

Let us compute the objective rate (4) of the extra stress 𝑻 E, as
efined in (1)b. Using the rate Eq. (3), we arrive at
E + 𝜏𝒟 (𝑻 E) = 𝑻 e + 2𝜂𝑫 + 𝜏𝒟 (𝑻 e). (5)

his equivalent formulation of the above constitutive model allows
irect comparison with other approaches found in the literature. In
articular, Filograna et al. (2009) do not include the term 𝜏𝒟 (𝑻 e) in
he right-hand side of (5), see Eq. (68).

The rate Eq. (3)–(4) with 𝜙 = −1 was also proposed by Phan-Thien
t al. (1997) to model the viscoelastic behaviour of dough. For the cases
= ±1, thermodynamic consistency is addressed by Haupt and Lion

2002) and, therefore, the related stress-rate theories are physically
dmissible. Thermodynamic consistency is proved by Morro and Giorgi
2020) in the case 𝜙 = 0. Essentially, these results mean that there is
o need for additional restrictions of the material parameters to avoid
hysical inconsistencies for all 𝜙, which contrasts with the observations
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made by Farina et al. (2022) in tensile creep. We discuss potential issues
with the latter results in Appendix where the tensile creep problem is
carefully reconsidered.

Up to a suitable redefinition of the arbitrary Lagrange multiplier 𝑝
accounting for incompressibility, we observe that the constitutive law
(1)–(3) can be rewritten as

𝑻 = −𝑝𝑰 + 𝑻 e
d + 𝑻 v

d,

𝑻 v
d + 𝜏𝒟 (𝑻 v)d = 2𝜂𝑫,

(6)

where (∙)d = (∙) − 1
3 tr(∙)𝑰 defines the deviator operator. In passing, it

s worth pointing out that the deviator of an objective second-order
ensor is an objective quantity as well. Thus, the evolution Eq. (6)b is

naturally frame-indifferent and trace-free.
This evolution equation is slightly different to the one in Liapide-

vskii et al. (2011), where the deviatoric stress rate 𝒟 (𝑻 v)d is replaced
by

𝒟 (𝑻 v
d) = 𝒟 (𝑻 v)d + 1

3 tr(𝒟 (𝑻 v))𝑰 − 1
3𝒟 (tr(𝑻 v)𝑰)

= 𝒟 (𝑻 v)d + 2
3𝜙

(

tr(𝑻 v𝑫)𝑰 − tr(𝑻 v)𝑫
)

.
(7)

For this modified model, Pukhnachev (2010) selects the Jaumann
derivative 𝜙 = 0 in order to keep the evolution of deviatoric viscous
stresses trace-free. Furthermore, thermodynamic consistency is proved
in this special case where the relationship 𝒟 (𝑻 v

d) = 𝒟 (𝑻 v)d is satisfied.
Therefore, this result is coherent with that obtained by Morro and
Giorgi (2020).

Eq. (3) can be integrated in time as (Goddard and Miller, 1966)

𝑻 v =
2𝜂
𝜏 ∫

𝑡

−∞
e−(𝑡−𝑠)∕𝜏𝜣𝑡|𝑠𝑫(𝑠)𝜣⊤

𝑡|𝑠d𝑠, (8)

where 𝜣𝑡|𝑠 is defined as the fundamental matrix of the initial-value
problem

𝜣̇𝑡|𝑠 = − 𝜙−1
2 𝑳𝜣𝑡|𝑠 −

𝜙+1
2 𝑳⊤𝜣𝑡|𝑠, 𝜣𝑠|𝑠 = 𝑰 . (9)

his result can be verified by evaluation of 𝑻̇ v from (8) based on
he Leibniz integral rule. Again, it should be understood that the
agrangian coordinates 𝑿 are used here.

We note that Eqs. (8)–(9) correspond to the Johnson and Segalman
1977) fluid model, whose parameter ‘𝑎’ equals −𝜙, see Eqs. (2.18)–

(2.25) therein. With this connection in mind, the authors of the above
study remark that 𝜙 = −1 agrees with the affine molecular model
by Lodge (1974). For other related models, the reader is referred to
Chapter 4 of Macosko (1994).

From the integral expression (8) of the viscous stress, we observe
that the tensor 𝑻 v is a memory variable whose current value at time
𝑡 depends on the motion’s history. Using the relationship 𝑳 = 𝑭̇ 𝑭 −1,
direct integration of (9) yields

𝜣𝑡|𝑠 = − 𝜙−1
2 𝑭 𝑡|𝑠 +

𝜙+1
2 𝑭 −⊤

𝑡|𝑠 , 𝜙 = ±1, (10)

here 𝑭 𝑡|𝑠 = 𝑭 (𝑡)𝑭 −1(𝑠) is the relative deformation gradient from
he configuration at the intermediate time 𝑠 to the configuration at
he current time 𝑡. For 𝜙 = ±1, the above expression provides useful
implifications of (8), see also (Haupt and Lion, 2002). Unfortunately,
o such formula is known in the case 𝜙 = 0, to the authors’ present
nowledge.

.2. Equations of motion

The Lagrangian equations of motion in strong form read (Holzapfel,
000)

̇ = ∇𝒗, 𝜌𝒗̇ = ∇ ⋅ 𝑷 , (11)

here 𝒗 = 𝒙̇ is the velocity field, 𝑷 = 𝑻𝑭 −⊤ is the first Piola–Kirchhoff
tress tensor, and ∇ is the gradient operator in the material description
i.e., partial differentiation is performed with respect to the reference
3

m

osition 𝑿). For the purpose of potential finite element implementa-
ions, the reader is referred to Chapter 8 of Holzapfel (2000) where
ariational principles accounting for incompressibility are presented.

According to Eq. (1), the first Piola–Kirchhoff stress tensor can be
ecomposed as 𝑷 = −𝑝𝑭 −⊤ + 𝑷 E, where −𝑝𝑭 −⊤ is a constitutively
ndetermined reaction stress that accounts for incompressibility, and
E = 𝑻 E𝑭 −⊤ is the extra stress contribution deduced from the constitu-

ive law (2)–(3). The divergence operator in Eq. (11) satisfies [∇ ⋅𝑷 ]𝑖 =
𝑖𝑗,𝑗 where indices after the comma denote spatial differentiation, and
ummation over repeated indices is performed (Einstein notation).

nfinitesimal-strain limit. Let us linearise the equations of motion (11)
ith respect to the displacement gradient tensor ∇𝒖 = 𝑭 − 𝑰 about a

tress-free undeformed state. The Piola–Kirchhoff stresses satisfy 𝑷 ≃ 𝑻 ,
nd the elastic stress contribution reduces to
e = 2𝜇𝜺, 𝜺 = 1

2 (∇𝒖 + ∇⊤𝒖), (12)

where 𝜺 is the infinitesimal strain tensor. Given that the stress rates
satisfy 𝒟 (𝑻 ) ≃ 𝑻̇ in the linear limit, the evolution Eq. (3) for the viscous
tress becomes
v + 𝜏𝑻̇ v = 2𝜂𝜺̇, (13)

or all 𝜙.
Next, we compute 𝑻 + 𝜏𝑻̇ using the decomposition (1) and the

inearised Eqs. (12)–(13). Following the application of the deviator
perator (∙)d introduced in Eq. (6), we recover the tensorial Standard
inear Solid (SLS) differential equation for the deviatoric stress,

d + 𝜏𝑻̇ d = 2𝜇
(

𝜺d + 𝜏𝜀𝜺̇d
)

, 𝜏𝜀 = 𝜏 +
𝜂
𝜇
, (14)

where we have used the linearised incompressibility condition tr 𝜺 = 0.
Let us postulate the harmonic plane-wave form 𝒖 ∝ ei(𝜔𝑡−𝜅𝒏⋅𝑿) where

𝜔 is the angular frequency, 𝜅 is the wave number, and 𝒏 is a unit vector.
Injecting this Ansatz in the incompressibility condition tr 𝜺 = 0 gives
us the orthogonality condition 𝒖 ⋅ 𝒏 = 0. Next, the linearised equations
of motion lead to the classical SLS dispersion relationship (Carcione,
2015)

𝜌𝜔
2

𝜅2
= 𝜇

1 + i𝜔𝜏𝜀
1 + i𝜔𝜏 = 𝜇∞

(

1 −
𝑔

1 + i𝜔𝜏

)

, (15)

with 𝜇∞ = 𝜇𝜏𝜀∕𝜏 and 𝑔 = 1 − 𝜏∕𝜏𝜀.
Some related properties follow straightforwardly. In fact, for a real

angular frequency 𝜔 > 0, the wave dissipation factor deduced from (15)
equals (Carcione, 2015)

−
Im(𝜅2)
Re(𝜅2)

=
𝜔 (𝜏𝜀 − 𝜏)
1 + 𝜔2𝜏𝜀𝜏

, (16)

which is maximum at the frequency 𝜔𝑐 = 1∕
√

𝜏𝜀𝜏. The dissipation
actor (16) should remain positive. Here, we observe that the condition
𝜀 > 𝜏 ensuring dissipative behaviour is naturally satisfied given
q. (14). Hence, we have 1∕𝜏𝜀 < 𝜔𝑐 < 1∕𝜏.

The present model has two elastic limits corresponding to low
frequency, 𝜔 ≪ 1∕𝜏𝜀 (or long time), and high frequency, 𝜔 ≫ 1∕𝜏 (or
hort time). Using the above expression of the dynamic modulus (15),
e observe that the low-frequency equilibrium shear modulus equals 𝜇,
hereas the high-frequency instantaneous shear modulus equals 𝜇∞.

These properties can be inferred directly from the constitutive law.
n fact, for extremely slow motions (i.e., with small velocity gradients
nd small stress rates), the evolution Eq. (3) yields 𝑻 v ≃ 𝟎. Thus, the
xtra stress satisfies 𝑻 E ≃ 𝑻 e, whose effective shear modulus is 𝜇.

For very fast motions (i.e., with large velocity gradients and large
tress rates), the evolution Eq. (3) becomes 𝒟 (𝑻 v) ≃ 2𝜂𝑫∕𝜏. Upon time
ntegration, we therefore find 𝑻 v = 2𝜂∕𝜏 ∫ 𝑡

−∞ 𝜣𝑡|𝑠𝑫(𝑠)𝜣⊤
𝑡|𝑠d𝑠, which

ecomes 𝑻 E ≃ 2𝜇∞𝜺 in the infinitesimal-strain limit. The effective shear
odulus is 𝜇 in this limit.
∞
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3. Plane shear waves

3.1. Governing equations

Given that the material is isotropic, let us consider a plane shear
wave 𝒖 = 𝑢(𝑋, 𝑡)𝒆2 propagating along 𝑋 and polarised along 𝑌 , the first
nd second components of the Lagrangian position vector in orthonor-
al Cartesian coordinates. Hence, the components of the deformation

radient tensor are

=
⎡

⎢

⎢

⎣

1 0 0
𝛾 1 0
0 0 1

⎤

⎥

⎥

⎦

, (17)

here 𝛾 = 𝜕𝑋𝑢 is the shear strain. For the present simple shear
eformation, we note that 𝑥 = 𝑋. Furthermore, since det 𝑭 ≡ 1, the
estriction to volume-preserving motions is naturally satisfied.

Now, we write the equations of motion (11) for the simple shear
eformation (17). We introduce the shear velocity 𝑣 = 𝜕𝑡𝑢 and the
uantities

𝑟 = 𝑇 v
21, 𝜇𝑠 = − 𝜙−1

2 𝑇 v
11 −

𝜙+1
2 𝑇 v

22 (18)

deduced from the components of the viscous stress, which correspond
to rescaled viscous shear stresses or viscous compression stresses, re-
spectively. Thus, we arrive at the first-order system of partial differen-
tial equations

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛾𝑡 = 𝑣𝑥,

𝜌𝑣𝑡 = 𝜎𝑥,

𝜏𝑟𝑡 = (𝜂∕𝜇 + 𝜏𝑠) 𝑣𝑥 − 𝑟,

𝜏𝑠𝑡 = (𝜙2 − 1)𝜏𝑟𝑣𝑥 − 𝑠,

(19)

where indices indicate partial differentiation. The shear stress 𝜎 = 𝑃21 =
𝑇21 deduced from the constitutive law takes the form

𝜎 = 𝜇
(

𝛾 + 𝑏𝛾3 + 𝑟
)

, (20)

where 𝑏 = 𝛽𝐶1∕𝜇 is a parameter of nonlinearity.
Looking at the system (19), it appears that the case 𝜙 = ±1 offers

useful simplifications. In fact, we then have 𝑠 = 𝑠0(𝑥) e−𝑡∕𝜏 where 𝑠0
is an arbitrary function to be determined. Thus, these simplifications
produce 𝑠 ≡ 0 if the material is initially at rest, which will be true
in most of the cases considered hereinafter. Then, the system (19)
reduces to a first-order system of balance laws with one memory
variable describing the history of viscous shear stresses, 𝑟. This system
is very similar to the one-dimensional model proposed by Cormack
and Hamilton (2018). It is also similar to the quasi-linear viscoelastic
system (QLV) of Berjamin and Chockalingam (2022), De Pascalis et al.
(2019), although it is even simpler. In fact, it involves only three partial
differential equations instead of four.

Dimensionless form. Let us introduce the reference duration 𝑡r = 𝜂∕𝜇
and distance 𝑥r = 𝑡r

√

𝜇∕𝜌, where 𝜇 is the shear modulus. Thus, the
scaled coordinates 𝑡 = 𝑡∕𝑡r and 𝑥̄ = 𝑥∕𝑥r are dimensionless. The scaling
procedure is then achieved by introducing the dimensionless quantities

̄ = 𝛾
√

𝑏, 𝑣̄ =
𝑣
√

𝑏
𝑥r∕𝑡r

, 𝑟̄ = 𝑟
√

𝑏, 𝜏 = 𝜏
𝑡r
. (21)

hus, from Eqs. (19)–(20) with 𝜙 = ±1, we arrive at

𝛾𝑡 = 𝑣𝑥,

𝑣𝑡 = (𝛾 + 𝛾3 + 𝑟)𝑥,

𝜏𝑟𝑡 = 𝑣𝑥 − 𝑟,

(22)

n which all the variables should have an overbar (the latter is omitted
ere for the sake of simplicity).
4

v

Fig. 1. Typical wave profile for an acceleration wave (dashed line) and for a shock
wave (dotted line) propagating towards increasing 𝑥 into an undeformed domain.

The above dimensionless form obtained for 𝜙 = ±1 will be studied
hereinafter. For this purpose, we introduce the conservative system of
balance laws with relaxation

𝐪𝑡 + 𝐟 (𝐪)𝑥 = 𝐑𝐪, (23)

where 𝐪 = [𝛾, 𝑣, 𝑟]⊤,

𝐟 (𝐪) = −
⎡

⎢

⎢

⎣

𝑣
𝛾 + 𝛾3 + 𝑟

𝑣∕𝜏

⎤

⎥

⎥

⎦

, 𝐑 = −
⎡

⎢

⎢

⎣

0 0 0
0 0 0
0 0 1∕𝜏

⎤

⎥

⎥

⎦

. (24)

For this system, the eigenvalues of the diagonalisable Jacobian matrix

𝐀(𝐪) = −
⎡

⎢

⎢

⎣

0 1 0
1 + 3𝛾2 0 1

0 1∕𝜏 0

⎤

⎥

⎥

⎦

= 𝜕𝐟
𝜕𝐪

(25)

equal {±𝑐(𝛾), 0}, where the shear wave speed reads

𝑐(𝛾) =
√

1 + 3𝛾2 + 1∕𝜏 . (26)

Since these characteristic wave speeds are always real and distinct, the
system (23) is unconditionally strictly hyperbolic (LeVeque, 2002).

Note in passing that 𝜏 → ∞ recovers perfect elasticity, and that 𝜏 →
0 recovers strain-rate viscoelasticity. In the latter case, the shear wave
speed (26) becomes infinite. This feature is reminiscent of Maxwell–
Cattaneo–Vernotte hyperbolic heat conduction which entails infinite
wave speeds as the relaxation time tends towards zero, i.e. in the limit
of Fourier heat conduction.

In the upcoming subsections, we will discuss the properties of two
types of singular nonlinear waves, namely acceleration waves and shock
waves. In both cases, we consider right-going waves, i.e., waves that
propagate towards increasing 𝑥, into a region where the material is in
a given equilibrium state. In Fig. 1, we represent the typical evolution
of the shear strain for acceleration and shock fronts impinging upon
an undeformed domain. The analysis of acceleration waves and shock
waves will then be used to study travelling wave solutions that keep an
invariant profile throughout the motion.

3.2. Acceleration waves

In a similar fashion to Berjamin and Chockalingam (2022), let
us analyse the evolution of acceleration waves within the first-order
system of balance laws (23) (i.e., singularities corresponding to jumps
in the gradient 𝐪𝑥 of the primary variables, while the primary variables
𝐪 remain continuous, see dashed curve in Fig. 1). Thus, we introduce
the notation [[⋅]] = (⋅)+ − (⋅)− for the jump of a physical quantity across
he surface of discontinuity 𝑥 = 𝜑(𝑡), where (⋅)± denotes respectively
he right- or left-sided values of that quantity. The perturbation is a
iscontinuity of the gradient 𝐪𝑥 impinging upon the equilibrium state
̃ with 𝑟 = 0. The case of a perturbation emerging from an equilibrium
tate can be analysed in a similar fashion by performing the change of

ariable 𝑥 → −𝑥.
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Speed. We consider a right-going acceleration wave travelling at the
speed 𝛴 = 𝜑̇(𝑡) > 0, to be determined. By definition of the jumps and of
the surface of discontinuity, the following kinematic relationship holds:

d
d𝑡
[[

𝐪
]]

=
[[

d
d𝑡𝐪

]]

=
[[

𝐪𝑡
]]

+ 𝛴
[[

𝐪𝑥
]]

, (27)

where d
d𝑡 = 𝜕𝑡 + 𝛴 𝜕𝑥 is the directional time derivative along the

avefront. Due to the assumption
[[

𝐪
]]

= 𝟎, the above quantity vanishes,
so that the relationship

[[

𝐪𝑡
]]

= −𝛴
[[

𝐪𝑥
]]

is obtained.
Next, evaluation of the jump of (23) shows that 𝛴 is an eigenvalue

(26) of the Jacobian matrix 𝐀(𝐪̃), and that the jump of 𝐪𝑥 is proportional
to the corresponding right eigenvector 𝐫. Therefore, we have

[[

𝐪𝑥
]]

=
𝛱 𝐫, where

𝐫 =
⎡

⎢

⎢

⎣

1
−𝛴
1∕𝜏

⎤

⎥

⎥

⎦

, 𝐥 = 1
2𝛴2

⎡

⎢

⎢

⎣

𝛴2 − 1∕𝜏
−𝛴
1

⎤

⎥

⎥

⎦

, 𝛴 = 𝑐(𝛾̃). (28)

ere, we have introduced the wave amplitude 𝛱 =
[[

𝛾𝑥
]]

, and the
elevant left eigenvector 𝐥 of 𝐀(𝐪̃) such that 𝐥 ⋅𝐫 = 1. The sketch in Fig. 1
orresponds to the special case 𝛾̃ = 0 for which the domain ahead of
he wave is not deformed.

volution. In general, the wave amplitude is governed by the Bernoulli
ifferential equation 𝛱̇ = 𝛺2𝛱2 −𝛺1𝛱 . This result can be obtained by

scalar multiplication of (23) by a left eigenvector, spatial differentia-
tion, and evaluation of the jump across the wavefront, see Section 8.4
of Müller and Ruggeri (1998). The coefficients are given by

𝛺1 = −𝐥 ⋅ 𝐑𝐫 = 1
2𝜏2𝛴2

,

𝛺2 = − 𝜕𝑐
𝜕𝐪

⋅ 𝐫 = −
3𝛾̃
𝛴

,
(29)

where the above formulas were evaluated in the equilibrium state 𝐪̃.
Thus, we conclude that steady acceleration waves such that 𝛱̇ = 0

ith nonzero amplitude 𝛱 might exist, where the wave amplitude is
iven by the ratio 𝛺1∕𝛺2 = − 1

6 (𝜏
2𝛴𝛾̃)−1. Note in passing that such

acceleration waves do not exist in the limit of strain-rate viscoelasticity
𝜏 → 0.

3.3. Shock waves

Now, let us analyse the evolution of shock waves within the first-
order system of balance laws (23) (i.e., strong discontinuities corre-
sponding to jumps in the primary variables 𝐪, see dotted curve in
Fig. 1). Here, we consider a right-going wave that connects the left and
right states 𝐪∓ located on each side of the shock.

Speed. The Rankine–Hugoniot condition for a shock wave with speed
𝛴 = 𝜑̇(𝑡) > 0 governed by the conservative system (23) takes the form
[

𝐟 (𝐪)
]]

= 𝛴
[[

𝐪
]]

, see Section 17.12 of LeVeque (2002). It follows that
he shock wave speed satisfies

=
√

1 + (𝛾−)2 + 𝛾−𝛾+ + (𝛾+)2 + 1∕𝜏 , (30)

where 𝛾± are the shear strains to the right and left of the shock.
Furthermore, the jumps across the discontinuity satisfy the relationship

[[𝑣]] = −𝛴 [[𝛾]] = −𝜏𝛴 [[𝑟]] . (31)

The existence of shock wave solutions is conditional. Apart from
the entropy growth condition (Boillat and Ruggeri, 1998), the authors
are not aware of a precise shock admissibility criterion for the system
(23). Nevertheless, one might want to verify the Lax entropy condi-
tion (LeVeque, 2002), which requires that 𝑐(𝛾−) > 𝛴 > 𝑐(𝛾+). This
nequality provides a heuristic criterion for the existence of right-going
hock waves. In fact, it reduces to the condition 𝛾− > 𝛾+ in the case of
on-negative strains.
5

Evolution. We adapt the derivation of the results mentioned in Schuler
et al. (1973), Chen and Gurtin (1970) and follow the steps therein. First,
we differentiate the first equality of the Rankine–Hugoniot identity
(31) in time, by means of the product rule. Next, we expand the
kinematic relationship (27) for the jumps of 𝛾 and 𝑣, and substitutions
are performed in the latter based on (22). This way, we arrive at the
general formula

2
√

𝛴 d
d𝑡 (

√

𝛴 [[𝛾]]) = 𝛴2 [[𝛾𝑥
]]

−
[[

(𝛾 + 𝛾3 + 𝑟)𝑥
]]

, (32)

hich corresponds to the identity (2.10) in the study by Chen and
urtin (1970).

The Rankine–Hugoniot relations (31) tell us that the jump of the
ifference 𝛥 = 𝛾 − 𝜏𝑟 is uniformly equal to zero. Thus, combining the

kinematic relationship (27) for 𝛥 with (22) and (31) produces

[[𝛾]] ∕𝜏 + 𝛴
[[

𝛾𝑥
]]

− 𝜏𝛴
[[

𝑟𝑥
]]

= 0, (33)

which allows us to eliminate the memory variable from (32).
Let us now consider a right-going shock wave impinging upon an

undeformed material at rest, i.e. the wave speed satisfies (30) where 𝐪+
is equal to zero, see Fig. 1 for an illustration. In this case, Eqs. (32)–(33)
yield

2
√

𝛴 d
d𝑡
(

√

𝛴 𝛾−
)

=
(

𝛴2 − 𝑐(𝛾−)2
) (

𝛾−𝑥 − 𝛾∗𝑥
)

, (34)

where

𝛾∗𝑥 =
𝛾−∕(𝜏2𝛴)
𝛴2 − 𝑐(𝛾−)2

= − 1
2𝜏2𝛴𝛾−

(35)

s a critical strain gradient. We note that the shock wave is steady for
−
𝑥 = 𝛾∗𝑥 .

. Steady progressive waves

.1. Smooth kinks

Travelling wave solutions propagate at constant speed without any
istortion of the profile. Thus, solutions to (19) are sought as functions
f the non-dimensional retarded time 𝜃 = 𝑡 − 𝑥∕𝒞 , where 𝒞 > 0

represents the wave speed. We emphasise that the neglect of the tensile
memory variable 𝑠 = 𝑠0(𝑥) e−𝑡∕𝜏 after Eq. (20) applies to the present
situation as well, given that 𝑠0 ≡ 0 is required to express 𝑠 as a function
of the retarded time 𝜃.

The travelling wave Ansatz is injected in (22). Eq. (22)b is integrated
once with vanishing integration constant after the variable 𝑣 has been
eliminated using (22)a. The expression of 𝑟 so-obtained is substituted
into (22)c, leading to the differential equation

𝛾 ′ − 𝜏
(

𝛺 − 3𝛾2
)

𝛾 ′ −𝛺𝛾 + 𝛾3 = 0, (36)

for the shear strain, where 𝛺 = 𝒞 2 − 1 ≥ 0. Here, the primes denote
differentiation with respect to the retarded time 𝜃.

This differential equation can be simplified further by setting 𝛾 =
𝐺(𝜉)

√

𝛺 where 𝜉 = 𝛺𝜃, see e.g. Berjamin (2023). This way,

𝐺′ =
𝛤 (𝐺)

1 − 𝛼 𝛤 ′(𝐺)
, 𝛤 (𝐺) = 𝐺 − 𝐺3, (37)

where the prime denotes differentiation with respect to the argument
(here, the explicit dependency of 𝐺 on 𝜉 has been omitted), and 𝛼 =
𝛺𝜏 ≥ 0 is a parameter. This differential equation is analogous to
Eq. (5.6) of Pucci and Saccomandi (2015).

From Eq. (37), one observes that travelling wave solutions to the
hyperbolic system (19) should connect the equilibrium strains 𝐺 = 0
and 𝐺 = ±1 by following a smooth transition that depends on the pa-
rameter 𝛼. Solutions are obtained by rewriting (37) in separable form,
nd by performing a partial fraction decomposition. Upon integration,
e find

= ln

(

3𝛼
√

3
𝛼

𝐺1−𝛼

2 1∕2+𝛼

)

(38)

8 (1 − 𝐺 )
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Fig. 2. Smooth kinks (38). Wave profile in terms of the rescaled retarded time for 𝛼 = 0, 1
3
, 2
3
, 1, 4

3
(increasing values marked by the arrow). Multivalued solutions are obtained

for 𝛼 > 1.
in implicit form, where we have enforced 𝐺(0) = 1
2 without loss of

generality. The waveform can be written in explicit form when 𝛼 =
0, 14 , 1, in which cases 𝐺(𝜉) equals

e𝜉
√

3 + e2𝜉
, 4 e4𝜉∕3

3 +
√

9 + 16 e8𝜉∕3
,
√

1 − 3
4 e−2𝜉∕3, (39)

espectively.
Fig. 2 displays the kink waveforms obtained for several values of the

arameter 𝛼. We note that the smoothness of the solution is impacted
hen 𝛼 approaches one: the slope 𝐺′ of the curve becomes infinite

ocally, while 𝐺 remains continuous. The smooth kink solution even
ecomes multi-valued for 𝛼 > 1, thus revealing the presence of a
hock. This observation is consistent with anterior works (Pucci and
accomandi, 2015).

Fig. 3 provides an alternative representation of this phenomenon.
ere, we display the evolution (37) of 𝐺′ in terms of 𝐺 for the same
alues of 𝛼 as in Fig. 2. For 𝛼 = 4

3 , a vertical asymptote located at
𝐺 ≈ 0.289 divides the plane into two regions. This way, no smooth
trajectory along which 𝐺′ remains finite can connect 𝐺 = 0 and 𝐺 = 1.

.2. Steady acceleration waves

We go back to the study of acceleration waves, see Section 3.2.
f the singularity travels at the same speed as the kink, then 𝒞 must
e equal to the characteristic speed 𝑐(𝛾̃) in the equilibrium state 𝐪̃.
he wave is steady if its amplitude 𝛱 =

[[

𝛾𝑥
]]

is equal to the ratio
1∕𝛺2 = − 1

6 (𝜏
2𝛴𝛾̃)−1 deduced from the coefficients in Eq. (29).

In terms of the rescaled variables used for the kinks, the strain
radient satisfies −𝒞 𝛾𝑥𝛺−3∕2 = 𝐺′. Thus, by computing the jumps on
ach side of this equality, the expression of

[[

𝐺′]] is deduced from the
ondition 𝛱 = 𝛺1∕𝛺2. Since the wave speed satisfies 𝒞 = 𝑐(𝐺̃

√

𝛺), we
educe from (26) that the acceleration wave is steady if

[

𝐺′]] = 1
6𝛼2𝐺̃

, 𝐺̃ =
√

𝛼 − 1
3𝛼

. (40)

he above equilibrium strain is in the range 0 ≤ 𝐺̃ < 1∕
√

3 for all
𝛼 ≥ 1. At the critical value 𝛼 = 1, the equilibrium strain 𝐺̃ vanishes,
and the jump

[[

𝐺′]] becomes infinite. Therefore, a vertical asymptote is
obtained, as illustrated in Fig. 2 (dashed line).
6

Fig. 3. Trajectories of the kink solution (38) for 𝛼 = 0, 1
3
, 2
3
, 1, 4

3
. A singularity is

obtained for 𝛼 > 1.

4.3. Steady shocks

We refer to Section 3.3 for the study of shock waves entering an
undeformed domain at rest. Since the singularity travels at the same
speed as the kink, the wave velocity 𝒞 must be equal to the shock speed
𝛴 of Eq. (30). The wave is steady if the strain gradient 𝛾−𝑥 before the
shock is equal to the critical value 𝛾∗𝑥 in Eq. (35).

In terms of the rescaled variables, the definition of the coordinate 𝜉
in Section 4.1 leads to an inversion of left and right sides, that is 𝛾− =
𝐺+

√

𝛺, etc. The critical strain gradient (35) satisfies −𝒞 𝛾∗𝑥𝛺
−3∕2 = 𝐺′+,

while the shock wave speed is deduced from 𝒞 = 𝛴 with 𝛾− = 𝐺+
√

𝛺
and 𝛾+ = 0. Therefore, the wave is steady if

𝐺′+ = 1 , 𝐺+ =
√

𝛼 − 1 . (41)

2𝛼2𝐺+ 𝛼
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Fig. 4. Singular kinks (38) governed by (40) and (41). Evolution of the normalised
strain in terms of the rescaled retarded time for 𝛼 = 7

6
where a steady shock develops

(solid line). The dashed line marks the critical case 𝛼 = 1.

The above value of the strain jump is in the range 0 < 𝐺+ < 1 for all
> 1.

The strain gradient 𝐺′+ ensuring shock stability is compatible with
he differential Eq. (37) evaluated at 𝐺+. Therefore a stable shock
ave can be connected to the smooth kink, under the conditions (41).

t suffices to truncate the multivalued smooth waveform (38) at the
oordinate 𝜉 where the solution reaches the critical value 𝐺+.

This procedure is illustrated in Fig. 4 where we have set 𝛼 = 7
6 . Thus,

ccording to Eq. (41)b, the amplitude of the discontinuity is given by
+ ≈ 0.378. The velocity of the shock is deduced from the relationship
= 𝛺𝜏 where 𝛺 = 𝒞 2−1. In other words, we find 𝒞 =

√

1 + 𝛼∕𝜏 where
∕𝛼 = 1 − (𝐺+)2. The relationship between velocity and amplitude is
urther explored in the next subsection, including its implications in
erms of the initial physical variables.

.4. Amplitude–velocity relationship

We note that the maximum amplitude sup𝜉 (𝐺) = 1 of a steady
rogressive wave travelling at speed 𝒞 does not depend on 𝛼. However,
he amplitude 𝐺+ of the discontinuity depends on 𝛼 according to (41)b.
his property is illustrated hereinafter.

For this purpose, we express the previous results in terms of the
imensionless variables and parameters of (21)–(22). For a unit kink
overing the range 0 ≤ 𝐺 ≤ 1, the corresponding shear strains 𝛾
re bounded by the maximum value 𝛾sup =

√

𝛺 where 𝛺 = 𝒞 2 − 1.
Therefore, the maximum strain amplitude does not depend on 𝜏, but
he maximum strain is directly connected to the wave speed.

The condition 𝛼 > 1 ensuring the formation of a steady shock can be
xpressed in terms of the maximum strain amplitude as 𝛾sup >

√

1∕𝜏.
herefore, singular travelling waves may arise only beyond a critical
imensionless strain, whose magnitude decreases with increasing val-
es of the dimensionless relaxation time 𝜏, see the notations of Eq. (22).
or such a discontinuous wave, the amplitude of the discontinuity 𝛾− is
inked to the wave speed 𝒞 according to Eq. (30), which involves the
arameter 𝜏 explicitly.

Fig. 5 represents the evolution of the maximum strain 𝛾sup and of the
hock amplitude 𝛾− in terms of the relative wave speed 𝒞 −1 for several
alues of 𝜏. The condition 𝛾sup >

√

1∕𝜏 leading to the existence of
steady shocks is marked by dotted lines. While the amplitude–velocity
relationship for the maximum strain is unaffected by variations of
the parameter 𝜏, the shock wave amplitude is very sensitive to such
variations.
7

Fig. 5. Amplitude–velocity relationship for travelling waves (38)–(41). Evolution of
the maximum dimensionless strain sup(𝛾) and of the shock amplitude 𝛾− with respect
to the velocity for several values of 𝜏 = 0.01, 0.1, 1 (arrow marking increasing values).

In terms of the initial variables used in Eq. (19), the physical shear
strain satisfies

𝛾 = 𝐺(𝜉)
√

𝛺
𝑏
, 𝜉 = 𝛼

𝜏

(

𝑡 −
𝑥
√

𝜌∕𝜇
√

1 +𝛺

)

, (42)

here we have used the definition of 𝛺 = 𝛼𝜂∕(𝜏𝜇) and the rescaling de-
ined in (21). Therefore, for a given set of physical material parameters
, 𝜇, 𝑏, 𝜂, 𝜏, the waveform is completely determined by the provision of
he parameter 𝛼. In fact, given that 0 ≤ 𝐺 ≤ 1, we note that the physical
train amplitude 𝛾sup =

√

𝛺∕𝑏 increases with increasing values of 𝛼. The
physical wave speed

√

(1 +𝛺)𝜇∕𝜌 increases with 𝛼 as well. Moreover,
his quantity can be connected to the strain amplitude, and we arrive at
he expression 1 + 𝑏𝛾2sup for the squared wave speed multiplied by 𝜌∕𝜇.

This equation provides a means to determine the value of the parameter
of nonlinearity 𝑏, but it does not involve the viscoelastic parameters.

According to the discussions in the previous paragraphs, discon-
tinuous travelling waves might be used to determine the viscoelastic
parameters in a similar fashion. In fact, the squared physical shock
velocity multiplied by 𝜌∕𝜇 equals 1 + 𝑏(𝛾−)2 + 𝜂∕(𝜇𝜏), which involves
he parameters 𝜂, 𝜏 explicitly.

Above observations highlight the influence of the viscoelastic pa-
ameters for the existence of steady shocks when one single relaxation
echanism is considered. While the material parameters cannot be

djusted easily in practice, we emphasise that real materials are better
escribed by a sequence of relaxation mechanisms covering a wide
ange of relaxation frequencies, see Carcione (2015). Thus, for any im-
osed strain amplitude, one of the numerous relaxation times might be
arge enough for the corresponding relaxation mechanism to contribute
o the development of singularities in the wave profile on its own.
evertheless, it remains to investigate the interplay between relaxation
echanisms with distinct characteristic times before a more conclusive

tatement can be made.

. Multiple relaxation mechanisms

.1. Governing equations

If two relaxation mechanisms are considered, then the constitutive
aw (1)–(3) in Section 2 is modified. In this case, a sum of two decaying
xponentials is inserted in Eq. (8), with the parameters 𝜂𝓁 , 𝜏𝓁 for
𝓁 = 1, 2 (Haupt and Lion, 2002). This procedure results in an additive
decomposition of the viscous stress,

𝑻 v = 𝑻 v
1 + 𝑻 v

2 ,
v v (43)
𝑻 𝓁 + 𝜏𝓁 𝒟 (𝑻 𝓁) = 2𝜂𝓁𝑫, (𝓁 = 1, 2).
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This decomposition involves two partial viscous stress tensors 𝑻 v
𝓁 gov-

erned by similar evolution equations as in the previous case (3), which
is recovered for 𝑻 v

2 ≡ 𝟎. Generalisation to an arbitrary number of
relaxation mechanisms is straightforward.

Let us linearise the equations of motion (11) about an undeformed
motionless state. Doing so, we note that the linearised elastic stress (12)
is unchanged when multiple relaxation mechanisms are considered, and
that the linearised viscous stress (43)a is still decomposed additively.
The partial viscous stress tensors 𝑻 v

𝓁 in (43)b are now governed by
linear evolution equations which are similar to Eq. (13).

Next, we form a specific linear combination of 𝑻 and its time
derivatives. This way, we arrive at the following differential equation
for the deviatoric stress,

𝑻 d + 𝜏𝑻̇ d + 𝜈2𝑻̈ d = 2𝜇
(

𝜺d + 𝜏𝜀𝜺̇d + 𝜈2𝜀 𝜺̈d
)

, (44)

with the coefficients 𝜏 = 𝜏1 + 𝜏2 and 𝜈2 = 𝜏1𝜏2 < 𝜏2∕4, as well as

𝜏𝜀 = 𝜏 + 𝜂∕𝜇, 𝜈2𝜀∕𝜈
2 = 1 + 𝜂⟨𝜏−1⟩∕𝜇. (45)

The total viscosity reads 𝜂 = 𝜂1 + 𝜂2, and the average relaxation
frequency is defined as

⟨𝜏−1⟩ = 𝜁1∕𝜏1 + 𝜁2∕𝜏2, 𝜁𝓁 = 𝜂𝓁∕𝜂. (46)

Dispersion analysis provides the relationship

𝜌𝜔
2

𝜅2
=

𝜇
2

(

1 + i𝜔𝜏𝜀1
1 + i𝜔𝜏1

+
1 + i𝜔𝜏𝜀2
1 + i𝜔𝜏2

)

, (47)

where 𝜏𝜀𝓁 = 𝜏𝓁 +2𝜂𝓁∕𝜇, which is a generalisation of the SLS dispersion
elationship (15).

Similarly to Section 3, we restrict the analysis to simple shear
otions (17), where the memory variable 𝑟 = 𝑟1+𝑟2 defined in Eq. (18)

is decomposed additively. Here, the reference coordinates 𝑡r, 𝑥r used to
escale the time coordinates involve the total viscosity 𝜂. Using these
efinitions, we introduce the same dimensionless strains and velocities
s in Eq. (21), as well as a similar scaling for the relaxation times 𝜏𝓁 .
hus, for 𝜙 = ±1, we arrive at

𝛾𝑡 = 𝑣𝑥,

𝑣𝑡 = (𝛾 + 𝛾3 + 𝑟1 + 𝑟2)𝑥,

𝜏𝓁(𝑟𝓁)𝑡 = 𝜁𝓁𝑣𝑥 − 𝑟𝓁 , (𝓁 = 1, 2).

(48)

gain, overbars have been omitted. This system can be written in
he form of a hyperbolic system of balance laws (23) in terms of the
ariables 𝐪 = [𝛾, 𝑣, 𝑟1, 𝑟2]⊤.

.2. Acceleration waves

If we reproduce the steps of Section 3.2, we find that the speed of
right-going acceleration wave is

= 𝑐(𝛾̃) =
√

1 + 3𝛾2 + ⟨𝜏−1⟩ . (49)

he coefficients governing the evolution of the slope in (29) become

1 =
⟨𝜏−2⟩
2 𝛴2

, 𝛺2 = −
3𝛾̃
𝛴

, (50)

where ⟨𝜏−2⟩ = 𝜁1∕𝜏12+𝜁2∕𝜏22. Therefore, steady acceleration waves can
be obtained in the present case as well.

5.3. Shock waves

If we reproduce the steps of Section 3.3, we find that the speed of
a right-going shock wave is

𝛴 =
√

1 + (𝛾−)2 + 𝛾−𝛾+ + (𝛾+)2 + ⟨𝜏−1⟩ , (51)

according to the Rankine–Hugoniot shock conditions. In particular, the
relationships

[[ ]]
8

[[𝑣]] = −𝛴 [[𝛾]] = −𝜏𝓁𝛴 𝑟𝓁 ∕𝜁𝓁 (52)
with 𝓁 = 1, 2 hold across the discontinuity.
The evolution of the shock amplitude is still governed by Eq. (32).

Here, we note that the quantities 𝛥𝓁 = 𝛾−𝜏𝓁𝑟𝓁∕𝜁𝓁 are continuous across
the wavefront. Thus, by following similar steps, we recover (34) with
the critical strain gradient

𝛾∗𝑥 =
⟨𝜏−2⟩

𝛴2 − 𝑐(𝛾−)2
𝛾−

𝛴
= −

⟨𝜏−2⟩
2𝛴𝛾−

, (53)

here 𝑐(𝛾−), 𝛴 are deduced from Eqs. (49)–(51), respectively. This
quation generalises Eq. (35).

.4. Smooth kinks

We proceed in a similar fashion to Section 4.1. Similarly to the
erivation of (36), we combine Eqs. (48)a–(48)c to arrive at a first-order
ifferential equation for 𝛾 that still depends on 𝑟2. Substitution of 𝑟2 in

Eq. (48)d then yields the differential equation

𝑎0(𝐺)𝐺′′ = 𝛤 (𝐺) + 𝑎1(𝐺)𝐺′ + 𝑎3(𝐺)(𝐺′)2, (54)

where 𝛤 (𝐺) = 𝐺 − 𝐺3 and

𝑎0(𝐺) = 𝛿2
(

⟨𝜏−1⟩∕𝛺 − 𝛤 ′(𝐺)
)

,

𝑎1(𝐺) = 𝛼 𝛤 ′(𝐺) − 1, 𝑎3(𝐺) = 𝛿2𝛤 ′′(𝐺).
(55)

Here, 𝛼 = 𝛺𝜏 and 𝛿 = 𝛺𝜈, see also the coefficients defined in Eqs. (45)–
(46). We note that Eq. (37) is recovered for 𝛿 = 0, and that smooth
solutions to (54) should connect the equilibrium strains 𝐺 = 0 and
𝐺 = ±1.

Fully analytical expressions seem difficult to obtain when multiple
relaxation mechanisms are considered. For 0 < 𝛿 < 𝛼∕2, travelling wave
solutions can be computed numerically by integration of (54) based on
a suitable numerical method. By choosing the initial data such that
𝐺(0) = 1

2 and 𝐺′(0) is deduced from Eq. (37), we did not manage
to find a range of parameter values that leads to smooth solutions,
numerically. From these simulations, we conclude that the emergence
of singular travelling wave solutions is very likely. Unfortunately,
the full analytical derivations carried out in Section 3 can hardly be
reproduced in a straightforward manner in the present case. We can
expect that the complexity of the governing equations increases when
an arbitrary number 𝑁 > 2 of relaxation mechanisms is considered.

6. The Jaumann model

6.1. Governing equations

We now consider the system (19) with the Jaumann objective rate
𝜙 = 0. In non-dimensional form (21), we thus have

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛾𝑡 = 𝑣𝑥,

𝑣𝑡 = (𝛾 + 𝛾3 + 𝑟)𝑥,

𝜏𝑟𝑡 = (1 + 𝜏𝑏𝑠)𝑣𝑥 − 𝑟,

𝜏𝑠𝑡 = −𝜏𝑏𝑟𝑣𝑥 − 𝑠,

(56)

where we have introduced 𝜏𝑏 = 𝜏∕
√

𝑏. Again, overbars have been
omitted in (56) for the sake of simplicity. This way, the system (22)
studied in the previous sections is recovered for 𝜏𝑏 = 0.

The first-order system of partial differential Eqs. (56) can be written
in quasi-linear form

𝐪𝑡 + 𝐀(𝐪)𝐪𝑥 = 𝐑𝐪, (57)

where 𝐪 = [𝛾, 𝑣, 𝑟, 𝑠]⊤,

𝐀(𝐪) = −

⎡

⎢

⎢

⎢

⎢

0 1 0 0
1 + 3𝛾2 0 1 0

0 (1 + 𝜏𝑏𝑠)∕𝜏 0 0

⎤

⎥

⎥

⎥

⎥

, (58)
⎣

0 −𝜏𝑏𝑟∕𝜏 0 0
⎦
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and

𝐑 = −

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 0 0 0
0 0 1∕𝜏 0
0 0 0 1∕𝜏

⎤

⎥

⎥

⎥

⎥

⎦

. (59)

ere, the eigenvalues of the diagonalisable matrix 𝐀
𝐪) equal {±𝑐(𝛾), 0, 0}, where the shear wave speed satisfies

(𝛾, 𝑠) =
√

1 + 3𝛾2 + (1 + 𝜏𝑏𝑠)∕𝜏 . (60)

Since the wave speed could possibly become complex at large |𝑠| unless
𝑏 = 0, the system (57) is only conditionally hyperbolic.

In theory, waves do no longer propagate if hyperbolicity is lost, thus
estricting the validity of the present results. In practice, the memory
ariable 𝑠 in Eqs. (56)–(60) might not be able to take arbitrarily large
alues, even though this outcome does not seem totally impossible at
irst sight. Furthermore, a loss of hyperbolicity might only happen at
ery large strains where plastic behaviour or other physics must be
ccounted for.

.2. Acceleration waves

If we reproduce the steps of Section 3.2, we find that the speed
f a right-going acceleration wave is 𝛴 = 𝑐(𝛾̃ , 0), where 𝑟, 𝑠̃ vanish in
he equilibrium state 𝐪̃. Thus, the speed of such an acceleration wave
s the same as in Eq. (28), see expression in Eq. (60) with 𝑠 = 0.
t equilibrium, the coefficients 𝛺1, 𝛺2 governing the evolution of the
lope in Eq. (29) are unchanged too (note that these expressions were
valuated in the equilibrium state 𝐪̃). Therefore, steady acceleration
aves can be obtained in the present case as well.

.3. Shock waves

Unfortunately, the steps in Section 3.3 can hardly be reproduced for
he system (56) due to the presence of non-conservative products 𝑠𝑣𝑥

and 𝑟𝑣𝑥. Hence, the study of shear shock waves is less straightforward
in this case, starting with the estimation of their speed (Le Floch, 1989;
Camacho et al., 2008). To address this case, one might seek a change
of variables that yields a conservative form of the equations of motion.
Otherwise, analytical approximations may prove useful, see Fu and
Scott (1990).

6.4. Smooth kinks

We proceed in a similar fashion to Section 4.1. Similarly to the
derivation of (36), we combine Eqs. (56)a–(56)c to arrive at a first-order
differential equation for 𝛾 that still depends on 𝑠. Substitution of 𝑠 in
Eq. (56)d then yields the differential equation

𝛼 𝛤 (𝐺)𝐺
′′

𝐺′ = 𝛤 (𝐺) + 𝑎3(𝐺)𝐺′ + 𝑎4(𝐺)(𝐺′)2, (61)

where 𝛤 (𝐺) = 𝐺 − 𝐺3 and

𝑎3(𝐺) = 2𝛼 𝛤 ′(𝐺) − 1,

𝑎4(𝐺) = 𝛼2
(

𝛿2𝛤 (𝐺) + 𝛤 ′′(𝐺)
)

.
(62)

Here, we have introduced the coefficient 𝛿 = 𝛺3∕2𝜏𝑏∕𝛼 (other notations
are unchanged). This differential equation is of the same type than the
one studied by De Pascalis et al. (2019).

Under the condition that 𝐺′′∕𝐺′ → 0 near equilibrium, we find that
𝛤 (𝐺) = 0 at equilibrium. Thus, most travelling wave solutions to the
hyperbolic system (19) should connect the equilibrium strains 𝐺 = 0
and 𝐺 = ±1 by following a smooth transition. For 𝛼 > 0 and 𝛿 = 0,
the second-order differential Eq. (61) reduces to the case of Section 4.1
(upon differentiation of (37) with respect to 𝜉), for which analytical
solutions are obtained in implicit form.
9

Fig. 6. Jaumann model. Smooth kinks (61) obtained numerically for 𝛼 = 2
3

and several
values of 𝛿 ≥ 0 (the arrow marks increasing values).

For 𝛿 > 0, travelling wave solutions can be computed numerically by
integration of (61) based on Matlab’s ode15s solver, or another similar
method. Since the differential Eq. (61) is of second order, resolution
of the initial-value problem requires that the values of 𝐺(0) and 𝐺′(0)
are provided. However, not every choice of this kind will necessarily
make 𝐺′′∕𝐺′ decay at large rescaled times. Here, the starting values
are chosen such that 𝐺(0) = 1

2 , and 𝐺′(0) minimises the quantity
|𝐺(−10)|+ |1 − 𝐺(10)| found numerically. For this optimisation, we use
Matlab’s fminsearch function, where the initial guess for 𝐺′(0) is
deduced from Eq. (37) with 𝐺 = 1

2 .
Fig. 6 represents the solutions so-obtained for 𝛼 = 2

3 and for several
alues of 𝛿 = 0, 1, 2, 3 corresponding to the initial strain gradients
′(0) ≈ 0.45, 0.48, 0.59, 1.15. From these simulations, we observe that

increasing values of the parameter 𝛿 have a wavefront stiffening effect,
where 𝛿 = 0 corresponds to the curve displayed in Fig. 2. Observations
made in the upper- and lower-convected cases 𝜙 = ±1 suggest that
steady shock wave solutions might exist in the Jaumann case 𝜙 = 0
as well.

7. Concluding remarks

We investigated the propagation of travelling shear waves within a
class of rate-type viscoelasticity models of soft solid. The models based
on the lower- and upper-convected Cauchy stress rates provide useful
simplifications. Within this framework, we studied the propagation of
steady progressive waves, which can include discontinuous parts in
some cases. Closed form analytical expressions are obtained, both in
the case of smooth wave profiles and of singular ones.

However, the study of shear shock waves is less straightforward
in the case of multiple relaxation mechanisms, as well as for stress
rate models involving the Jaumann derivative. This is due to the
emergence of higher-order differential equations, or to the presence
of non-conservative products in the first-order system (19) that would
necessitate a suitable change of variables.

Let us reflect on possible constitutive modelling choices to repro-
duce the nonlinear viscoelastic behaviour of soft solids, including creep
and stress relaxation. In the spirit of Fung’s quasi-linear viscoelas-
ticity theory (QLV), a first modelling approach requires very little
information (Berjamin and Chockalingam, 2022). In fact, the viscoelas-
tic behaviour at large strains is directly deduced from the nonlinear
elastic response at long times, and from time-dependent relaxation
measurements at small strains.

As shown in Appendix, the present modelling approach based on
the works by Haupt and Lion (2002) and Saccomandi and Vianello
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(2021) is the most natural formulation of its kind, but it is slightly more
complex than QLV. One advantage is that the constitutive law involves
only objective quantities, and that Newtonian viscosity theories are
included in the model as a special case. However, one drawback is the
need to select one objective stress rate (4) among several options. The
most suitable parameter 𝜙 could be determined from the measurement
f compression stresses in simple shearing motions, see Eq. (19). Al-
ernatively, one might consider uniaxial tensile motions, see Appendix.
he fact that upper- and lower-convected rates simplify calculations is
ot a valid argument if laboratory experiments prove otherwise.
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ppendix. Comment on Farina et al. (2022)

The tensile creep problem considered by Farina et al. (2022) for
ooney–Rivlin materials of rate type highlights physical inconsisten-

ies when 𝜙 = ±1 (‘third model’ therein). More specifically, additional
estrictions on the model parameters are proposed to ensure dissipa-
ive behaviour. This observation seems contradictory to the thermo-
ynamic consistency property established by Haupt and Lion (2002).
o overcome this paradox, we reconsider the tensile creep problem
ereinafter. Contrary to the discussions in the introduction of Farina
t al. (2022), we emphasise that thermodynamic consistency is crucial
ut of equilibrium, even for the study of ‘isothermal processes’.

Let us assume that the deformation gradient tensor is diagonal and
f unit determinant. Its uniaxial component 𝐹11 = 𝜆 is the tensile
tretch. Consequently, the stress tensor 𝑻 is diagonal, and the lateral
tresses are equal, 𝑇22 = 𝑇33. According to the above constitutive
qs. (1)–(2) with 𝛽 = 0 (Mooney–Rivlin material), we obtain the
ollowing components of the elastic stress:
e
11 = 2𝐶1𝜆

2 − 2𝐶2𝜆
−2,

e
22 = 2𝐶1𝜆

−1 − 2𝐶2𝜆.
(63)

etting the total uniaxial stress 𝑇11 constant and making the lateral
tresses vanish, we arrive at 𝑇11 = 𝜎e + 𝜎v with 𝜎∙ = 𝑇 ∙

11 − 𝑇 ∙
22, by

substitution of the pressure. In particular, the elastic stress contribution
satisfies
𝜎e = 2

(

𝐶1𝜆 + 𝐶2
) (

𝜆 − 𝜆−2
)

,
e′ ( −2) ( −3) (64)
10

𝜎 = 2𝐶1 2𝜆 + 𝜆 + 2𝐶2 1 + 2𝜆 ,
where the prime ′ denotes differentiation with respect to 𝜆. The evolu-
tion of the viscous stress components (3)–(4) entails
(

1 + 2𝜙𝜏𝛬̇
)

𝑇 v
11 + 𝜏𝑇̇ v

11 = 2𝜂𝛬̇,
(

1 − 𝜙𝜏𝛬̇
)

𝑇 v
22 + 𝜏𝑇̇ v

22 = −𝜂𝛬̇,
(65)

where we have introduced 𝛬 = ln 𝜆. The above steps correspond to
Eq. (18) and to the first line of Section 4.3 in Farina et al. (2022).

We now move on to formulating the creep problem in differential
form. For this purpose, we differentiate 𝑇11 in time (𝜏𝑇̇11 = 0), and
substitute (65) to get
(

3𝜂 + 𝜏𝜆𝜎e′ − 𝜙𝜏 (2𝑇 v
11 + 𝑇 v

22)
)

𝛬̇ = 𝑇11 − 𝜎e, (66)

where 𝜆 = e𝛬. This equation is equivalent to the one leading to Eq. (26)
of Farina et al. (2022). Therein, the coefficient of 𝛬̇ is then required to
be positive, which according to the authors of the discussed publication,
is only possible with 𝜙 = 0. This conclusion is somewhat hasty given
that the coefficient of 𝜙 in the left-hand side of (66) might not take
arbitrary values, see Eq. (65).

Let us examine this issue in more detail by considering the differ-
ential system (65)–(66) as a whole. In terms of the dimensionless time
coordinate 𝑡∕𝜏, our system becomes

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜗̇v
1 = 2(1 − 𝜙𝜗v

1)𝛬̇ − 𝜗v
1 ,

𝜗̇v
2 = (𝜙𝜗v

2 − 1)𝛬̇ − 𝜗v
2 ,

𝛬̇ =
𝜗v
1 − 𝜗v

2
3 + 𝑚(𝛬) − 𝜙 (2𝜗v

1 + 𝜗v
2)
, 𝜗v

1 − 𝜗v
2 = 𝜏

𝜂
(

𝑇11 − 𝜎e) ,

(67)

where the dimensionless stresses 𝜗v
𝑖 = 𝜏𝑇 v

𝑖𝑖∕𝜂 have been introduced,
and 𝑚(𝛬) = 𝜏𝜆𝜎e′∕𝜂 is positive. Upon substitution of 𝛬̇ from the last
line into the first two ones, Eq. (67) takes the form of an autonomous
dynamical system 𝐐̇ = 𝐅(𝐐) for the vector 𝐐 = [𝜗v

1 , 𝜗
v
2 , 𝛬]

T with a
suitable function 𝐅. Its only parameters are the rescaled applied stress
𝜏𝑇11∕𝜂, the coefficient 𝜙 and the rescaled Mooney parameters 𝜏𝐶𝑖∕𝜂.

Obviously, the unique equilibrium state of the dynamical system
(67) is the vector 𝐐̄ = [0, 0, 𝛬̄]T, where 𝛬̄ can be deduced from the
expression (64) of 𝜎e evaluated at equilibrium. This result matches
Eq. (19) of Farina et al. (2022). In the equilibrium state, the Jacobian
matrix 𝜕𝐅∕𝜕𝐐 of the above dynamical system has the eigenvalues −1
and −𝑚̄

3+𝑚̄ , where 𝑚̄ = 𝑚(𝛬̄). Since none of these eigenvalues has a pos-
itive real part, we conclude that the equilibrium state is never asymp-
totically unstable, showing that physically admissible creep responses
are possible. It is worth pointing out that these stability properties do
not depend on the choice of objective derivative (parameter 𝜙).

Next, let us study the initial evolution of the stretch for arbitrary
imposed stresses 𝑇11. Until loading starts, the material is in the un-
deformed state, 𝐐 = 𝟎. Eq. (66) reduces to (𝜂 + 𝜏𝜇)𝛬̇ = 1

3𝑇11 in this
state, thus showing that the stretch begins to increase towards the new
equilibrium for positive imposed stresses — the opposite evolution of 𝛬
is obtained for negative imposed stresses. Therefore, the creep response
is both physically acceptable in the initial state and near equilibrium
with this model, for all 𝜙.

Nevertheless, at first sight, nothing prevents the solution of the
creep problem to blow up in finite time if 𝜙 = ±1, see the denominator
of (67)c. To carry out this analysis, one might prove that the total me-
chanical energy is non-negative, and that it decays monotonously. This
process is equivalent to the local thermodynamic analysis conducted
by Morro and Giorgi (2020) in the case 𝜙 = 0 and by Haupt and Lion
(2002) in the case 𝜙 = ±1, besides the neglect of incompressibility
and of the strain energy therein, respectively. Given that the kinematic
energy, the strain energy and the viscous energy are positive quantities,
they must remain bounded as well. Hence, blow-up is impossible. Con-
trary to the claim in Farina et al. (2022), no restriction of the material
parameters is needed to enforce physically admissible behaviour for
this model when 𝜙 = ±1.
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The present analysis can be extended to the model found in Filo-
grana et al. (2009) (‘second model’ considered in the discussed study1),
which is based on the rate equation

𝑻 E + 𝜏𝒟 (𝑻 E) = 𝑻 e + 2𝜂𝑫 (68)

for the extra stress 𝑻 E = 𝑻 + 𝑝𝑰 . For the simple tension problem with
Mooney–Rivlin elastic stress described above, the uniaxial stress is still
given by 𝑇11 = 𝜎E, where we have used similar notations as earlier.
Here, we arrive at
(

3𝜂 − 𝜙𝜏 (2𝑇 E
11 + 𝑇 E

22)
)

𝛬̇ = 𝑇11 − 𝜎e, (69)

which matches Eq. (25)a of Farina et al. (2022). Using Eq. (17) therein,
we obtain a differential system for 𝐐 = [𝜗E

1 , 𝜗
E
2 , 𝛬]

T where similar
notations were used as for the previous model.

For this model, the unique equilibrium state is determined by the
same value of 𝛬̄ as previously. In terms of the dimensionless time
coordinate 𝑡∕𝜏, the corresponding dynamical system is characterised
by the eigenvalues −1 and 𝑚̄∕

(

𝜙 (2𝜗̄e
1 + 𝜗̄e

2) − 3
)

, where the coefficient
of 𝜙 in the denominator can take arbitrary values, see Eq. (63). Thus,
the equilibrium state can potentially become asymptotically unstable
unless the Jaumann rate is used. Finally, the conclusion drawn by Fa-
rina et al. (2022) on the basis of disputable arguments is recovered:
physically admissible behaviour can potentially only be obtained for
𝜙 = 0 with this model.

The above discussions do not affect the analysis of the model
by Zhou (1991) in the discussed study either (‘first model’ therein), for
which

𝑻 + 𝜏𝒟 (𝑻 ) = −𝑝𝑰 + 𝑻 e + 2𝜂𝑫. (70)

Indeed, in this case, the creep problem is described by a differential
equation where the coefficient 3𝜂−2𝜙𝜏𝑇11 of 𝛬̇ is constant, see Eq. (21)
of Farina et al. (2022). Since 𝑇11 can take arbitrary values, this model
is only admissible for 𝜙 = 0, in general.

Based on a dynamic tensile problem, the discussed study highlights
also the need for the additional restriction 𝜂∕𝜇 > 𝜏 in relation with
the models (68)–(70) to ensure that the undeformed state remains
asymptotically stable. This property can be inferred directly from the
infinitesimal strain limit of (68)–(70). In fact, both constitutive laws
correspond to the tensorial SLS model (14)–(16) with 𝜏𝜀 = 𝜂∕𝜇 at
small strains. Thus, the above restriction is nothing else but the classical
requirement 𝜏𝜀 > 𝜏 required for such rheologies (Carcione, 2015).
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