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compile the existing and disparate literature on attenuation power-laws and dispersion to make progress
in wave physics of brain matter, a field of research that has the potential to explain the mechanisms at
play in diffuse axonal injury and mild traumatic brain injury in general. Currently, viscous effects in the

Keywords: brain are modelled using Prony-series, i.e., a sum of decaying exponentials at different relaxation times.
Brain matter Here we collect and synthesise the Prony-series coefficients appearing in the literature for twelve regions:
Heterogeneity brainstem, basal ganglia, cerebellum, corona radiata, corpus callosum, cortex, dentate gyrus, hippocam-
Brain viscoelasticity pus, thalamus, grey matter, white matter, homogeneous brain, and for eight different mammals: pig, rat,

Brain wave physics

Finite element head models
Relaxation mechanisms
Power-law attenuation
Dispersion relations
Prony-series

human, mouse, cow, sheep, monkey and dog. Using this data, we compute the fractional-exponent at-
tenuation power-laws for different tissues of the brain, the corresponding dispersion laws resulting from
causality, and the averaged Prony-series coefficients.

Statement of significance

Traumatic brain injuries are considered a silent epidemic and finite element methods (FEMs) are used
in modelling brain deformation, requiring access to viscoelastic properties of brain. To the best of our
knowledge, this work presents 1) the first multi-frequency viscoelastic atlas of the heterogeneous brain,
2) the first review focusing on viscoelastic modelling in both FEMs and experimental works, 3) the first
attempt to conglomerate the disparate existing literature on the viscoelastic modelling of the brain and
4) the largest collection of viscoelastic parameters for the brain (212 different Prony-series spanning 12
different tissues and 8 different animal surrogates). Furthermore, this work presents the first brain atlas
of attenuation power-laws essential for modelling shear waves in brain.

© 2023 The Author(s). Published by Elsevier Ltd on behalf of Acta Materialia Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Glossary « Unless otherwise stated, when error regions are shown in fig-
ures, they correspond to the region spanned by one standard
We adopt the following conventions in this paper: deviation errors of the parameters.

- We reserve line markers for different categories as shown in 1. Introduction
Fig. 1 throughout the paper.

. Owing to space limitations, it was not always possible to have According to the World Health Organisation, neurological disor-
legends given on all subplots. In such cases, the legends on any ders are one of the greatest threats to public health, with traumatic
of the subplots apply for all other subplots in the figure. brain injury (TBI) being the leading cause of death and disability

in children and young adults around the world [1]. The problem is

growing, and it is expensive as well as life-threatening. In the Re-

public of Ireland alone, a small country of five million inhabitants,
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Fig. 1. Legends used for different animals. FE refers to data from finite element models.
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Fig. 2. Two recent FE head models, incorporating differing elastic properties for different areas of the brain, but the same (homogeneous) viscoelastic data everywhere. (a):
The finite element mesh of the high fidelity 3D model from Imperial College London [8]. Colour coding is: skin (red), skull (light blue), cerebrospinal fluid (green), grey
matter (yellow), white matter (brown) and ventricles (dark blue). (b): The UCD Head Trauma model, originally designed by Horgan and Gilchrist [9] (picture taken from
Cinelli et al. [10]). Note that its most recent version does include viscous heterogeneity [11]. (For interpretation of the references to colour in this figure legend, the reader

is referred to the web version of this article.)

critical importance that a better understanding of TBI is achieved
to help combat this issue.

Most clinical indicators used for predicting TBI, typically linear
and/or rotational accelerations, are global and not appropriate to
evaluate regional brain strains and strain rates. But these local de-
formations and motions play an important role in the development
of mild TBI events, such as concussion in contact sports or repeti-
tive impacts over a lifetime [3]. Hence there is a pressing need for
accurate material parameters that can be used in detailed finite el-
ement (FE) computer simulations [4,5] (see Fig. 2 for two recent
models).

However, there is an enormous amount of variation in the vis-
coelastic parameters used by existing FE models, due to dated ex-
perimental sources, differing testing protocols, temperature, type
of tissue, type of animal, post-mortem times, tissue preservation
modes, and many other factors. The brain is also often considered
as a homogeneous tissue from the point of view of viscoelastic
properties, while it has been experimentally observed to be hetero-
geneous in that respect [6]. The disparity in experimental data and
the assumption of homogeneity are problematic when it comes to
studying mild TBI, because they lead to very different predictions
when the same event is simulated, as shown by Zhao et al. [7] (see
Fig. 3).

Recently shear shock waves were generated and observed ex-
perimentally in the brain, and proposed as a possible explanation
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for diffuse axonal injury [12,13], a major type of TBI. Furthermore,
in direct impact injuries, it has been observed that injuries can
occur far from the point of impact [14]. The reason for this dis-
tant effect has not yet been established, but the formation of shear
shock waves has been hypothesised to be a possible mechanism.
Theoretically, cubic non-linearity must be invoked to model these
nonlinear shear waves [15]; it follows that they generate mostly
odd harmonics [16], and very high local accelerations [17]. Impor-
tantly, these high local accelerations are not generated instantly
and instead are a result of cumulative nonlinear effect. The max-
imum acceleration is reached after a few centimetres of propaga-
tion in brain, before dissipating. Recent studies in 2D head phan-
toms have furthermore shown that this mechanism can predict
peak accelerations far from the point of impact [17,18]. This is thus
a promising and important hypothesis to test because it could have
major repercussions for the prediction and understanding of TBIs,
the design of helmets and other protective headgear, and the suit-
ability of existing FE models for modelling TBI. In this work, we
are only confined to shear deformation similar to those resulting
from direct impact injuries. They result in shear shock waves un-
like the compressional shock waves in blast-TBIs which could have
frequency range of kHz to MHz. These two effects happen at differ-
ent scales as there is three orders of magnitude difference between
the shear modulus and the bulk modulus. Importantly, a biofidelic
modelling of the wave physics involved in shear shock wave for-
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Fig. 3. When the same FE model is used to simulate the same high-velocity impact, but with different material parameters from the experimental literature, it yields very
different predictions of the cumulative maximum principal strains generated [7]. Here the experimental data is taken (left to right) from Refs. [19-24].
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mation and propagation requires accurate experimental data for
the heterogeneous material properties of the brain - specifically,
attenuation power-laws and dispersion relations.

To the best of our knowledge, there exists only one map detail-
ing the viscoelastic properties of the heterogeneous brain, namely
the recent paper by Hiscox et al. [25]. In that work, the authors
collect storage and loss moduli data using a shear wave at the
given frequency of 50 Hz and magnetic resonance elastography
(MRE) imaging. They give this data for subcortical grey matter
structures, white matter tracts, and regions of the cerebral cortex.

In this paper, we go a step further by providing viscoelastic
data, used in FE models and recent experimental data, valid for
multiple frequency ranges and for twelve key regions of the brain:
brainstem, basal ganglia, cerebellum, corona radiata, corpus callo-
sum, cortex, dentate gyrus, hippocampus, thalamus, grey matter,
white matter, and homogeneous brain. We also provide viscoelas-
tic data also for eight different animals: pig, rat, human, mouse,
cow, sheep, monkey and dog. We conglomerate multiple Prony-
series data, the most common implementation of viscoelastic ef-
fects used in current state-of-the-art FE models. From this data,
we synthesise average attenuation power-laws, dispersion relations
and also Prony-series.

2. Theoretical background

Soft solids like tissues are often modelled using hyperelastic
models capable of describing large strain nonlinear deformations.
At the same time, tissues are often highly attenuating and dispers-
ing, i.e., the excitation amplitude decays with time and distance,
and different frequencies travel at different speeds. Conventionally
these effects are modelled using the linear [26] and quasi-linear
[27] viscoelastic theories.

2.1. Linear viscoelasticity

In linear viscoelasticity, the stress response to a constant strain
decreases with time, a feature which is referred to as the stress re-
laxation of the material. This is modelled using the fading memory
or hereditary integral:

t
o (t) :/ m(t — 7)€ (t)dt = m(t) = €(t), (1)
—00
where o (t) is the stress (in Pa), €(t) is the strain (dimensionless),
and m(t — ) is the instantaneous stress-response function to an
impulse in strain € (t) imposed at time t for the time interval t —
7. This is the so-called convolution operation, denoted by “x+”. In
the frequency space, this hereditary integral can be written as

M(w)e (), (2)

where M(w) is the dynamic modulus, corresponding to the impulse
response of the material.

However, in solid mechanics, the step-response is often more
relevant than the instantaneous response. The memory integral can
be rewritten as:

o(w) =

_ Bg(t)

o= [ st- Sjasiay @ _ 3)

where g(t) is the stress response to unit-step strain, often called
the relaxation function. The last equality in the above equation is

due to the commutative property of the convolution integral. Also,
Egs. (1) and (3) give the connection

ag(t)

=g(t) = €(t).

or in frequency space
M(w) =iwG(w), (5)
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leading to

o(w) =Mw)e(w) =iwG(w)e(w),

(6)

where G(w) is the complex relaxation modulus.

Conventionally, the relaxation functions presented in the TBI lit-
erature are approximated using a Prony-series of decreasing expo-
nentials,

N
g(t) =My + ZM;' exp(—t/t;),
=1

(7)

where t;=n;/M; (j=1,...,N) corresponds to the j Maxwell
element, which is a Hookean element with elastic modulus M;
placed in series with a Newtonian element with coefficient of vis-
cosity n;.

Note that g(0) = M + Z?I:I M; =: My, which defines the latter
quantity. Then a dimensionless Prony-series g(t) with §(0) =1 can
be defined as

N
&(t) =My + Y _Mjexp(—t/)), (8)
j=1
where 1\7Ij = M;/Mo.
In frequency space, the corresponding dynamic modulus, M(w),
or relaxation modulus, G(w), can be written as

M+Z

Using this complex modulus, the attenuation in soft solids can be
quantified using the quality factor Q(w) defined as [28]
Re{M(w)} = M'(w)

Im{M(w)} ~ M"(®)’

where M’ (w) = Re{M(w)} and M"(w) = Im{M(w)} are the storage
modulus and the loss modulus, respectively, given explicitly by

ot

M =
@) Mot

iwG(w) = (9)

Qw) = (10)

N TZ
M (@) = Re{M(w)} = My +]le ’W’ (11)
1/ _ N CL)'L']
M’ (w) = Im{M(w)} _Z ,sztz (12)

Note that whilst these equations can be evaluated for any value
of w, it is not physically meaningful to evaluate them over all fre-
quencies as the Prony-series are fitted over a finite time interval.
Specifically, it is valid to evaluate these functions at the (angu-
lar) frequencies w = B;, j=1,...,N, where 8; =1/1;. A suitable
frequency range can thus be computed from the Prony-series co-
efficients as [min; B;, max; B;]. In the case of a one-term Prony-
series, this would give a single point and thus then the extended
frequency range [0.181,1081] is used (see Nicolle et al. [20,29]).
This is also consistent with conventions of the commercial finite
element solver Abaqus [30].

The other physical behaviour associated with the attenuation
is dispersion due to causality [31]. Consider the linear shear wave
equation in an elastic media,

Pu_ 100 _pdhu_ 0%
otz — p ox  pox2 T ox2’
where p is the mass density, u is the shear modulus, and ¢ =

JI/p is the shear wave speed. On substituting the harmonic so-
lution

(13)

u = expli(wt — kx)], (14)
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where u is the particle displacement, w is the angular frequency,
and k is the wavenumber, we find the following connection for the
phase velocity c,

c=w/k. (15)
Now consider the viscoelastic case as in [32], where
a:m(t)*ezm(t)*%, (16)
so that the wave equation reads
0%u 0%u
'08t2 _m(t)*W (17)

Taking the Fourier transform F with respect to time of the above
equation gives

M(a)) 02

()2 Flu) = =2 Fu).

To calculate the right-hand side of the above equation, let us
rewrite Eq. (14) as

(18)

u(x, t) = exp(iot) exp(—ik(w)x), (19)

where K(w) is the complex wavenumber in the viscoelastic media.
Then Eq. (18) gives

K(w) _ P

w M(w) (20)

Equation (14) can be rewritten using K(w) = K’ (w) + iK” (w) as

u = exp{K” (w)x} exp{i(wt — K'(w)x)}, (21)
showing that the (real) phase velocity c is given by

1 K'(w) 0
@ - w - Re: M@) (22)

Note c(w) is not a Fourier transform, it is just a function in fre-
quency space. Equation (22) furthermore yields two solutions but
only the principal solution is valid (the other yields c(w) < 0),
which is unphysical).

The two quantities Q(w) and c(w) are then used to compute
the attenuation o (w) via the relation [32,33]:

c(a))a(a))]

w

w

c(w)a(w) (23)

Qw) = [

On solving this quadratic equation in «(w) we get

—Q+\/Q2+1! (24)

*®) = — e

while ignoring the non-physical solution where «(w) < 0.

Alternatively, the attenuation of transient waves like ultra-
sound/shear wave in soft solids is commonly characterized using
a fractional-exponent power-law,

a(w) = aw’ = ayf?, (25)

where a, b and ¢ are constants. Alternatively, in log-log space, In«
follows an empirical linear law: Ina = Ina + blnw.

2.2. Quasi-linear viscoelasticity

For large amplitude deformations, assuming a linear behaviour
is no longer valid as the stress and strain exhibit a nonlinear re-
lationship of relaxation. Fung [27] proposed the concept of quasi-
linear viscoelasticity (QLV), with the assumption of multiplicative
decomposition of the stress into a dimensionless relaxation func-
tion of time g(t) with §(0) = 1 and the instantaneous elastic stress
doe(t)/dt. On applying the superposition principle, we get
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t t A+ _
0(t)=/0 g(t—f)daéir)dT=A %

t
oo(T)dT =/ Rt — 7)o (T )dr. (26)
0
The QLV formulation therefore ends up using the entire mathemat-
ical formulation of linear viscoelastic theory as described in the
previous section. We can then relate g(t) and g(t), as:

N
g(t) = Mog(t) = M + Y Mje™/%,
j=1

(27)

where My is the instantaneous shear modulus of the hyperelastic
strain energy density. Table 1 gives the expressions for My of some
commonly used hyperelastic models.

These two viscous modelling approaches are the two most com-
mon approaches used for describing viscoelastic effects. Another
approach is the fractional viscoelastic model [34], which is still not
fully adopted due to its mathematical complexities.

2.3. Calculating Prony-series from attenuation power-laws

It is possible to compute averaged attenuation power-laws from
the data, but many current models are heavily reliant on the use
of Prony-series. As a result, it is important to provide a means of
determining averaged Prony-series from an attenuation power-law
a(w) = awb, valid over an angular frequency range [y, @;].

Firstly, the dispersion can be calculated for w € [wq, w;] via the
Kramers-Kronig relation [31]:

1 1
c(w)  c(wo)
atan (%) (@® ! - wh!);  when be (0,2)\{1}
(28)
b=1

——awo(lna) Inwyp);

Note that this calculation requires a reference value c(wq). Further-
more, we note that the case b = 1 will not occur for our fitted pa-
rameters.

Ergo, using Eq. (28) and Eq. (23), one can directly compute the
inverse quality factor. Recall that the inverse of the quality fac-
tor is also directly obtainable from a Prony-series via Eq. (10), and
note that the value of My does not influence the quality factor. This
means that a dimensionless Prony-series with parameters M ;= %—(’)
can also be used. It is thus possible to write directly:

N+ 1)

(ac(a)g) tan (?) ("' — wb-
171
_‘Lbz)(w()) (ac(a)o) tan (b;) (@ — b )+ 1) :|

w
awbc(wyp)

Q' () = ;[

Z] 1 J1 2 2
+?T;
== = (29)
Moo + Zi=1 Mj 1+w21rj2

Thus, together with the additional constraint that M. + Z']L] 1\711 =
1, it is possible to directly curve fit the N-term Prony-series once
given N. As per Abaqus recommendations, the order of the Prony-
series should not be larger than the number of logarithmic decades
spanned by the test data [30]. Thus, this furthermore sets N as

_ Llogw <2?)J

(30)
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Table 1

Instantaneous shear moduli of common hyperelastic strain-energy densities.
Hyperelastic Model w M,
Neo-Hookean ludi -3) m
Mooney-Rivlin G -3)+G1-3) 2(G+G)
2-term Polynomial® Cio(h —=3)+Coi (b —3)+ G (l; — 3)2 + Coz2 (I, — 3)2 2(Cio +Con)
Ogden YNy Er (Mg +Ag" + Ag" - 3) 1SN fnct
Gasser-Ogden-Holzapfel>  Jju(h —3) + f& [elei=3" — 1] m

2 Without cross term Cyq (I; — 3) (I, — 3).
b In the isotropic case.

Lastly, it remains to compute the value of My, which is done via
the formula [33]

)2 IM(wo)| + Re{M(wo)}
2|M(wp)|?

where M(w) refers to the dynamic modulus derived using the di-
mensionless Prony-series.

Mo = pc(w, (31)

3. Methods

We summarise the data collected in our literature review, and
we provide details on our approach for calculating averaged atten-
uation power-laws and Prony-series.

3.1. Summary of literature review

We collected a total of 181 differing Prony-series from 48 dif-
ferent experimental papers, spanning twelve regions of interest
and eight different animal types (see supplementary materials).
The cortex was the most measured region in the dataset, with
43 Prony-series. The other tissues had fewer data: brainstem (23),
corona radiata (19), homogeneous brain (19), cerebellum (18), hip-
pocampus (18), corpus callosum (17), thalamus (11), dentate gyrus
(7) and basal ganglia (6). To investigate the effect of surrogate tis-
sues, we also collected the species used in the experiments. The
most commonly used animal surrogate was porcine tissue, with 56
Prony-series. A total of eight different surrogates were used in our
collected experimental data - namely, rat (52), human (45), mouse
(13), cow (12), sheep (1), monkey (1), and dog (1).

We only collected recent experimental data (from the past 25
years), from a variety of experimental protocols, including inden-
tation tests, shear tests, tensile tests and compression tests. All of
these protocols were testing ex-vivo brain tissue. In-vivo testing is
possible by MRE, but there are some limitations and assumptions
associated with current methods [35-37]. Indeed, large discrepan-
cies between various MRE measurements exist, sometimes by an
order of magnitude [35]. There are also discrepancies between the
results of mechanical tests and elastography results, such as for
uniaxial compression [38]. Budday et al. [39] noted this discrep-
ancy for experiments into age-dependence for brain tissue. There
are also issues with reconstruction methodologies for MRE [40,41].
Consequently, we did not collect MRE experimental results here, to
remove this source of additional variation.

Data was collected regardless of differences in experimental
protocols, species, sex, temperature, or other factors, although fac-
tors such as choice of surrogate tissue and brain region were
recorded. It is well known that several other factors such as age
[37,42], sex [43,44], animal [45,46], experimental protocol [47,48],
temperature [49-51], preservation [52], humidity [53] and post-
mortem time [54,55] can affect experimental results. There are al-
ready studies comparing results obtained from similar experimen-
tal procedures [6,56]. However, in this review we focus on com-
paring the data used in FE modelling, where data is generally used
from a wide range of experiments irrespective of the experimental

70

conditions and protocols. Furthermore, Chatelin et al. [47] found in
their review that the disparity in results was independent of ex-
perimental protocol.

In relation to Prony-series used in FE models, we found a to-
tal of 31 unique Prony-series. A total of 23 different FE models
were considered in this work. In alphabetical order, they are the
following: ADAPT [57], ANISO KTH v1 [58], ANISO KTH v2 [59],
ATLAS [60], Cai et al. (CAI) [61], Chen et al. (CHEN) [62], ICM [8],
Khanuja & Unni (KHANUJA) [63], KTH v2 [64], SIMON vO [65], SI-
MON v1 [66], Subramaniam et al. (SUBRAM) [67], Tse et al. (TSE)
[68], UCD v1 [9], UCD v2 [11], WSUBIM [69], Yang et al. (YANG)
[70], ULP vO [71], ULP v1 [72,73], WHIM v1 [74], WHIM v2 [75,76],
Yang et al. (YANG) [70] and YEAHM [77,78]| models. The most com-
monly modelled tissue is the homogeneous brain, with 12 differ-
ent Prony-series. Most data consist of only one-term Prony-series.
The same problems with variations due to differing experimental
protocols also apply to these datasets. Furthermore, there are also
multiple instances of differing Prony-series being derived from the
same experimental sources due to differences in fitting methods.
In some cases, even the order of the Prony-series can change be-
tween studies - for example, from the data of Shuck and Advani
[79], the WHIM v2 model obtains a 2-term Prony-series [75,76],
whilst the models of Yang et al. [70], Tse et al. [68], Chen et al.
[62] and ULP vO [71] have a one-term Prony-series.

We also note that FE models are not always using experimen-
tal results directly. FE models such as ATLAS [60] have opted to
use optimisation schemes based on running many simulations and
picking parameters which best reproduce experimentally deter-
mined histories. This approach is problematic because the param-
eter optimisation results now depend upon intrinsic properties of
the model such as the geometry. This means that even while using
the exact same validations, different models can yield substantially
different predictions [80]. Models furthermore do not always use
the same types of validations, which can also lead to varying pre-
dictions [81].

Another common practice in FE models is to model the hypere-
lastic and viscoelastic response separately. These effects can be ei-
ther additively decomposed using the theory of linear viscoelastic-
ity (Section 2.1) or multiplicatively decomposed using the theory of
quasi-linear viscoelasticity (Section 2.2). Some groups also merge
together different experimental data: they source viscoelastic prop-
erties and hyperelastic properties from different experiments (pos-
sibly using different experimental protocols) and combine them
together. However, one can obtain different fits for each hyper-
elastic model; this can be seen in the work of MacManus et al.
[82] and Eskandari et al. [83]. Furthermore, using different hypere-
lastic models essentially amounts to altering the value of M. Scal-
ing viscoelastic experimental data is frequently implemented in FE
models e.g. the KTH model [84] simply scales the data by a factor
of 2, and the ULP v1 [73] model scales the data using the results
of the 1977 paper of Khalil et al. [85]. However, this scaling affects
both the attenuation and dispersion laws, thus changing the me-
chanical behaviour of the tissue compared to that of the original
experimental paper. Nevertheless, in order to compare FE models
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Sources of experimental viscoelastic data (in chronological order) used by 19 current state-of-the-art FE models for the obtention of dimensionless

Prony-series g(t).

Reference Year Species FE Model(s)

MacManus et al. [86] 2017 Rat uCD v2 [11]

Miller et al. [60]" 2016 - ATLAS [60]

Rashid et al. [87] 2012 Pig Khanuja-Unni [63], YEAHM [77,78]

Kleiven [84] (using data from Nicolle et al. [29]) 2005 Pig ADAPT [57], ICM [8], KTH v2 [64]

Cloots et al. [88] (using data from Nicolle et al. [29]) 2005  Pig ANISO-KTH v1 [58], ANISO-KTH v2 [59], WHIM v1 [74]
Zhang et al. [89]* 2004 - Chen & Ostoja-Starzewski [62]

Willinger & Baumgartner [72]2 2003 - ULP v1 [72,73]

Takhounts et al. [90] 2003 Human  Cai et al. [61], SIMon v1 [66]

Zhang et al. [69]" 2001 - Tse et al. [68], UCD v2 [11], WSUBIM [69], Yang et al. [70]
Willinger et al. [71] (using data from Shuck & Advani [79]) 1972 Human  Tse et al. [68], ULP vO [71], Yang et al. [70]

Zhang et al. [91] (using data from Shuck & Advani [79]) 1972 Human  Tse et al. [68], Yang et al. [70]

Zhao & Ji [76] (using data from Shuck & Advani [79]) 1972 Human  WHIM v2 [75,76]

Mendis et al. [92] (using data from Estes & McElhaney [93]) 1970 Human  Subramaniam et al. [67], UCD v1 [9]

3 No experimental viscoelastic source was found.

b These papers use optimised parameters selected to match experiment results and thus thus do not come directly from experimental viscoelastic
data. For example, Zhang et al. [91] used datasets such as pressure data by Troseille et al. [94] and Nahum et al. [95] for optimisation.
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Fig. 4. Schematic of brain sections coronal (left) and sagittal (right) with twelve different attenuation power-laws with nine different regions (basal ganglia, brainstem, corona
radiata, corpus callosum, cortex, dentate gyrus, hippocampus, and thalamus) and the remaining three summarising the white matter, grey matter and the homogeneous brain.

with the experimental literature, we use predictions from all such
Prony-series, regardless if they have been scaled or have multiple
experimental sources.

We performed a thorough literature review of experimental
papers and of computational simulation papers, with a total of
more than 100 research articles. Most of the finite element method
(FEM) based numerical solvers use viscoelastic material properties
from the thirteen papers presented in Table 2. Many of the FEM
solvers currently assume that brain is a homogeneous material,
and only implement a single-term Prony-series, mostly with the
assumption of linear viscoelasticity. Some recent FEM implemen-
tations use the QLV implementation. We gathered the viscoelastic
properties, specifically, the Prony-series parameters implemented
in the FEM solvers as well as those recorded in the experimental
papers for different tissue types, namely: 1) homogeneous brain,
2) brainstem, 3) basal ganglia, 4) cerebellum, 5) corona radiata, 6)
corpus callosum, 7) cortex, 8) dentate gyrus, 9) hippocampus, 10)
thalamus, 11) grey matter and 12) white matter. These regions are
depicted in Fig. 4. A total of 8 different animals were considered:
pig, rat, human, mouse, cow, sheep, monkey and dog. In the main
article, we provide a detailed analysis of the viscoelastic behaviour
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of the homogeneous brain as used in FEM solvers, and relegate the
viscoelastic properties of other tissue types to the supplementary
material.

Some models include anisotropy [58,59,75,76,96,97] or porosity
[53,98] in addition to linear or quasi-linear viscoelasticity, but we
did not report these effects (in general, fibre reinforcement does
not contribute significantly to the mechanical response in the par-
allel or perpendicular shearing directions [96]). Similarly, we ig-
nored compressibility because brain matter is near incompressible
[99]. Furthermore, experimental papers oftentimes provided multi-
ple Prony-series fits for the same region, but with differing strain
rates [100-102], strains [103-105], indentation depths [106], load-
ing rates [48], impact angle [107], velocity [107], loading modes
(e.g. tension, compression, shear etc.) [24], direction relative to fi-
bres [97,108], loading cycle [109], boundary condition [110], pre-
conditioning or no preconditioning [24,48,106], injured or unin-
jured tissue [106], plane of experiment [86,108,111], and animal age
[86,112-115]. Having many Prony-series come from a given study
was not desirable because that study would disproportionally af-
fect the final averaged results and because it is well known from
previous literature reviews that viscoelastic parameters may vary
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Fig. 5. The workflow process consists of five steps: (a) forward calculation, (b) average power-law calculation, (c) backward calculation, (d) averaged Prony-series fitting and

(e) re-calculation.

immensely from one study to another [39,47,56]. As a result, we
decided to take fits from mature and uninjured tissue only. When
choice was available, we took fits for the highest strain rate, strain,
indentation depth and velocity. When available, we took data for
all modes, the first loading cycles, and no slip boundary condi-
tions. Fits in directions orthogonal fibres were also preferred, to
neglect anisotropic effects. Data from the axial plane was preferred
because slices are more homogeneous along this plane; if that data
was unavailable, then the sagittal plane was taken instead. Finally,
if neither of these were available, the coronal plane was taken. Im-
pact angles of 0 degrees were also preferred. Lastly, preconditioned
fits were taken when available, as they were observed to be closer
to the other data, and also some unconditioned fits were found
to have My = 0 [106], which is unphysical as it corresponds to a
fluid. Cases where different Prony-series were provided for differ-
ent locations within the same region were kept, and highest order
Prony-series were taken in all cases. When differing fits were pro-
vided for different animals [86,90,116], these were also kept.

For Prony-series fits used in FE models, we found that only a
single FE model provided specific viscoelastic parameters for the
corpus callosum [61]. This fit was thus considered as white matter
owing to a lack of other data. Similarly, only one FE model pro-
vided viscoelastic properties for the cerebrum [68], so this was in-
cluded within the homogeneous brain data for FE models.

Following the literature review, we focused on a total of six key
quantities: the relaxation function g(t), storage modulus M'(w),
loss modulus M”(w), inverse quality factor Q~!(w), dispersion
c(w) and attenuation o (w). We adopted a workflow consisting of
five key steps to analyse the different viscoelastic parameters ex-
tracted from the literature, see summary in Fig. 5. The steps are as
follows.

3.2. Forward calculation

« The coefficients of the Prony-series, M; and Bj=1/7;, j=
1,...,N, are recorded for each study during the literature re-
view. These values together can be used to create the relaxation
function g(t) using Eq. (7), or alternatively to calculate the di-
mensionless parameters 1\7Ij along with the instantaneous shear
modulus My via Eq. (8).

« The Prony-series data is then used to calculate the storage
modulus M’ (w) via Eq. (11) and the loss modulus M”(w) via
Eq. (12).
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« With the help of the loss and storage moduli, the inverse
quality factor Q~!(w) is calculated using Eq. (10) along with
the dispersion relation c(w) via Eq. (22). A mass density p =
1000 kg/m? was used for all tissues.

» Using the quality factor and the dispersion, the attenuation
power-law o (w) is calculated from Eq. (23).

3.3. Average power-law calculation

Now attenuations are calculated for each of the Prony-series.
It is then possible to synthesise an averaged attenuation power-
law from these calculated curves. Specifically, we conduct a linear
fit in the log-log space using the o (w) laws evaluated only at the
frequencies corresponding to their Prony-series decay coefficients
o=, j=1,...,N. The valid frequency range of a fit was then
taken to be [min; 8;, max; B;]. Fits were only undertaken if there
were at least three datapoints.

3.4. Backward calculation

Following the average power-law calculation, we obtain an aver-
aged power-law Ina(w) = Ina + blnw, along with standard devia-
tions oy,, and oj. Using a reference value of c = 2.1 m/s at a fre-
quency of 75 Hz derived from experiments on homogeneous brain
tissue [12,17], it is possible to calculate the dispersion from the
Kramers-Kronig relation as defined in Eq. (28). The quality factor
can then subsequently be calculated using the derived attenuation
and dispersion laws via Eq. (23). To determine the errors in the
predicted quality, we calculate its minimum and maximum using
the parameter choices Ina + oy,, and b + o}, respectively. A single
error metric can be computed as the mean of the errors in the
lower and upper bounds.

3.5. Averaged Prony-series fitting

The backward calculation yields quality factors valid over a
range of angular frequencies [wq, w;]. From this data, it is then
possible to directly perform a curve fitting exercise for the di-
mensionless Prony-series parameters as per Eq. (29). The order
of the Prony-series is set by Eq. (30). Here, we evaluated the in-
verse quality at 1000 equally spaced points on log-scale, which
we call logarithmically spaced points in the valid interval [w1, @-].
Each of these points also has an associated error. Curve fitting for
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Fig. 6. Anomalous Prony-series predictions (grey) and their corrected versions (coloured) for (a) the relaxation function and (b) inverse quality factor.

Eq. (29) given these values and errors was performed using the
“trust region reflective” algorithm, based on the work of Branch
et al. [117] and implemented in Scipy [118]. This algorithm al-
lows one to give lower and upper bounds for the required pa-
rameters, based on physical intuition. For example, we know the
parameters M; should be constrained on [0, 1]. To ensure that
the parameters B; are physically relevant, we can partition the
interval [wnin, Wmax] into n+ 1 logarithmically equidistant inter-
vals and use these as the bounded regions. Once the dimension-
less parameters were fitted, we calculated the instantaneous shear
modulus My using Eq. (31). Again, we used the references values
0 = 1000 kg/m3 and ¢ =2.1 m/s at 75 Hz. Then the fitted Prony-
series is entirely defined. Lastly, we also provide the attenuation
power-laws used, so that users can conduct their own Prony-series
fits if desired.

4. Results and discussion
4.1. Anomalies in Prony-series

In some cases, Prony-series predictions were not in line with
the general data. Specifically, a number of Prony-series were found
to predict an inverse quality factor greater than 1. This has prob-
lematic physical implications - a dissipation factor greater than 1
would correspond to the case where more energy is dissipated
than the total energy of the wave [119]. As a result, corrections to
these series were required in order to make them comparable to
the general data. To this end, the dimensionless series was trun-
cated by entirely removing the highest frequency term in the se-
ries. All other terms in the series were left unchanged. The quality
was then found to be strictly below 1 for the range of valid fre-
quencies as desired. However, conducting such a truncation neces-
sarily alters either My, or of M. A choice thus must be made on
which quantity to keep constant. In this work, My was kept con-
stant since this is a more robust experimental quantity than M.
That is, it is physically impossible to measure M., as this would
require waiting for an infinite amount of time. Thus, instead in ex-
periments a large time is used to approximate the value at t — oo.
However, this cut-off time is arbitrary which this means that val-
ues of My, can vary. Furthermore, we found that the keeping My
constant yielded results more in line with our general findings.
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Figure 6 shows the original Prony-series (in grey color) and the
truncated series (in color). These Prony-series are primarily derived
from Nicolle’s work [20] and have been used by the ANISO KTH
models and its variants, Imperial College, and Worchester models.
As evident from the right-subplot, the unphysical case of Q1 >
1 is present for high frequencies. On the other hand, the trun-
cated Prony-series indeed produce Q~! < 1. However, this trun-
cation does overestimate g(t) with respect to the original series.
Nevertheless, the truncated Prony-series produce results consistent
with the average results.

Prony-series differing substantially from the rest of the litera-
ture were also not included in this review, such as the curve of
Mendizabal et al. [120]. Since these are outliers, it was necessary
to disregard them in order not to skew results.

4.2. Attenuation power-laws in homogeneous brain

To understand the currently used approaches in FE models, we
discuss the predictions of viscoelastic FE data for the homogeneous
brain.

Most of the computational models still use the homogeneous
assumption while describing the viscoelastic properties of the
brain matter. In this section, we consider the different Prony-series
used in the common FE models describing the homogeneous brain
deformation.

The Prony-series collected were fitted using Eq. (7) which gives
a continuous function as shown in Fig. 7a. Most of the relaxation
functions are close to each other except the ones from Tse et al.
[68] and ULP vO [71] (light-blue), which uses the experimental
data from Shuck and Advani [79].

There is significant variation in the Prony-series data, which
is unsurprising given the experimental sources summarised in
Table 2, many of which are 50 years old. This reliance on dated
experimental data is problematic because experimental protocols
have changed greatly over the past 50 years thanks to new exper-
imental data and approaches [56]. Studies indicating temperature
and post-mortem time effects have lead to newer experimental ap-
proaches with better controls. For example, the data from the work
of Shuck and Advani in 1972 [79] is an outlier, overestimating both
the storage and loss moduli as compared to other studies [47,56].
This data was obtained hours after autopsy, which itself may have
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modulus, (c) loss modulus, (d) inverse quality factor, (e) dispersion and finally (f) attenuation.

been hours or days post-mortem. This issue is particularly prob-
lematic as it is well known that brain tissue stiffness increases
quickly with post-mortem time. Weickenmeier et al. [54] found
that within 16 h post-mortem, the loss and storage moduli were
twice as stiff.

Notwithstanding these extra considerations, there are large
variations in the experimental protocol used in experiments in
general [56], which makes it difficult to get consistency between
results. However, as seen in Table 2, these older papers are some
of the few experimental studies on human brain that are being
used in FE models. The experimental data used by the UCD v2
[11] model from MacManus et al. [86] are obtained from experi-
ments on rats, which is not ideal because the structure of the ro-
dent brain is considerably different to that of a human [114]. Dai
et al. [46] recommend instead the use of experimental data from
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large animals (e.g. pig, rabbit, sheep, etc.) above rodents when data
from human brains are not available, and Nicolle et al. [20] report
no significant difference in viscoelastic behaviour between porcine
and human brain matter.

Furthermore, the assumption that the brain is homogeneous
with respect to viscoelastic properties is weak, as results can vary
greatly depending on what region of the brain is being considered
[86]. It is thus important that the data for the homogeneous brain
be taken from a representative region. However, the data of Nicolle
et al. [29] and of Shuck & Advani [79] are in fact obtained from the
corona radiata region. This is a white matter region which is me-
chanically quite different from the mixed white-grey matter region
studied by Rashid et al. [121].

Predicted quantities from the collected Prony-series for the ho-
mogeneous brain as used in FE models are shown in Fig. 7. In gen-
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eral, most Prony-series are only one-term series and span low fre-
quency ranges, with the major exceptions of ADAPT [57], ANISO
KTH v1 [58], ANISO KTH v2 [59], WHIM v1 [74], ICM [8] and
KTH v2 [64], which use the data of Nicolle et al. [29]. Only these
models are able to capture frequencies greater than 100 Hz. This
limits the scope of possible applications. For example, road traffic
and low-velocity missile impacts are associated with higher fre-
quencies, on the order of 0.1-10 kHz [20]. It is worth mention-
ing that the data from the YEAHM model [77,78] and Khanuja &
Unni model [63] is a two-term Prony-series, coming from the fit of
Rashid et al. [87]. However, the decay coefficients ; = 38.895 Hz
and B, =38.911 Hz for this series are so close that an extended
frequency range was also used to match a one-term Prony-series.
Ignoring the extended range of the fit from Nicolle et al. [29], the
data lies in the region of t € [10~3, 10°]. Looking at Fig. 7a, the data
used by the Tse et al. and ULP vO models [68,71] and the mod-
els of Cai et al. and SIMon v1 [61,66] are the outliers. The data is
found to span many logarithmic decades, and shows greater vari-
ation in comparison to the review of Chatelin et al. [47] which
found data varying within almost two decades (g(t) < [20, 8000]).
Furthermore, the data from FE models is substantially stiffer than
that of experimental papers, including both those of the review
of Chatelin et al, and from this work (see supplementary mate-
rials). In contrast, the experimental data found in this work com-
pares well to that in the review of Chatelin et al., showing that it
is indeed an issue associated with FE model data.

The outlier datasets of Fig. 7a are worth further discussion.
First, the major outlier is the series of Tse et al. [68] and ULP vO
models [71] (light blue), which comes from the study of Shuck &
Advani [79]. As already discussed, this data is substantially stiffer
than the rest of the literature. Furthermore, there is a second out-
lier: the relaxation modulus data of Takhounts et al. [90] used in
the Cai et al. and SIMon v1 [61,66] models (purple) is lower than
that in the rest of the literature. In that experiment, the tissue was
stored by freezing and experimented on between 3 and 24 h post-
mortem. Other experimental sources used in FE models differ in
this regard. For example, the experiment of Nicolle et al. [29] (used
in ADAPT [57], KTHv2 [64], ANISO KTH v1 [58], ANISO KTH v2
[59], WHIM v1 [74] and ICM [8]) was conducted 24 h post-mortem
and that of Rashid et al. [87] (used in the Khanuja-Unni [63] and
YEAHM [77,78] models) was conducted within 8 h post-mortem.
This may explain why the data of Cai et al. [61] and SIMon v1
[66] is less stiff than the series of Nicolle et al. [29]. The storage
temperature is consistent with that of the other series of Rashid
et al. [87] and Nicolle et al. [29], which range from 4 to 6 °C. This
is important because storage temperature can have a very large
impact on the stiffness of brain tissue, with lower storage tem-
peratures leading to stiffer behaviour [52]. The temperature an ex-
periment is conducted at is also important, with experiments con-
ducted at room temperature showing a stiffer response than those
measured at body temperature [56]. Thus, it is worth noting that
whilst the experiments of Rashid et al. [87] and Takhounts et al.
[90] were conducted at room temperature, the work of Nicolle
et al. [29] was conducted at body temperature. Lastly, the specific
region of the brain tested by Takhounts et al. [90] is not listed, but
we note that the study of Nicolle et al. [29] was conducted on the
corona radiata (white matter region) whilst that of Rashid et al.
[87] was conducted on mixed white and grey matter samples. This
may partly explain why the data of Takhounts et al. [90] appears
to be an outlier.

The general disparity in the literature propagates through to the
predictions of the storage and loss moduli where the same datasets
are still outliers (Fig. 7b and c). In general, the storage modulus
is observed to increase with frequency, as is the loss modulus. A
characteristic n-shape is observed for the one-term Prony-series
data predictions of the loss moduli, but this is simply due to the
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low order of the Prony-series and the use of an extended frequency
range. For higher-term Prony-series such as that from Nicolle et al.
[29], this behaviour is not observed.

Importantly, a further conglomeration of the data is observed
upon computation of the inverse quality (Fig. 7d). This is a par-
ticularly important quantity to check as it is independent of the
value of the instantaneous shear modulus My. The previous out-
lier datasets are found to lie within the rest of the data in terms
of the inverse quality, which shows that the previous differences
were predominantly due to their values for My. Oscillations in the
inverse quality are also observed, which occurs due to a limited
number of relaxation mechanisms in the Prony-series [122,123].
Approximately constant qualities are also anticipated due to the
commonly used assumption of constant quality that is often made
for determining regions of interest, as long as the dispersion is
small [124].

A number of Prony-series predict extremely high wave speeds
c(w) of over 10 m/s (Fig. 7e), despite the fact that experiments
have not observed speeds this high [17,125]. These predictions oc-
cur in the cases of series derived from the data of Nicolle et al.
[29], and for the data of Tse et al. and ULP vO models [68,71], both
of which have large instantaneous shear moduli. As evident from
Eq. (22), the wave speed scales linearly with the instantaneous
shear modulus, which leads to the observed high wave speed pre-
dictions. Despite all of this variation, the derived attenuation laws
in Fig. 7f are indeed generally observed to follow the expected
power-law attenuation behaviour.

4.3. Attenuation power-laws in heterogeneous brain

We discuss both FE data and experimental data predictions for
the regions of the heterogeneous brain collected during our litera-
ture review.

Following the same process shown for the homogeneous brain
data of FE models, we computed averaged attenuation power-laws
for twelve different regions in the brain, using Prony-series from FE
models and from recent experimental papers. This yields averaged
attenuation power-laws and frequency intervals over which the fit
is valid. Both FE model data and experimental paper data were not
always available for the all regions, but it was nonetheless possible
to compare a number of key regions, as depicted in Fig. 8. Detailed
calculations for each region are provided in the supplementary ma-
terials. Also, note that the frequency axis is not the same for the
tissue types as it is dependent on the Prony-series.

Figure 8 a shows the average attenuation law in the homoge-
neous brain tissue in FE models and the experiments together with
a “reference” power-law for homogeneous brain tissue we have
used in our nonlinear (shock) shear wave modelling [17]. The “ref-
erence” was obtained using ultrasound shear wave imaging exper-
iments performed on ex vivo porcine brain tissues [12]. The ho-
mogeneous brain tissue assumption is the most commonly used
in FE modelling, meaning most data used in FE implementations
comes from this region (12 unique Prony-series). For experimental
data, 18 unique Prony-series were sourced for the homogeneous
brain and this was not the most common tissue. As evident, the
“brain-FE” law is significantly lower than the “brain” synthesised
from the experimental data only. In fact, a relative error calculation
between the power-law attenuation of experimental data and FE
(aExpa)bEXP - aFEwaE)

models, calculated as x 100, gives a range

aEXpa)bEXp
of errors of 43-52% between 10 and 100 Hz, respectively. This sug-
gests the need to revisit the viscoelastic modelling of brain matter
in FE models to accurately capture the recent experimental data.
The underestimation of attenuation in the FE implementation in
contrast to experimental data is consistent in all the tissue types
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Fig. 8. Averaged attenuation power-laws at low frequencies (< 100 Hz) for twelve different regions of the brain. Dashed lines refer to fits obtained from data used in FE
models. Fits are only plotted over their respective valid frequency ranges. Shaded regions show one standard deviation +1c. Plotted are (a) the homogeneous brain, (b)
cerebellum, (c) brainstem, (d) white matter, (e) grey matter and (f) thalamus and hippocampus regions.

and the animal types. The lower attenuation in FE models tends to
predict higher stiffness in contrast to the experimental data.

Surprisingly, the experimental power-law closely aligns with
the power-law attenuation we have used in our simulation stud-
ies [17]. This could possibly be due to increased emphasis on high
strain rate experiments in recent publications.

Furthermore, there is also a greater degree of variation for FE
model data, indicated by the larger ranges of uncertainty. The
largest degree of uncertainty was found for the cerebellum re-
gion (Fig. 8b). This is not unexpected due to the lack of viscoelas-
tic data in the FE model literature for the cerebellum region (4
unique Prony-series). For all regions except the brainstem and ho-
mogeneous brain (Fig. 8c), we observed that the fits from the ex-
perimental data lie within the error interval for the associated FE
data. There are a number of possible reasons that may explain
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this. Firstly, as summarised in Table 2, the data used in FE models
for the homogeneous brain largely comes from older viscoelastic
sources, which give stiffer material properties compared to recent
experimental sources. Thus, for the homogeneous brain, it is unsur-
prising that FE models have significantly less attenuating power-
laws compared to recent experimental data. The question therefore
becomes why we do not observe significant differences for other
regions. The reasons for this may be that the data for FE mod-
els is newer for these regions since heterogeneity is only imple-
mented in recent FE models. Furthermore, there is not much data
for these regions, which leads to larger error intervals and thus
less significant results - specifically, from FE models there are only
6 unique Prony-series for white matter, 5 for grey matter and 4 for
the cerebellum. By contrast, for the homogeneous brain, there are
12 unique Prony-series.



0. Morrison, M. Destrade and B.B. Tripathi

For the white matter in particular, we point out that the power-
laws in Fig. 8d for the corona radiata and corpus callosum are dis-
tinct (do not lie within the error regions of one another), but both
of them lie within the error region for the white matter as used
in FE models. This underlines the importance of considering het-
erogeneity in FE models, instead of just white matter as a whole.
For comparison purposes, the corpus callosum data and corona ra-
diata data were also pooled to create a single white matter region
from experimental data, and this was found to also agree with the
white matter data used in FE models. Similarly for grey matter in
Fig. 8e, we found that the subregions of the basal ganglia, den-
tate gyrus and cortex all agreed with the grey matter data used in
FE models. Moreover, the pooled data of the basal ganglia, dentate
gyrus and cortex was used to generate a single grey matter region
from experimental data and this was also found to agree with the
data used for grey matter in FE models. For two regions, namely
the thalamus and the hippocampus (Fig. 8f), no reasonable com-
parison was possible with other FE model data since, to the best of
our knowledge, these regions have not been modelled as viscoelas-
tic materials in the FE models considered in this work. However, it
is apparent that the thalamus is found to be the most attenuating
region here and thus is mechanically different from other regions.
This suggests that the thalamus is an important region to include
in FE models, and should not be neglected.

4.3.1. Homogenisation of attenuation in brain

We investigate if it is possible to reconstruct the homoge-
neous brain attenuation predictions using heterogeneous brain
data. It is important to test the validity of homogeneous brain
measurements, because the brain is a highly heterogeneous tissue
[6,39,82,86,112-115,126]. In fact, one the key challenges identified
in current FE modelling is the obtention of accurate heterogeneous
data for models [4,5]. To this end, we pooled (referred as “all”) the
experimental data for all regions except the homogeneous brain to
reconstruct the power-law for the homogeneous brain from het-
erogeneous brain data. This was used to quantify the the variation
in the power-law resulting with the assumption of homogeneous
brain and the one constructed using the heterogeneous data. The
results of these processes are shown in Fig. 9.

As expected, different tissue types in brain have different
power-laws and the homogeneous brain power-law (black curve)
lies in between the different laws as seen in Fig. 9a. Note these
laws are generated using the experimental data (has no contribu-
tion from data collected from FE models). Also interesting to note
is that the power-law description for white and grey matter are al-
most overlapping as evident from Fig. 9a (see Table 3 for exact ex-
pressions). However, the Prony-series representation (for example:
[25,127]) of these two regions are not as similar as their power-
laws. The reason for this overlap could be due to our averag-
ing procedure over different experimental procedures, tissue types,
temperature, animals, etc. are used in studies on white matter ver-
sus those on grey matter. Nevertheless, such an averaging is re-
quired in order to compare and leverage different experiments and
to have some starting point for modelling nonlinear shear waves in
brain. On the other hand, there have been discussions around the
variations in elastic and anisotropic properties of white and grey
matter. Many studies report conflicting results on the anisotropy
of white matter (further discussion can be found in Budday et al.
[39]) and on which tissue is stiffer (discussed in Zhang et al. [128]).

Furthermore, we found that the “all” data (light blue) does
not match the homogeneous brain data (solid black) as shown in
Fig. 9b as well as the “reference” (light red), however, they are
all still within each others’ +o. This difference could be due to
the sampled regions for the homogeneous brain fits versus those
of the rest of the experimental data. For example, the most com-
mon region found in our literature review is the cortex (43 unique
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Prony-series). However, since the locations for the homogeneous
brain data are not explicitly given, it was not possible to deter-
mine whether the homogeneous brain data is dominated by the
cortex data. However, this result nonetheless highlights a current
discrepancy in the literature. It furthermore emphasises the need
for considering the heterogeneity of the brain as opposed to at-
tempting to construct a suitable averaged region, which can be
highly subjective due to different averaging techniques. However,
these three curves: “reference”, “all”, or the homogeneous “brain”
fit from experimental data are not within the error region of the
the attenuation power-law from FE models (dashed black). A rel-

(aHomwbHom — aAlla)bAl])

ative error x 100 of 29-39% between the

aHoma)bHom

homogeneous brain and the “all” region from 10 to 100 Hz also
indicates a discrepancy between the heterogeneous and homoge-
neous treatments of brain tissue. Similarly, a relative error of 43-
52% was found between the power-law attenuation of experimen-
tal data and FE models from 10 to 100 Hz, highlighting the need
to revisit the viscoelastic modelling of brain matter in FE models
to accurately capture recent experimental data.

4.3.2. Intra-layer variability

We discuss the variation within different tissues of the hetero-
geneous brain.

As can be clearly seen in Fig. 9a and Fig. 8, differing levels
of intra-layer variability were also observed for different tissues.
Large degrees of variation were observed for regions with little
data, such as the basal ganglia (6 Prony-series) and the thalamus
(11 Prony-series). This high uncertainty is simply a consequence
of limited data. Of greater interest is the variation in other tis-
sues where large numbers of data (> 17 Prony-series) are avail-
able. For example, as depicted in Fig. 9a, larger degrees of vari-
ation are observed for the homogeneous brain (o},, = 0.09 and
o, = 0.03), corpus callosum (oy,, = 0.10 and o}, = 0.03) and corona
radiata (o,, = 0.09 and o, = 0.02), with smaller variations found
for the cortex (oy,, = 0.05 and o3, = 0.02), grey matter (oy,, = 0.05
and op, = 0.01) and white matter (oy,, = 0.07 and o}, = 0.02) re-
gions. The smaller variation for the white matter region is due to
the aggregation of two relatively mechanically close regions of the
corona radiata and corpus callosum, as shown in Fig. 8d, leading to
a lower variation in the new unified region. Similarly, low variation
is also found for the grey matter for the same reason (see Fig. 8e),
particularly given the low variation in the cortex region, which is
the most experimentally measured tissue in our review with 43
Prony-series. However, greater degrees of variation are found for
the corpus callosum and corona radiata regions. This is possibly
due to variations in the experimental literature in terms of surro-
gate tissues used, with human, pig, cow, sheep, rat and dog sur-
rogates used, and also due to the large degree in variation in in-
stantaneous shear moduli, with values ranging from approximately
100 Pa to 60 kPa for both tissues. Large variation is also observed
for the homogeneous brain tissue due to different testing locations,
and due to the fundamentally heterogeneous nature of the brain
tissue. As previously mentioned, additional variations due to dif-
ferent experimental protocols can also be present.

For completeness, the data for the fits for the experimental data
and from FE model data are given for each region, and are shown
in Tables 3 and 4, respectively. We have provided further details
such as the raw data, full calculations and merged fits for each re-
gion in the supplementary materials.

Remark. Different Prony-series g(t) are possible depending on the
curve fitting procedure used. As a result we recommend users un-
dertake their own curve fitting, but nonetheless we do provide our
results in Tables 3, 4 and in the supplementary materials.
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Table 3

Derived averaged attenuation power-laws and corresponding Prony-series from averaged experimental data. #Prony-series refers to the number of unique Prony-series.
My (wp) is the instantaneous shear modulus obtained from a reference frequency of 75 Hz i.e. wg = 150 Hz. The white region is formed from merging the corona radiata
and corpus callosum regions, and the grey region is formed from merging the cortex, dentate gyrus and basal ganglia regions.

Angular Frequency
Region (#Prony-series)  Range [Hz] Power-law [Np/m] Averaged Prony-series g(t) = Mo, + i Mje*ﬂﬁ My (wp) [Pa]

Ina =Ina+blnw

Var Val-(u+o) 95% C.I.

Basal ganglia (6) Omin 2 %105 Ina  -180+£021 (-2.21,-1.40)  0.012 + 0.0115e~%14e-05t | 0 0174¢-0.000381¢ 4603
0.0303¢-0.00331¢ 4 0056000323t 4 0.106e~037% +
0.216e-582 1 0551179

Wmax 6.1 x 10? b 0.86 + 0.04 (0.79,0.94)
Brain (18) Omin 0.01 Ina  —2.03+0.09 (-2.21,-1.85)  0.0902 + 0.0608e~00223 | 0.0952¢~0-291¢ 4 4607
0.193e~488 4 0.561e~180
Wmax 7.3 x 10? b 0.91+0.03 (0.86,0.97)
Brainstem (23) Omin 0.0048 Ina  -1.83+0.11 (-2.04,-1.62)  0.0988 + 0.05¢-00104 1 0.0774¢~0-131t 4 0.163¢~197¢ 4 4430
0.611e-558¢
Wmax 2.1 x 10? b 0.97 +0.04 (0.89,1.05)
Cerebellum (18) Omin 0.0061 Ina  -1.36+006 (—1.48,-1.24)  0.0502 + 0.0455¢-00122¢ 4 0.0782e~0124 1 0.177e-15 + 4417
0.649¢-326¢
Wmax 1.1 x 10? b 0.89 +0.02 (0.84,0.93)
Corona radiata (19) Omin 0.0016 Ina  -146+009 (-1.62,-1.29)  0.00544 + 0.00509¢~0-00298¢  0.00829¢~00271¢ 4 24277
0.0168e~0272t + 0.0361e~34% 4 0.0977¢%75 +
0.213¢—32e+03t +OA618878'98H0‘"
Wmax 10° b 0.87 £ 0.02 (0.83,0.91)
Corpus callosum (17)  @min 0.00099 Ina  -138+0.10 (-1.57,-1.19)  0.00934 + 0.016e-0-00227t 0 0359¢~0.0215¢ 4 4596
0.0933e-0246t 4 0.249¢~423 + 0.597e~173¢
Wmax 6.6 x 102 b 0.79+0.03 (0.73,0.84)
Cortex (43) Omin 2x 1075 Ina  -1.714£0.05 (—1.82,-1.60)  0.013 + 0.0101e-3:5%-05 1 001470000319 4 4593
0402618_0'0029& +0.0472€_0'0317t + 0408748_0'369[ +
0.19e~54¢ 4 0.612e~171¢
Wmax 5.8 x 10? b 0.89 +0.02 (0.85,0.92)
Dentate gyrus (7) Omin 0.079 Ina  —155+0.06 (-1.68,-1.43)  0.116 + 0.104e~"17t 1 0.189¢~19¢ 4 0.592¢~353 4418
Wmax 83 b 0.89+0.03 (0.84,0.94)
Grey (56) Omin 2% 1075 Ina  -1.69+0.05 (=179, -1.61)  0.0122 + 0.00968e~361¢-05 | 0.0142¢-0-000321¢ | 4609
0.0255¢-00029%t | 0.0466e~00323t 1 0.0867¢-037% 1
0.189e-562 + 0.616e~ 179
Wmax 6.1 x 10? b 0.88 +0.01 (0.86,0.91)
Hippocampus (18) Omin 0.01 Ina  -1.58+0.04 (-1.67,-1.50)  0.0874 + 0.0892e~00291 } 0.192¢-0534t 1 0.631e~185¢ 4412
Wmax 83 b 0.89+£0.02 (0.86,0.92)
Thalamus (11) Omin 0.0047 Ina  —-1.46+0.08 (~1.62,-1.29)  0.0493 + 0.0344e 00105t | 0.0594¢-0-134 | 0144216t | 4454
0.713¢-824
Wmax 3.3 x 10? b 0.93+0.03 (0.88,0.99)
White (36) Wrin 0.0099 Ina -143+007 (-1.56,-1.30) 0.0043 + 0.00473¢~00017t 4 0.00772e~0013¢ 4 4609
0.0154e~0105t | 0.0307e-099%t 4 0.0559e~994 4
010167995{ + 0'2279—1.585+03[ + 0'5549—3.77e+04t
Wmax 10° b 0.84 +0.02 (0.80,0.87)

Table 4
Derived averaged attenuation power-laws and corresponding Prony-series from averaged FE model data. #Prony-series refers to the number of unique Prony-series. My (wo)
is the instantaneous shear modulus obtained from a reference frequency of 75 Hz i.e. wy = 1507 Hz.

Angular Frequency
Region (#Prony-series) Range [Hz] Power-law [Np/m] Averaged Prony-series g(t) = M, + 2 M,e*ﬁﬂ My (wp) [Pa]

Ina =lna+blnw

Var Val-(u + o) 95% C.I.

Brain (12) Omin 6.7 lna  -232+0.13  (-2.58,-2.07)  0.312 +0.148¢ 973 + 0.141e-843t 4 0.178¢~871 4 6780
0.22¢-30le+04t
Wmax 10° b 0.8540.02 (0.80,0.89)
Brainstem (4) Omin 3.4 lna  —2.03+020 (-2.42,-1.63)  0.222 +0.145¢-548t 4 0.157¢~487t 1 0.228e~587t + 6967
0.248¢—277e+04t
Wmax 10° b 0.83£0.04 (0.74,0.91)
Cerebellum (4) Omin 3.3 Ina  -1.82+082 (-3.42,-022)  0.525+ 0.475¢~ 183 4412
Wmax 80 b 0.77 £0.47 (-0.15,1.69)
Grey (5) Omin 33 Ina  -1.94+021  (-2.36,-1.52)  0.264 4+ 0.219¢-86% 4 0.517¢~183 4606
Wmax 700 b 0.90 +0.07 (0.76,1.04)
White (6) Omin 13 lna  -1.80+033 (=245 -1.14)  0.484 4 0.516e455 4423
Wmax 700 b 0.85+0.11 (0.63,1.06)
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Fig. 9. Attenuation power-laws at low frequencies (< 80 Hz) for experimental data. The “all” fit is generated from merging the data for all regions bar the homogeneous
brain (i.e. hippocampus, thalamus, brainstem, cerebellum, grey matter and white matter). Shaded regions show one standard deviation +10, as do error bars. Depicted are:
(a) the power-law attenuation fits from experimental data for all of the gathered regions and (b) the power-law attenuation fits for the homogeneous brain (both FE and
experimental), and the “all” region (solely experimental). The reference law of Tripathi et al. [17] is also shown for comparison in (b), alongside the average homogeneous

brain attenuation from FE models (shown as a dashed black line).

4.4. Variation in attenuation due to animal selection

We investigate differences between surrogate tissues in the ex-
perimental literature. There are multiple factors that can cause dif-
ferences in experimental results, but one that is of key importance
is that of the suitability of surrogate animals. The influence of this
factor is vital to check because fresh human brain tissue is far
more difficult to source than tissue from other animals such as pigs
or cows. Thus, it is necessary to ascertain if surrogate tissues can
be used since this will have major ramifications on the ease of ob-
tention of suitable experimental data.

Experiments have already investigated this question, but only
on a per-experiment basis. For example, MacManus et al. directly
compared fits for human, pig, rat and mouse brains using inden-
tation techniques [129]. Nicolle et al. similarly compared porcine
tissue to human tissue using oscillatory experiments [20]. Here we
review across multiple experiments, specifically, we investigate the
averaged properties from a large experimental literature segregated
by animal type and region as shown in Fig. 10.

To achieve this, we employ the same methodology as was done
for the homogeneous brain characterisation used in FE models. For
these comparisons, the following regions were considered: homo-
geneous brain, cerebellum, brainstem, white matter (i.e. corpus cal-
losum and corona radiata data merged), grey matter (i.e. dentate
gyrus, cortex and basal ganglia data merged) and “all” region cre-
ated by merging data from all regions i.e. hippocampus, thalamus,
brainstem, cerebellum, grey matter and white matter except the
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homogeneous brain. A total of eight different animals were found
in our literature review - namely, pig, rat, human, mouse, cow,
sheep, monkey and dog. However, due to scarcity of data from
monkeys, sheep and dog, are not shown in Fig. 10.

Our results found that the average power-laws for each sur-
rogate tissue do not always agree. That is, the variation in re-
sults with respect to the use of different surrogate tissues is in
fact significant. This finding is not unexpected. For example, dif-
ferences between human tissue and rodent brain tissue are antic-
ipated since the rodent brain is quite anatomically different from
the human brain [114]. Even for more anatomically similar tissues
such as porcine and bovine tissue, differences are still observed in
this work. We do however still note that there are other sources
of variation due to different experimental techniques, post-mortem
time, temperature, etc. that are also present in our dataset. For ex-
ample, the data on human tissue comes primarily from indenta-
tion experiments [23,129-131] whilst for bovine tissue it primar-
ily comes from dynamic mechanical analysis [108]. Thus, we can
anticipate that differences between the bovine dataset and human
dataset will also occur due to differences in testing methods.

We also point out some general trends observed here. We can
see that the experimental data from human tissue is in fact gen-
erally less attenuating than porcine tissue, but more attenuating
than bovine tissue, as can be observed for the homogeneous brain
region (Fig. 10a), white matter (Fig. 10d), grey matter (Fig. 10e),
and the “all” region (Fig. 10f). Rat and mouse tissues were found
to be close. Like in the previous section, here also we calculate the
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Fig. 10. Averaged attenuation power-laws in a low frequency regime (0-50 Hz) for a number of key regions, separated by animal type. The “all” fit is generated from merging
the data for all regions bar the homogeneous brain (i.e. hippocampus, thalamus, brainstem, cerebellum, grey matter and white matter). Shown are the attenuation power-law
fits from experimental data for the different animal types for (a) the homogeneous brain, (b) cerebellum, (c) brainstem, (d) white matter, (e) grey matter and (f) “all” regions.
Shown with a dashed line in subplot (f) are the fits from the homogeneous brain data as shown in subplot (a).

power-laws for the “all” region and the homogeneous brain, which
are similar for the various animal types (Fig. 10f). This is a promis-
ing finding since exact agreement is not expected - the data for the
“all” region may be skewed towards various subregions depending
on the data we have sourced. For example, 27% of the data for rat
comes from the cortex region.

It is particularly interesting to note that in this study the fits for
larger animals such as porcine and bovine tissue were also found
in general to be further from the fits for human tissue as compared
to the fits for smaller animals such as rats and mice. This finding
seems in direct conflict with the work of Dai et al. [46], who rec-
ommend the use of larger animals such as cows and pigs as sur-
rogates over small animals such as rodents. However, there exists
other work such as that of MacManus et al. [129] which suggest
that mouse tissue is in fact a suitable surrogate.

Furthermore, there are a number of reasons why we may ob-
serve this in this work. For one, it is important to keep in mind
that there is relatively little data for rat and mouse brains, and the
data that is presented lies in the low frequency regime (<10 Hz).
As a result, the extrapolation to 50 Hz is exactly that: only an ex-
trapolation. Thus, any comparisons at higher frequencies should
be done carefully. Furthermore, we also point out that the cor-
tex region is also the most commonly experimented upon tissue
for the rat, mouse and human data, whilst this is not the case
for the porcine and bovine tissues. These differences in sampled
subregions of the brain may also partly explain the trends ob-
served in this work. However, this still does not fully explain why
the porcine tissue seems to be substantially more attenuating than
other tissue types. This phenomenon instead appears to come due
to different experimental techniques. In the collected literature,
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the dominant experimental technique for porcine tissue is indenta-
tion tests [86,111,126,132-134]. This is also a common experimental
technique for other surrogates such as rat also, but the experimen-
tal results for porcine tissues are substantially different. Specifi-
cally, there is a disproportionate amount of experiments on porcine
tissue in the literature that find low instantaneous shear moduli,
which leads to high predictions for the attenuation. For example,
of all the Prony-series data collected for porcine tissue, 55% of the
pig data has an instantaneous shear modulus less than 1500 Pa. By
contrast, for rat tissue it is merely 23% and for human it is 33%.
This difference does not appear amongst experiments which have
conducted experiments on both porcine and other surrogates using
the same experimental procedure [20,129]. Instead, this arises from
the fact that there are experiments conducted solely on porcine
tissue which report low values for the instantaneous shear mod-
ulus [48,96,111,135-138]. In particular, this finding emphasises that
the use substitute data from surrogate tissues must be done with
much caution.

4.5. Limitations and shortcomings

This study does have some limitations. First, the reference val-
ues were not varied per region in this work and we took p =
1000 kg/m3 and ¢ = 2.1 m/s at 75 Hz for all regions and has been
fixed for My calculations. The use of a constant density is in line
with the approach of FE models but is nonetheless limiting. The
reference dispersion value is obtained with the assumption of ho-
mogeneous brain tissue. Thus, it may not be suitable for tissues
that are very different from the homogeneous brain like meninges
and spine. We were unable to include these tissues as a result, al-
though there does exist experimental Prony-series data for them
(see [103-105,139-142]).

Another key issue is the variations of the experimental datasets
in the literature. Since there are many possible sources of varia-
tion, it is not feasible to account for all of them at the present
time, particularly given that the literature does not agree on how
to quantify their effects. For example, there is even some dispute
about the existence of certain effects such as the sex-dependence
of brain tissue properties [39]. Other studies investigating various
experimental conditions are also with limitations. For example, one
of the few studies into the temperature dependence was conducted
by Hrapko et al. [56], but considered just 5 different temperatures
between 7 °C and 37 °C and only considered homogeneous porcine
brain tissue. As a result, it is not feasible to accurately account for
all the effects of various experimental conditions here. It is hoped
that by averaging across many series in this work, the variations
will even out to some degree. Nevertheless, FE models use data
from a wide range of experimental sources, often with large differ-
ences in experimental conditions and parameters. In order to com-
pare and review such FE data, it is therefore a necessary limitation
to also compare and aggregate experimental data from such vary-
ing sources.

Thirdly, the reliance on Prony-series data is also limiting, par-
ticularly when considering frequency-domain quantities. As men-
tioned previously, the use of a limited number of mechanisms in
a Prony-series causes oscillatory artefacts to appear in the pre-
dicted inverse quality [122,123]. Thus, it would be better to di-
rectly use data from the frequency domain for such quantities, but
this is not what current FE models are predominantly doing. Fur-
thermore, during the literature it was found that more experimen-
tal papers yielding Prony-series data were available as compared
to frequency-domain data. As a result, this was a necessary lim-
itation to introduce to this work. Similarly, the curve fitting of a
Prony-series is also limiting but necessary in order to give results
that can be used by FE models. Nonetheless, we also provide the
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direct power-law fit so frequency-domain data is also available in
this work.

It is vital to stress that curve fitting for Q=1 is a difficult ex-
ercise and greatly differing fits can be obtained for the same data
depending on the chosen algorithm and initial conditions [27]. As
a result, we recommend that users conduct their own curve fit-
ting exercises which they can tailor specifically to their application.
To facilitate this, we provide the averaged power-laws used to de-
rive our Prony-series. We emphasise that these power-laws should
be treated as the ground truth as opposed to the averaged Prony-
series.

It is also important to note, in the backward calculation, due to
fixed reference dispersion value in the Kramers-Kronig relation it is
not always able to produce a reconstructed dispersion curve con-
sistent with the Prony-series predictions. This is also due to the
limiting nature of the Kramers-Kronig relation and also due to fac-
tors like heterogeneity, experimental technique, physical parame-
ters like temperature, etc. (see appendix for further discussion).

Lastly, the initial Prony-series are not exact measurements, and
should have errors associated with them. Unfortunately, errors
were not available for all Prony-series, so it was not feasible to
utilise such information in this work.

4.6. Recommendations for future work

The dominant method of modelling viscoelasticity for current
state-of-the-art FE models is by means of a Prony-series, though
some models, such as the LiUHead model [143], have opted for
other approaches. This state of affair is unlikely to change in the
immediate future, but there are a number of improvements we can
suggest to current techniques.

First, many FE models are incorporating viscoelasticity by
means of a one-term Prony-series [144], which greatly limits the
frequency range that can be modelled, especially if one is inter-
ested in modelling the transient viscoelastic behaviour. There also
exists a large range of higher order viscoelastic models in the lit-
erature which are included in this work and these laws could be
leveraged instead.

Furthermore, this work and many others [6,25,39] have estab-
lished that the brain is heterogeneous, whilst it is often times
treated as a homogeneous tissue. In some cases, properties for cer-
tain tissues as used in FE models have also been derived from
experiments on different tissues - for example, the homogeneous
brain properties of the ADAPT [57], ANISO KTH v1 [58], ANISO KTH
v2 [59], WHIM v1 [74], ICM [8] and KTH v2 [64] models are taken
from experiments by Nicolle et al. [29] on corona radiata tissue.
Similarly, the homogeneous brain properties derived from the ex-
periments of Shuck & Advani [79] are also derived from corona ra-
diata tissue. This is could lead to erroneous results and should be
used with caution.

There are also differences between the tissues chosen for inclu-
sion in FE models versus the tissues that are experimented on. Ex-
periments can provide different measurements for specific regions
compared to the larger regions taken by FE models. For example,
the cortex region which is sometimes included in FE models is
measured in a total of six subregions by Menichetti et al. [130] -
namely the prefrontal cortex, posterior-occipital cortex, superior
mid-frontal cortex, postero-lateral frontal cortex, inferior temporal
cortex and the postero-superior frontal cortex. A clear difference is
also that FE models are currently often modelling the two regions
of white and grey matter whilst typically experimental papers are
not. Instead, a significant amount of experimental work measures
subregions of these - white matter is commonly measured as ei-
ther the corona radiata or the corpus callosum, and grey matter
as the basal ganglia, cortex or the dentate gyrus. Furthermore, our
work has found that these subregions are mechanically different
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(see Fig. 8). Thus, these subregions should be considered separately
in future work.

We also point out that taking viscoelastic and hyperelastic data
from different experiments can be problematic as viscoelastic fits
can change depending on the hyperelastic model used, and also
vary in general between experiments. Our work also shows that
experimental data and data used in FE models do not agree with
each other. Thus, we recommend using directly experimental mea-
surements in future work as opposed to modifying or scaling ex-
perimental data. In this work we provide both averaged laws for
twelve regions and eight different animals and also a total of 181
different Prony-series in order to facilitate this. Furthermore, as
was mentioned in the limitations section, the use of Prony-series
is not ideal. Future work could directly obtain averaged laws from
frequency-domain data i.e. values of M’ and M”.

Another important area of future investigation is the incor-
poration of probabilistic modelling. Currently, our approach char-
acterises the error in our fitted parameters simply by a single
standard deviation or confidence interval. This is currently still
the commonly implemented approach in giving errors for fitting
Prony-series [82,107,114,145]. However, a probabilistic formulation
may deliver other estimates which could be more suitable. Fur-
thermore, a number of works now exist investigating stochas-
tic modelling of hyperelastic models such as the Neo-Hookean
model [146], Mooney-Rivlin model [146] and the Ogden model
[147]. Extensions to anisotropic models have also recently been ex-
plored, for example by Chen and Guilleminot [148]. These works
provide a useful new direction to explore, allowing for proba-
bilistic representations in hyperelasticity. We believe future work
could look at a probabilistic formulation for our method, pro-
viding a richer characterisation of our dataset and allowing us
to determine the distribution of our fitted parameters. Machine
learning methods such as the work of Nolan et al. [149] are of
interest here, possibly allowing one to better leverage collected
information such as surrogate animal and tissue type to make
predictions.

Machine learning methods are also of great interest for FE
modelling in general. In particular, this review has highlighted
a number of issues with existing FE models, and an enormous
amount of variation within the experimental literature. As a re-
sult, the best choice of material parameters is not always clear
for both experimentalists and the FE modelling community. Ma-
chine learning has the possibility to revolutionise both domains.
For instance, Kutz and collaborators have done significant work
[150-153] in development of sparse-regression based techniques
for discovery of model parameters using experimental data. Fur-
thermore, physics-informed neural networks, which allow for the
efficient evaluation of both forward and inverse problems [154-
156] whilst directly embedding physics knowledge in the neural
network model itself, can be a viable option. Similarly, reduced or-
der modelling [157,158] also provides a means of efficient evalua-
tion of parametrised partial differential equations, particularly im-
portant for real-time many-query contexts. In particular, machine-
learning based reduced order modelling approaches [159-164] of-
fer real potential to decrease the computational overhead for trau-
matic brain injury modelling. In addition, neural operators such as
DeepONets [165-167] and Fourier neural operators [168,169] have
recently arisen as a promising new means of reduced order mod-
elling, directly learning a map between function spaces and typi-
cally benefitting from the advantageous property of discretisation-
invariance [169,170]. The use of such methods is an extremely
important future direction since more efficient simulations would
open new avenues for the determination of appropriate material
parameters by experimentalists, in addition to allowing for a bet-
ter understanding of the effect of varying material parameters in
FE models.
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5. Conclusion

To the best of our knowledge, this work presents 1) the first
multi-frequency viscoelastic atlas of the heterogeneous brain, 2)
the first review focusing on viscoelastic modelling in both FE mod-
els and in experimental works, 3) the first attempt to conglomer-
ate the disparate existing literature on the viscoelastic modelling of
the brain. Thus, our review differs from existing work in a number
of key ways.

Our review enables a direct comparison between the experi-
mental literature and the data used in FE models. Existing reviews
focus typically on either reviewing FE models, or reviewing ex-
perimental techniques, but not both together. This review aims to
help bridge the gap between these two domains. To this end, we
have gathered a total of 181 differing Prony-series from 48 differ-
ent experimental papers, and 31 unique Prony-series used in FE
models. We have made all of these 212 Prony-series publicly avail-
able in the supplementary materials, including information regard-
ing the anatomical region of the brain and also the surrogate used.
As such, this review gives the largest collection of viscoelastic pa-
rameters for human brain tissue. This wealth of data allows us to
investigate differences due to animal tissue choices in the hetero-
geneous brain with greater granularity, for instance, we can now
compare corona radiata of a pig brain with that of the cortex of
the human brain unlike previous studies. Our work also provides
a means of comparing Prony-series viscoelasticity to storage and
loss moduli data (e.g. from MRE measurements), and to attenua-
tion laws. Previous works have not thoroughly investigated the link
between relaxation functions and storage and loss moduli. For ex-
ample, the review of Chatelin et al. [47] provides many different
experimental results for relaxation functions, and also many differ-
ent distinct experimental results for storage and loss moduli. How-
ever, their review does not investigate how the predictions of the
storage and loss moduli from the relaxation function compare with
the other experimental data for the storage and loss moduli.

Comparison of FE model data with the recent experimental data
yields that FE models are generally underestimating the attenua-
tion than the recent experimental data. Our review uncovers that
there may be issues with existing commonly used Prony-series
data. For example, the most used dataset in FE models is the one
presented by Shuck and Advani [79]. However, their data is much
stiffer than the average calculated using our approach. They have
found that for a frequency range between 3 and 300 Hz, the stor-
age modulus lies between 7 and 30 kPa, and loss modulus lies be-
tween 1 and 90 kPa, whilst in this work our average Prony-series
predicts lower values for both the storage modulus (between 1 and
6 kPa) and loss modulus (between 0.3 and 1 kPa). It is thus clear
from both this work and other previous reviews such as Chatelin
et al. [47] and Hrapko et al. [56] that the data of Shuck and Advani
is an outlier with respect to the rest of the experimental literature.
In addition, another commonly used dataset, namely that of Nicolle
et al. [20] was found to predict an inverse quality greater than 1.
Therefore there is a need to recalibrate and reassess the material
properties used in the computational models describing the brain
trauma.

We calculate the average attenuation power-law for the ho-
mogeneous brain tissue from recent experimental data (obtained
from 18 unique Prony-series) as «(f) = 0.70f0°1 Np/m. The cor-
responding average dimensionless Prony-series is g(t) = 0.0902 +
0.0608¢-00223t 4 0,0952¢-0-291f | 0193488 1. 0.561e~ 18 with
an instantaneous shear modulus of 4607 Pa at 75 Hz. The mean
and median instantaneous shear modulus in the experimental
literature are 6230 Pa and 3750 Pa, respectively.

Significant differences are also observed between the animal
types, with relative errors of 23-38% between human and bovine
tissue and 78-95% between human and porcine tissue for the at-
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tenuation power-law fits between 10 and 100 Hz for the homoge-
neous brain region. This emphasises the need to take caution when
using surrogate tissues, since substantial differences can exist.

In addition, this work provides a methodology for computing
the predictions of a given Prony-series on the storage and loss
moduli, quality factor, dispersion relation and attenuation. Since
we have been able to calculate averaged Prony-series and power-
laws, it also provides a useful methodology for investigating and
comparing an experimentally obtained Prony-series to the rest of
the experimental literature. Importantly, it is also possible to verify
whether or not a Prony-series predicts an inverse quality less than
1 for it to be physically viable. Thus Prony-series which do not
satisfy this may need to be recalibrated. From a numerical stand
point, the methods using one- or two- term Prony-series can limit
the attenuation and dispersion modelling especially in the nonlin-
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ear regime which results in the generation of higher harmonics
such as shear shock formation in brain [17].
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Appendix A. Validation of averaged viscoelastic properties

Our procedure for determining averaged Prony-series data in-
volves a number of nontrivial steps and thus it is important to ver-
ify that our method proceeds as expected. Specifically, a number of
sensible checks can be conducted:
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Fig. Al. Derivation of averaged attenuation power-laws, and corresponding dispersion and quality (shown in red). An averaged Prony-series and its predictions are also
shown in black. Shown are the predictions for (a) the relaxation function, (b) storage modulus, (c) loss modulus, (d) inverse quality factor, (e) dispersion and finally (f)
attenuation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Can our averaged Prony-series reconstruct the averaged power-
law from which it was derived?

Does our averaged Prony-series lie amongst the experimental
data from which it was derived?

Does our averaged Prony-series or attenuation power-law pre-
dict Q1 < 1 as expected?

Does our determined value of My from our Prony-series match
that of the experimental data?

We illustrate this procedure for the experimental data on the
homogeneous brain tissue. Details for other tissue types can be
found in the supplementary materials.

Following the obtention of an averaged Prony-series as shown
in Fig. 5d, the forward calculation step can be conducted on this
new Prony-series as outlined in Fig. 5e. The results of this process
are shown in Fig. A.1.

As evident from Fig. A.la, the averaged Prony-series (dashed
black) calculated using c(w) given the Kramers-Kronig relations
underestimates the storage/loss modulus and the inverse quality
(Fig. A.1b-e, respectively). However, it is able to reconstruct the
attenuation power-law (red) shown in Fig. A.1f. The underestima-
tion of the storage/loss modulus and the inverse quality is due to
the use of Kramers-Kronig relations [31] which may not be ideal
for the point estimates provided for Prony-series, moreover the
use of the reference value of ¢ =2.1 m/s at 75 Hz further re-
stricts the approximation. It can be seen in Fig. A.le that the aver-
aged dispersion is unable to match the predictions of the individ-
ual Prony-series. This is because the Prony-series predict extremely
high dispersion values of up to 10 m/s at the reference frequency
of 75 Hz. Experiments have not observed dispersion values this
high, and the experimentally determined reference dispersion is
only 2.1 m/s. Combined with the form enforced by the Kramers-
Kronig relation, an underestimation in the dispersion compared to
the individual Prony series predictions leads to an underprediction
in the averaged Prony-series also. However, these predictions can
vary depending on the reference parameters taken which depend
on the experimental conditions like temperature, tissue type, etc.
Nevertheless, this approach does provide a benchmark to unify the
different observations obtained using different experimental tech-
niques.

Acta Biomaterialia 169 (2023) 66-87

Lastly, we can also examine the prediction for My from our av-
eraged Prony-series, since this an important experimental quantity
in the literature. It is important to determine whether or not the
prediction from Eq. (31) is in line with the distribution of values
of My from the literature. In general, quite a lot of variation ex-
ists in the predictions for the instantaneous shear modulus since
this can depend upon experimental techniques and procedures. It
is not possible to experimentally measure a value for the relaxation
function at t =0, so differing values of My can occur depending
on what time interval (or frequency range) one investigates. In our
work, we find our averaged Prony-series for the experimental ho-
mogeneous brain tissue has a value My = 4607 Pa at 75 Hz. This
broadly agrees with the experimental literature, which has a mean
value of 6230 Pa and a median value of 3750 Pa.

Appendix B. Convergence of proposed methodology

Another important consideration is to investigate the conver-
gence of our proposed methodology. In this section, we provide
some empirical convergence results of our method as a function
of the number of samples. We consider a situation in which our
data may be noisy, and show that our results for the attenuation
do converge. As discussed in Appendix A, results for our averaged
Prony-series may not converge to the Prony-series from which they
were derived due to the reference dispersion value and the form of
the Kramers-Kronig relation.

To demonstrate convergence in the averaged attenuation
power-law, we consider an arbitrary ground truth Prony-series data
8(t) = §(e71000t 4 ¢=10000t . £=100000t) with My = 20000. We then
allow noise to enter the measured Prony-series. Specifically, for the
parameters M; and My, we draw noise from a Gaussian distribu-
tion with mean zero and a standard deviation equal to 10% of the
ground truth value. Convergence in the predictions for the atten-
uation power-law o (w) = aw? is then empirically found with in-
creasing numbers of samples, as shown in Fig. B1.

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at 10.1016/j.actbio.2023.07.040.
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