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a b s t r a c t 

This review addresses the acute need to acknowledge the mechanical heterogeneity of brain matter and 

to accurately calibrate its local viscoelastic material properties accordingly. Specifically, it is important to 

compile the existing and disparate literature on attenuation power-laws and dispersion to make progress 

in wave physics of brain matter, a field of research that has the potential to explain the mechanisms at 

play in diffuse axonal injury and mild traumatic brain injury in general. Currently, viscous effects in the 

brain are modelled using Prony-series, i.e., a sum of decaying exponentials at different relaxation times. 

Here we collect and synthesise the Prony-series coefficients appearing in the literature for twelve regions: 

brainstem, basal ganglia, cerebellum, corona radiata, corpus callosum, cortex, dentate gyrus, hippocam- 

pus, thalamus, grey matter, white matter, homogeneous brain, and for eight different mammals: pig, rat, 

human, mouse, cow, sheep, monkey and dog. Using this data, we compute the fractional-exponent at- 

tenuation power-laws for different tissues of the brain, the corresponding dispersion laws resulting from 

causality, and the averaged Prony-series coefficients. 

Statement of significance 

Traumatic brain injuries are considered a silent epidemic and finite element methods (FEMs) are used 

in modelling brain deformation, requiring access to viscoelastic properties of brain. To the best of our 

knowledge, this work presents 1) the first multi-frequency viscoelastic atlas of the heterogeneous brain, 

2) the first review focusing on viscoelastic modelling in both FEMs and experimental works, 3) the first 

attempt to conglomerate the disparate existing literature on the viscoelastic modelling of the brain and 

4) the largest collection of viscoelastic parameters for the brain (212 different Prony-series spanning 12 

different tissues and 8 different animal surrogates). Furthermore, this work presents the first brain atlas 

of attenuation power-laws essential for modelling shear waves in brain. 

© 2023 The Author(s). Published by Elsevier Ltd on behalf of Acta Materialia Inc. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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We adopt the following conventions in this paper: 

• We reserve line markers for different categories as shown in 

Fig. 1 throughout the paper. 

• Owing to space limitations, it was not always possible to have 

legends given on all subplots. In such cases, the legends on any 

of the subplots apply for all other subplots in the figure. 
∗ Corresponding author. 

E-mail address: bharat.tripathi@universityofgalway.ie (B.B. Tripathi) . 
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• Unless otherwise stated, when error regions are shown in fig- 

ures, they correspond to the region spanned by one standard 

deviation errors of the parameters. 

. Introduction 

According to the World Health Organisation, neurological disor- 

ers are one of the greatest threats to public health, with traumatic 

rain injury (TBI) being the leading cause of death and disability 

n children and young adults around the world [1] . The problem is 

rowing, and it is expensive as well as life-threatening. In the Re- 

ublic of Ireland alone, a small country of five million inhabitants, 

bout 350 million euros were spent on TBIs in 2010, out of nearly 

 billion euros spent in total on brain disorders [2] . It is thus of
c. This is an open access article under the CC BY license 
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Fig. 1. Legends used for different animals. FE refers to data from finite element models. 

Fig. 2. Two recent FE head models, incorporating differing elastic properties for different areas of the brain, but the same (homogeneous) viscoelastic data everywhere. (a): 

The finite element mesh of the high fidelity 3D model from Imperial College London [8] . Colour coding is: skin (red), skull (light blue), cerebrospinal fluid (green), grey 

matter (yellow), white matter (brown) and ventricles (dark blue). (b): The UCD Head Trauma model, originally designed by Horgan and Gilchrist [9] (picture taken from 

Cinelli et al. [10] ). Note that its most recent version does include viscous heterogeneity [11] . (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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ritical importance that a better understanding of TBI is achieved 

o help combat this issue. 

Most clinical indicators used for predicting TBI, typically linear 

nd/or rotational accelerations, are global and not appropriate to 

valuate regional brain strains and strain rates. But these local de- 

ormations and motions play an important role in the development 

f mild TBI events, such as concussion in contact sports or repeti- 

ive impacts over a lifetime [3] . Hence there is a pressing need for

ccurate material parameters that can be used in detailed finite el- 

ment (FE) computer simulations [4,5] (see Fig. 2 for two recent 

odels). 

However, there is an enormous amount of variation in the vis- 

oelastic parameters used by existing FE models, due to dated ex- 

erimental sources, differing testing protocols, temperature, type 

f tissue, type of animal, post-mortem times, tissue preservation 

odes, and many other factors. The brain is also often considered 

s a homogeneous tissue from the point of view of viscoelastic 

roperties, while it has been experimentally observed to be hetero- 

eneous in that respect [6] . The disparity in experimental data and 

he assumption of homogeneity are problematic when it comes to 

tudying mild TBI, because they lead to very different predictions 

hen the same event is simulated, as shown by Zhao et al. [7] (see

ig. 3 ). 

Recently shear shock waves were generated and observed ex- 

erimentally in the brain, and proposed as a possible explanation 
ig. 3. When the same FE model is used to simulate the same high-velocity impact, but

ifferent predictions of the cumulative maximum principal strains generated [7] . Here the

67 
or diffuse axonal injury [12,13] , a major type of TBI. Furthermore, 

n direct impact injuries, it has been observed that injuries can 

ccur far from the point of impact [14] . The reason for this dis- 

ant effect has not yet been established, but the formation of shear 

hock waves has been hypothesised to be a possible mechanism. 

heoretically, cubic non-linearity must be invoked to model these 

onlinear shear waves [15] ; it follows that they generate mostly 

dd harmonics [16] , and very high local accelerations [17] . Impor- 

antly, these high local accelerations are not generated instantly 

nd instead are a result of cumulative nonlinear effect. The max- 

mum acceleration is reached after a few centimetres of propaga- 

ion in brain, before dissipating. Recent studies in 2D head phan- 

oms have furthermore shown that this mechanism can predict 

eak accelerations far from the point of impact [17,18] . This is thus 

 promising and important hypothesis to test because it could have 

ajor repercussions for the prediction and understanding of TBIs, 

he design of helmets and other protective headgear, and the suit- 

bility of existing FE models for modelling TBI. In this work, we 

re only confined to shear deformation similar to those resulting 

rom direct impact injuries. They result in shear shock waves un- 

ike the compressional shock waves in blast-TBIs which could have 

requency range of kHz to MHz. These two effects happen at differ- 

nt scales as there is three orders of magnitude difference between 

he shear modulus and the bulk modulus. Importantly, a biofidelic 

odelling of the wave physics involved in shear shock wave for- 
 with different material parameters from the experimental literature, it yields very 

 experimental data is taken (left to right) from Refs. [19–24] . 
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ation and propagation requires accurate experimental data for 

he heterogeneous material properties of the brain – specifically, 

ttenuation power-laws and dispersion relations. 

To the best of our knowledge, there exists only one map detail- 

ng the viscoelastic properties of the heterogeneous brain, namely 

he recent paper by Hiscox et al. [25] . In that work, the authors

ollect storage and loss moduli data using a shear wave at the 

iven frequency of 50 Hz and magnetic resonance elastography 

MRE) imaging. They give this data for subcortical grey matter 

tructures, white matter tracts, and regions of the cerebral cortex. 

In this paper, we go a step further by providing viscoelastic 

ata, used in FE models and recent experimental data, valid for 

ultiple frequency ranges and for twelve key regions of the brain: 

rainstem, basal ganglia, cerebellum, corona radiata, corpus callo- 

um, cortex, dentate gyrus, hippocampus, thalamus, grey matter, 

hite matter, and homogeneous brain. We also provide viscoelas- 

ic data also for eight different animals: pig, rat, human, mouse, 

ow, sheep, monkey and dog. We conglomerate multiple Prony- 

eries data, the most common implementation of viscoelastic ef- 

ects used in current state-of-the-art FE models. From this data, 

e synthesise average attenuation power-laws, dispersion relations 

nd also Prony-series. 

. Theoretical background 

Soft solids like tissues are often modelled using hyperelastic 

odels capable of describing large strain nonlinear deformations. 

t the same time, tissues are often highly attenuating and dispers- 

ng, i.e., the excitation amplitude decays with time and distance, 

nd different frequencies travel at different speeds. Conventionally 

hese effects are modelled using the linear [26] and quasi-linear 

27] viscoelastic theories. 

.1. Linear viscoelasticity 

In linear viscoelasticity, the stress response to a constant strain 

ecreases with time, a feature which is referred to as the stress re- 

axation of the material. This is modelled using the fading memory 

r hereditary integral: 

(t) = 

∫ t 

−∞ 

m (t − τ ) ε(τ ) dτ := m (t) ∗ ε(t) , (1) 

here σ (t) is the stress (in Pa), ε(t) is the strain (dimensionless), 

nd m (t − τ ) is the instantaneous stress-response function to an 

mpulse in strain ε(τ ) imposed at time τ for the time interval t −
. This is the so-called convolution operation, denoted by “∗”. In 

he frequency space, this hereditary integral can be written as 

(ω) = M(ω ) ε(ω ) , (2) 

here M(ω) is the dynamic modulus , corresponding to the impulse 

esponse of the material. 

However, in solid mechanics, the step-response is often more 

elevant than the instantaneous response. The memory integral can 

e rewritten as: 

(t) = 

∫ t 

−∞ 

g(t − τ ) 
∂ε(τ ) 

∂τ
dτ = g(t ) ∗ ∂ε(t ) 

∂t 
= 

∂g(t ) 

∂t 
∗ ε(t ) , (3) 

here g(t) is the stress response to unit-step strain, often called 

he relaxation function . The last equality in the above equation is 

ue to the commutative property of the convolution integral. Also, 

qs. (1) and (3) give the connection 

 (t) = 

∂g(t) 

∂t 
, (4) 

r in frequency space 

(ω) = iωG (ω) , (5) 
68 
eading to 

(ω) = M(ω ) ε(ω ) = iω G (ω ) ε(ω ) , (6)

here G (ω) is the complex relaxation modulus . 

Conventionally, the relaxation functions presented in the TBI lit- 

rature are approximated using a Prony-series of decreasing expo- 

entials, 

(t) = M ∞ 

+ 

N ∑ 

j=1 

M j exp (−t/τ j ) , (7) 

here τ j = η j /M j ( j = 1 , . . . , N) corresponds to the j th Maxwell

lement, which is a Hookean element with elastic modulus M j 

laced in series with a Newtonian element with coefficient of vis- 

osity η j . 

Note that g(0) = M ∞ 

+ 

∑ N 
j=1 M j =: M 0 , which defines the latter 

uantity. Then a dimensionless Prony-series ˆ g (t) with ˆ g (0) = 1 can 

e defined as 

ˆ 
 (t) = 

ˆ M ∞ 

+ 

N ∑ 

j=1 

ˆ M j exp (−t/τ j ) , (8) 

here ˆ M j = M j /M 0 . 

In frequency space, the corresponding dynamic modulus, M(ω) , 

r relaxation modulus, G (ω) , can be written as 

(ω) = iωG (ω) = M ∞ 

+ 

N ∑ 

j=1 

M j 

iωτ j 

1 + iωτ j 

. (9) 

sing this complex modulus, the attenuation in soft solids can be 

uantified using the quality factor Q(ω) defined as [28] 

(ω) = 

Re { M(ω) } 
Im { M(ω) } = 

M 

′ (ω) 

M 

′′ (ω) 
, (10) 

here M 

′ (ω) = Re { M(ω) } and M 

′′ (ω) = Im { M(ω) } are the storage

odulus and the loss modulus , respectively, given explicitly by 

 

′ (ω) = Re { M(ω) } = M ∞ 

+ 

N ∑ 

j=1 

M j 

ω 

2 τ 2 
j 

1 + ω 

2 τ 2 
j 

, (11) 

 

′′ (ω) = Im { M(ω) } = 

N ∑ 

j=1 

M j 

ωτ j 

1 + ω 

2 τ 2 
j 

. (12) 

ote that whilst these equations can be evaluated for any value 

f ω, it is not physically meaningful to evaluate them over all fre- 

uencies as the Prony-series are fitted over a finite time interval. 

pecifically, it is valid to evaluate these functions at the (angu- 

ar) frequencies ω = β j , j = 1 , . . . , N, where β j = 1 /τ j . A suitable

requency range can thus be computed from the Prony-series co- 

fficients as [ min j β j , max j β j ] . In the case of a one-term Prony- 

eries, this would give a single point and thus then the extended 

requency range [0 . 1 β1 , 10 β1 ] is used (see Nicolle et al. [20,29] ).

his is also consistent with conventions of the commercial finite 

lement solver Abaqus [30] . 

The other physical behaviour associated with the attenuation 

s dispersion due to causality [31] . Consider the linear shear wave 

quation in an elastic media, 

∂ 2 u 

∂t 2 
= 

1 

ρ

∂σ

∂x 
= 

μ

ρ

∂ 2 u 

∂x 2 
= c 2 

∂ 2 u 

∂x 2 
, (13) 

here ρ is the mass density, μ is the shear modulus, and c = 

 

μ/ρ is the shear wave speed. On substituting the harmonic so- 

ution 

 = exp [ i (ωt − kx )] , (14) 
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here u is the particle displacement, ω is the angular frequency, 

nd k is the wavenumber, we find the following connection for the 

hase velocity c, 

 = ω/k. (15) 

Now consider the viscoelastic case as in [32] , where 

= m (t) ∗ ε = m (t) ∗ ∂u 

∂x 
, (16) 

o that the wave equation reads 

∂ 2 u 

∂t 2 
= m (t) ∗ ∂ 2 u 

∂x 2 
. (17) 

aking the Fourier transform F with respect to time of the above 

quation gives 

iω) 2 F{ u } = 

M(ω) 

ρ

∂ 2 

∂x 2 
F{ u } . (18) 

o calculate the right-hand side of the above equation, let us 

ewrite Eq. (14) as 

 (x, t) = exp (iω t) exp (−iK(ω ) x ) , (19) 

here K(ω) is the complex wavenumber in the viscoelastic media. 

hen Eq. (18) gives 

K(ω) 

ω 

= 

√ 

ρ

M(ω) 
. (20) 

quation (14) can be rewritten using K(ω) = K 

′ (ω) + iK 

′′ (ω) as 

 = exp { K 

′′ (ω) x } exp { i (ωt − K 

′ (ω) x ) } , (21)

howing that the (real) phase velocity c is given by 

1 

c(ω) 
= 

K 

′ (ω) 

ω 

= Re 

{ √ 

ρ

M(ω) 

} 

. (22) 

ote c(ω) is not a Fourier transform, it is just a function in fre-

uency space. Equation (22) furthermore yields two solutions but 

nly the principal solution is valid (the other yields c(ω) < 0) , 

hich is unphysical). 

The two quantities Q(ω) and c(ω) are then used to compute 

he attenuation α(ω) via the relation [32,33] : 

(ω) = 

1 

2 

[
ω 

c(ω) α(ω) 
− c(ω) α(ω) 

ω 

]
. (23) 

n solving this quadratic equation in α(ω) we get 

(ω) = 

−Q + 

√ 

Q 

2 + 1 

c(ω) /ω 

, (24) 

hile ignoring the non-physical solution where α(ω) < 0 . 

Alternatively, the attenuation of transient waves like ultra- 

ound/shear wave in soft solids is commonly characterized using 

 fractional-exponent power-law , 

(ω) = aω 

b = α0 f 
b , (25) 

here a , b and α0 are constants. Alternatively, in log-log space, ln α
ollows an empirical linear law: ln α = ln a + b ln ω. 

.2. Quasi-linear viscoelasticity 

For large amplitude deformations, assuming a linear behaviour 

s no longer valid as the stress and strain exhibit a nonlinear re- 

ationship of relaxation. Fung [27] proposed the concept of quasi- 

inear viscoelasticity (QLV), with the assumption of multiplicative 

ecomposition of the stress into a dimensionless relaxation func- 

ion of time ˆ g (t) with ˆ g (0) = 1 and the instantaneous elastic stress 

 σe (t) /d t . On applying the superposition principle, we get 
69 
σ (t) = 

∫ t 

0 

ˆ g (t − τ ) 
dσe (τ ) 

dτ
d τ = 

∫ t 

0 

d ̂  g (t − τ ) 

d τ

σe (τ ) dτ = 

∫ t 

0 

ˆ m (t − τ ) σe (τ ) dτ. (26) 

he QLV formulation therefore ends up using the entire mathemat- 

cal formulation of linear viscoelastic theory as described in the 

revious section. We can then relate g(t) and ˆ g (t) , as: 

(t) = M 0 ̂  g (t) = M ∞ 

+ 

N ∑ 

j=1 

M j e 
−t/τ j , (27) 

here M 0 is the instantaneous shear modulus of the hyperelastic 

train energy density. Table 1 gives the expressions for M 0 of some 

ommonly used hyperelastic models. 

These two viscous modelling approaches are the two most com- 

on approaches used for describing viscoelastic effects. Another 

pproach is the fractional viscoelastic model [34] , which is still not 

ully adopted due to its mathematical complexities. 

.3. Calculating Prony-series from attenuation power-laws 

It is possible to compute averaged attenuation power-laws from 

he data, but many current models are heavily reliant on the use 

f Prony-series. As a result, it is important to provide a means of 

etermining averaged Prony-series from an attenuation power-law 

(ω) = aω 

b , valid over an angular frequency range [ ω 1 , ω 2 ] . 

Firstly, the dispersion can be calculated for ω ∈ [ ω 1 , ω 2 ] via the

ramers-Kronig relation [31] : 

1 

c(ω) 
− 1 

c(ω 0 ) 

= 

⎧ ⎨ 

⎩ 

a tan 

(
bπ
2 

)
(ω 

b−1 − ω 

b−1 
0 

) ; when b ∈ (0 , 2) \{ 1 } 

− 2 
π aω 

b 
0 ( ln ω − ln ω 0 ) ; b = 1 

. (28) 

ote that this calculation requires a reference value c(ω 0 ) . Further- 

ore, we note that the case b = 1 will not occur for our fitted pa-

ameters. 

Ergo, using Eq. (28) and Eq. (23) , one can directly compute the 

nverse quality factor. Recall that the inverse of the quality fac- 

or is also directly obtainable from a Prony-series via Eq. (10) , and 

ote that the value of M 0 does not influence the quality factor. This 

eans that a dimensionless Prony-series with parameters ˆ M j = 

M j 

M 0 

an also be used. It is thus possible to write directly: 

 

−1 (ω ) = 

1 

2 

[
ω 

aω 

b c(ω 0 ) 

(
ac(ω 0 ) tan 

(
bπ

2 

)
(ω 

b−1 − ω 

b−1 
0 ) + 1 

)

−aω 

b c(ω 0 ) 

ω 

(
ac(ω 0 ) tan 

(
bπ

2 

)
(ω 

b−1 − ω 

b−1 
0 ) + 1 

)−1 
] −1 

= 

∑ N 
j=1 

ˆ M j 
ωτ j 

1+ ω 2 τ 2 
j 

ˆ M ∞ 

+ 

∑ N 
j=1 

ˆ M j 

ω 2 τ 2 
j 

1+ ω 2 τ 2 
j 

. (29) 

hus, together with the additional constraint that ˆ M ∞ 

+ 

∑ N 
j=1 

ˆ M j = 

 , it is possible to directly curve fit the N-term Prony-series once 

iven N. As per Abaqus recommendations, the order of the Prony- 

eries should not be larger than the number of logarithmic decades 

panned by the test data [30] . Thus, this furthermore sets N as 

 = 

⌊ 

log 10 

(
ω 2 

ω 1 

)⌋ 

. (30) 
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Table 1 

Instantaneous shear moduli of common hyperelastic strain-energy densities. 

Hyperelastic Model W M 0 

Neo-Hookean 1 
2 
μ( I 1 − 3 ) μ

Mooney-Rivlin C 1 ( I 1 − 3 ) + C 2 ( I 2 − 3 ) 2(C 1 + C 2 ) 

2-term Polynomial a C 10 ( I 1 − 3 ) + C 01 ( I 2 − 3 ) + C 20 ( I 1 − 3 ) 
2 + C 02 ( I 2 − 3 ) 

2 2(C 10 + C 01 ) 

Ogden 
∑ N 

n =1 
μn 

αn 

(
λαn 

1 
+ λαn 

2 
+ λαn 

3 
− 3 

)
1 
2 

∑ N 
n =1 μn αn 

Gasser-Ogden-Holzapfel b 1 
2 
μ( I 1 − 3 ) + 

k 1 
2 k 2 

[
e k 2 (I 1 −3) 2 − 1 

]
μ

a Without cross term C 11 ( I 1 − 3 ) ( I 2 − 3 ) . 
b In the isotropic case. 
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astly, it remains to compute the value of M 0 , which is done via

he formula [33] 

 0 = ρc(ω 0 ) 
2 | ˆ M (ω 0 ) | + Re { ˆ M (ω 0 ) } 

2 | ˆ M ( ω 0 ) | 2 
, (31) 

here ˆ M (ω) refers to the dynamic modulus derived using the di- 

ensionless Prony-series. 

. Methods 

We summarise the data collected in our literature review, and 

e provide details on our approach for calculating averaged atten- 

ation power-laws and Prony-series. 

.1. Summary of literature review 

We collected a total of 181 differing Prony-series from 48 dif- 

erent experimental papers, spanning twelve regions of interest 

nd eight different animal types (see supplementary materials). 

he cortex was the most measured region in the dataset, with 

3 Prony-series. The other tissues had fewer data: brainstem (23), 

orona radiata (19), homogeneous brain (19), cerebellum (18), hip- 

ocampus (18), corpus callosum (17), thalamus (11), dentate gyrus 

7) and basal ganglia (6). To investigate the effect of surrogate tis- 

ues, we also collected the species used in the experiments. The 

ost commonly used animal surrogate was porcine tissue, with 56 

rony-series. A total of eight different surrogates were used in our 

ollected experimental data - namely, rat (52), human (45), mouse 

13), cow (12), sheep (1), monkey (1), and dog (1). 

We only collected recent experimental data (from the past 25 

ears), from a variety of experimental protocols, including inden- 

ation tests, shear tests, tensile tests and compression tests. All of 

hese protocols were testing ex-vivo brain tissue. In-vivo testing is 

ossible by MRE, but there are some limitations and assumptions 

ssociated with current methods [35–37] . Indeed, large discrepan- 

ies between various MRE measurements exist, sometimes by an 

rder of magnitude [35] . There are also discrepancies between the 

esults of mechanical tests and elastography results, such as for 

niaxial compression [38] . Budday et al. [39] noted this discrep- 

ncy for experiments into age-dependence for brain tissue. There 

re also issues with reconstruction methodologies for MRE [40,41] . 

onsequently, we did not collect MRE experimental results here, to 

emove this source of additional variation. 

Data was collected regardless of differences in experimental 

rotocols, species, sex, temperature, or other factors, although fac- 

ors such as choice of surrogate tissue and brain region were 

ecorded. It is well known that several other factors such as age 

37,42] , sex [43,44] , animal [45,46] , experimental protocol [47,48] , 

emperature [49–51] , preservation [52] , humidity [53] and post- 

ortem time [54,55] can affect experimental results. There are al- 

eady studies comparing results obtained from similar experimen- 

al procedures [6,56] . However, in this review we focus on com- 

aring the data used in FE modelling, where data is generally used 

rom a wide range of experiments irrespective of the experimental 
70 
onditions and protocols. Furthermore, Chatelin et al. [47] found in 

heir review that the disparity in results was independent of ex- 

erimental protocol. 

In relation to Prony-series used in FE models, we found a to- 

al of 31 unique Prony-series. A total of 23 different FE models 

ere considered in this work. In alphabetical order, they are the 

ollowing: ADAPT [57] , ANISO KTH v1 [58] , ANISO KTH v2 [59] ,

TLAS [60] , Cai et al. (CAI) [61] , Chen et al. (CHEN) [62] , ICM [8] ,

hanuja & Unni (KHANUJA) [63] , KTH v2 [64] , SIMON v0 [65] , SI-

ON v1 [66] , Subramaniam et al. (SUBRAM) [67] , Tse et al. (TSE) 

68] , UCD v1 [9] , UCD v2 [11] , WSUBIM [69] , Yang et al. (YANG)

70] , ULP v0 [71] , ULP v1 [72,73] , WHIM v1 [74] , WHIM v2 [75,76] ,

ang et al. (YANG) [70] and YEAHM [77,78] models. The most com- 

only modelled tissue is the homogeneous brain, with 12 differ- 

nt Prony-series. Most data consist of only one-term Prony-series. 

he same problems with variations due to differing experimental 

rotocols also apply to these datasets. Furthermore, there are also 

ultiple instances of differing Prony-series being derived from the 

ame experimental sources due to differences in fitting methods. 

n some cases, even the order of the Prony-series can change be- 

ween studies - for example, from the data of Shuck and Advani 

79] , the WHIM v2 model obtains a 2-term Prony-series [75,76] , 

hilst the models of Yang et al. [70] , Tse et al. [68] , Chen et al.

62] and ULP v0 [71] have a one-term Prony-series. 

We also note that FE models are not always using experimen- 

al results directly. FE models such as ATLAS [60] have opted to 

se optimisation schemes based on running many simulations and 

icking parameters which best reproduce experimentally deter- 

ined histories. This approach is problematic because the param- 

ter optimisation results now depend upon intrinsic properties of 

he model such as the geometry. This means that even while using 

he exact same validations, different models can yield substantially 

ifferent predictions [80] . Models furthermore do not always use 

he same types of validations, which can also lead to varying pre- 

ictions [81] . 

Another common practice in FE models is to model the hypere- 

astic and viscoelastic response separately. These effects can be ei- 

her additively decomposed using the theory of linear viscoelastic- 

ty ( Section 2.1 ) or multiplicatively decomposed using the theory of 

uasi-linear viscoelasticity ( Section 2.2 ). Some groups also merge 

ogether different experimental data: they source viscoelastic prop- 

rties and hyperelastic properties from different experiments (pos- 

ibly using different experimental protocols) and combine them 

ogether. However, one can obtain different fits for each hyper- 

lastic model; this can be seen in the work of MacManus et al. 

82] and Eskandari et al. [83] . Furthermore, using different hypere- 

astic models essentially amounts to altering the value of M 0 . Scal- 

ng viscoelastic experimental data is frequently implemented in FE 

odels e.g. the KTH model [84] simply scales the data by a factor 

f 2, and the ULP v1 [73] model scales the data using the results

f the 1977 paper of Khalil et al. [85] . However, this scaling affects

oth the attenuation and dispersion laws, thus changing the me- 

hanical behaviour of the tissue compared to that of the original 

xperimental paper. Nevertheless, in order to compare FE models 
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Table 2 

Sources of experimental viscoelastic data (in chronological order) used by 19 current state-of-the-art FE models for the obtention of dimensionless 

Prony-series ˆ g (t) . 

Reference Year Species FE Model(s) 

MacManus et al. [86] 2017 Rat UCD v2 [11] 

Miller et al. [60] b 2016 - ATLAS [60] 

Rashid et al. [87] 2012 Pig Khanuja-Unni [63] , YEAHM [77,78] 

Kleiven [84] (using data from Nicolle et al. [29] ) 2005 Pig ADAPT [57] , ICM [8] , KTH v2 [64] 

Cloots et al. [88] (using data from Nicolle et al. [29] ) 2005 Pig ANISO-KTH v1 [58] , ANISO-KTH v2 [59] , WHIM v1 [74] 

Zhang et al. [89] a 2004 - Chen & Ostoja-Starzewski [62] 

Willinger & Baumgartner [72] a 2003 - ULP v1 [72,73] 

Takhounts et al. [90] 2003 Human Cai et al. [61] , SIMon v1 [66] 

Zhang et al. [69] b 2001 - Tse et al. [68] , UCD v2 [11] , WSUBIM [69] , Yang et al. [70] 

Willinger et al. [71] (using data from Shuck & Advani [79] ) 1972 Human Tse et al. [68] , ULP v0 [71] , Yang et al. [70] 

Zhang et al. [91] (using data from Shuck & Advani [79] ) 1972 Human Tse et al. [68] , Yang et al. [70] 

Zhao & Ji [76] (using data from Shuck & Advani [79] ) 1972 Human WHIM v2 [75,76] 

Mendis et al. [92] (using data from Estes & McElhaney [93] ) 1970 Human Subramaniam et al. [67] , UCD v1 [9] 

a No experimental viscoelastic source was found. 
b These papers use optimised parameters selected to match experiment results and thus thus do not come directly from experimental viscoelastic 

data. For example, Zhang et al. [91] used datasets such as pressure data by Troseille et al. [94] and Nahum et al. [95] for optimisation. 

Fig. 4. Schematic of brain sections coronal (left) and sagittal (right) with twelve different attenuation power-laws with nine different regions (basal ganglia, brainstem, corona 

radiata, corpus callosum, cortex, dentate gyrus, hippocampus, and thalamus) and the remaining three summarising the white matter, grey matter and the homogeneous brain. 
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ith the experimental literature, we use predictions from all such 

rony-series, regardless if they have been scaled or have multiple 

xperimental sources. 

We performed a thorough literature review of experimental 

apers and of computational simulation papers, with a total of 

ore than 100 research articles. Most of the finite element method 

FEM) based numerical solvers use viscoelastic material properties 

rom the thirteen papers presented in Table 2 . Many of the FEM 

olvers currently assume that brain is a homogeneous material, 

nd only implement a single-term Prony-series, mostly with the 

ssumption of linear viscoelasticity. Some recent FEM implemen- 

ations use the QLV implementation. We gathered the viscoelastic 

roperties, specifically, the Prony-series parameters implemented 

n the FEM solvers as well as those recorded in the experimental 

apers for different tissue types, namely: 1) homogeneous brain, 

) brainstem, 3) basal ganglia, 4) cerebellum, 5) corona radiata, 6) 

orpus callosum, 7) cortex, 8) dentate gyrus, 9) hippocampus, 10) 

halamus, 11) grey matter and 12) white matter. These regions are 

epicted in Fig. 4 . A total of 8 different animals were considered: 

ig, rat, human, mouse, cow, sheep, monkey and dog. In the main 

rticle, we provide a detailed analysis of the viscoelastic behaviour 
71 
f the homogeneous brain as used in FEM solvers, and relegate the 

iscoelastic properties of other tissue types to the supplementary 

aterial. 

Some models include anisotropy [58,59,75,76,96,97] or porosity 

53,98] in addition to linear or quasi-linear viscoelasticity, but we 

id not report these effects (in general, fibre reinforcement does 

ot contribute significantly to the mechanical response in the par- 

llel or perpendicular shearing directions [96] ). Similarly, we ig- 

ored compressibility because brain matter is near incompressible 

99] . Furthermore, experimental papers oftentimes provided multi- 

le Prony-series fits for the same region, but with differing strain 

ates [100–102] , strains [103–105] , indentation depths [106] , load- 

ng rates [48] , impact angle [107] , velocity [107] , loading modes 

e.g. tension, compression, shear etc.) [24] , direction relative to fi- 

res [97,108] , loading cycle [109] , boundary condition [110] , pre- 

onditioning or no preconditioning [24,48,106] , injured or unin- 

ured tissue [106] , plane of experiment [86,108,111] , and animal age 

86,112–115] . Having many Prony-series come from a given study 

as not desirable because that study would disproportionally af- 

ect the final averaged results and because it is well known from 

revious literature reviews that viscoelastic parameters may vary 
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Fig. 5. The workflow process consists of five steps: (a) forward calculation, (b) average power-law calculation, (c) backward calculation, (d) averaged Prony-series fitting and 

(e) re-calculation. 

i

d

c

i

a

t

n

b

w

i

p

fi

t

t  

fl

e

P

v

s

c

o

v

c

q

l

c

fi

t  

f

3

3

I

l

fi

f

ω  

t

w

3

a

t  

q

t

K

c

a

p

t

e

l

3

r  

p

m

o  

v

w  

E

mmensely from one study to another [39,47,56] . As a result, we 

ecided to take fits from mature and uninjured tissue only. When 

hoice was available, we took fits for the highest strain rate, strain, 

ndentation depth and velocity. When available, we took data for 

ll modes, the first loading cycles, and no slip boundary condi- 

ions. Fits in directions orthogonal fibres were also preferred, to 

eglect anisotropic effects. Data from the axial plane was preferred 

ecause slices are more homogeneous along this plane; if that data 

as unavailable, then the sagittal plane was taken instead. Finally, 

f neither of these were available, the coronal plane was taken. Im- 

act angles of 0 degrees were also preferred. Lastly, preconditioned 

ts were taken when available, as they were observed to be closer 

o the other data, and also some unconditioned fits were found 

o have M ∞ 

= 0 [106] , which is unphysical as it corresponds to a

uid. Cases where different Prony-series were provided for differ- 

nt locations within the same region were kept, and highest order 

rony-series were taken in all cases. When differing fits were pro- 

ided for different animals [86,90,116] , these were also kept. 

For Prony-series fits used in FE models, we found that only a 

ingle FE model provided specific viscoelastic parameters for the 

orpus callosum [61] . This fit was thus considered as white matter 

wing to a lack of other data. Similarly, only one FE model pro- 

ided viscoelastic properties for the cerebrum [68] , so this was in- 

luded within the homogeneous brain data for FE models. 

Following the literature review, we focused on a total of six key 

uantities: the relaxation function g(t) , storage modulus M 

′ (ω) , 

oss modulus M 

′′ (ω) , inverse quality factor Q 

−1 (ω) , dispersion 

(ω) and attenuation α(ω) . We adopted a workflow consisting of 

ve key steps to analyse the different viscoelastic parameters ex- 

racted from the literature, see summary in Fig. 5 . The steps are as

ollows. 

.2. Forward calculation 

• The coefficients of the Prony-series, M j and β j = 1 /τ j , j = 

1 , . . . , N, are recorded for each study during the literature re- 

view. These values together can be used to create the relaxation 

function g(t) using Eq. (7) , or alternatively to calculate the di- 

mensionless parameters ˆ M j along with the instantaneous shear 

modulus M 0 via Eq. (8) . 

• The Prony-series data is then used to calculate the storage 

modulus M 

′ (ω) via Eq. (11) and the loss modulus M 

′′ (ω) via 

Eq. (12) . 
72 
• With the help of the loss and storage moduli, the inverse 

quality factor Q 

−1 (ω) is calculated using Eq. (10) along with 

the dispersion relation c(ω) via Eq. (22) . A mass density ρ = 

10 0 0 kg/m 

3 was used for all tissues. 

• Using the quality factor and the dispersion, the attenuation 

power-law α(ω) is calculated from Eq. (23) . 

.3. Average power-law calculation 

Now attenuations are calculated for each of the Prony-series. 

t is then possible to synthesise an averaged attenuation power- 

aw from these calculated curves. Specifically, we conduct a linear 

t in the log-log space using the α(ω) laws evaluated only at the 

requencies corresponding to their Prony-series decay coefficients 

 = β j , j = 1 , . . . , N. The valid frequency range of a fit was then

aken to be [ min j β j , max j β j ] . Fits were only undertaken if there 

ere at least three datapoints. 

.4. Backward calculation 

Following the average power-law calculation, we obtain an aver- 

ged power-law ln α(ω) = ln a + b ln ω, along with standard devia- 

ions σln a and σb . Using a reference value of c = 2 . 1 m/s at a fre-

uency of 75 Hz derived from experiments on homogeneous brain 

issue [12,17] , it is possible to calculate the dispersion from the 

ramers-Kronig relation as defined in Eq. (28) . The quality factor 

an then subsequently be calculated using the derived attenuation 

nd dispersion laws via Eq. (23) . To determine the errors in the 

redicted quality, we calculate its minimum and maximum using 

he parameter choices ln a ± σln a and b ± σb , respectively. A single 

rror metric can be computed as the mean of the errors in the 

ower and upper bounds. 

.5. Averaged Prony-series fitting 

The backward calculation yields quality factors valid over a 

ange of angular frequencies [ ω 1 , ω 2 ] . From this data, it is then

ossible to directly perform a curve fitting exercise for the di- 

ensionless Prony-series parameters as per Eq. (29) . The order 

f the Prony-series is set by Eq. (30) . Here, we evaluated the in-

erse quality at 10 0 0 equally spaced points on log-scale, which 

e call logarithmically spaced points in the valid interval [ ω 1 , ω 2 ] .

ach of these points also has an associated error. Curve fitting for 
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Fig. 6. Anomalous Prony-series predictions (grey) and their corrected versions (coloured) for (a) the relaxation function and (b) inverse quality factor. 
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q. (29) given these values and errors was performed using the 

trust region reflective” algorithm, based on the work of Branch 

t al. [117] and implemented in Scipy [118] . This algorithm al- 

ows one to give lower and upper bounds for the required pa- 

ameters, based on physical intuition. For example, we know the 

arameters M j should be constrained on [0 , 1] . To ensure that 

he parameters β j are physically relevant, we can partition the 

nterval [ ω min , ω max ] into n + 1 logarithmically equidistant inter- 

als and use these as the bounded regions. Once the dimension- 

ess parameters were fitted, we calculated the instantaneous shear 

odulus M 0 using Eq. (31) . Again, we used the references values 

= 10 0 0 kg/m 

3 and c = 2 . 1 m/s at 75 Hz. Then the fitted Prony-

eries is entirely defined. Lastly, we also provide the attenuation 

ower-laws used, so that users can conduct their own Prony-series 

ts if desired. 

. Results and discussion 

.1. Anomalies in Prony-series 

In some cases, Prony-series predictions were not in line with 

he general data. Specifically, a number of Prony-series were found 

o predict an inverse quality factor greater than 1. This has prob- 

ematic physical implications - a dissipation factor greater than 1 

ould correspond to the case where more energy is dissipated 

han the total energy of the wave [119] . As a result, corrections to

hese series were required in order to make them comparable to 

he general data. To this end, the dimensionless series was trun- 

ated by entirely removing the highest frequency term in the se- 

ies. All other terms in the series were left unchanged. The quality 

as then found to be strictly below 1 for the range of valid fre-

uencies as desired. However, conducting such a truncation neces- 

arily alters either M 0 , or of M ∞ 

. A choice thus must be made on

hich quantity to keep constant. In this work, M 0 was kept con- 

tant since this is a more robust experimental quantity than M ∞ 

. 

hat is, it is physically impossible to measure M ∞ 

as this would 

equire waiting for an infinite amount of time. Thus, instead in ex- 

eriments a large time is used to approximate the value at t → ∞ .

owever, this cut-off time is arbitrary which this means that val- 

es of M ∞ 

can vary. Furthermore, we found that the keeping M 0 

onstant yielded results more in line with our general findings. 
73 
Figure 6 shows the original Prony-series (in grey color) and the 

runcated series (in color). These Prony-series are primarily derived 

rom Nicolle’s work [20] and have been used by the ANISO KTH 

odels and its variants, Imperial College, and Worchester models. 

s evident from the right-subplot, the unphysical case of Q 

−1 ≥
 is present for high frequencies. On the other hand, the trun- 

ated Prony-series indeed produce Q 

−1 < 1 . However, this trun- 

ation does overestimate g(t) with respect to the original series. 

evertheless, the truncated Prony-series produce results consistent 

ith the average results. 

Prony-series differing substantially from the rest of the litera- 

ure were also not included in this review, such as the curve of 

endizabal et al. [120] . Since these are outliers, it was necessary 

o disregard them in order not to skew results. 

.2. Attenuation power-laws in homogeneous brain 

To understand the currently used approaches in FE models, we 

iscuss the predictions of viscoelastic FE data for the homogeneous 

rain. 

Most of the computational models still use the homogeneous 

ssumption while describing the viscoelastic properties of the 

rain matter. In this section, we consider the different Prony-series 

sed in the common FE models describing the homogeneous brain 

eformation. 

The Prony-series collected were fitted using Eq. (7) which gives 

 continuous function as shown in Fig. 7 a. Most of the relaxation 

unctions are close to each other except the ones from Tse et al. 

68] and ULP v0 [71] (light-blue), which uses the experimental 

ata from Shuck and Advani [79] . 

There is significant variation in the Prony-series data, which 

s unsurprising given the experimental sources summarised in 

able 2 , many of which are 50 years old. This reliance on dated 

xperimental data is problematic because experimental protocols 

ave changed greatly over the past 50 years thanks to new exper- 

mental data and approaches [56] . Studies indicating temperature 

nd post-mortem time effects have lead to newer experimental ap- 

roaches with better controls. For example, the data from the work 

f Shuck and Advani in 1972 [79] is an outlier, overestimating both 

he storage and loss moduli as compared to other studies [47,56] . 

his data was obtained hours after autopsy, which itself may have 
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Fig. 7. Derivation of attenuation and dispersion laws from each of the Prony-series used in FE models. Shown are the predictions for (a) the relaxation function, (b) storage 

modulus, (c) loss modulus, (d) inverse quality factor, (e) dispersion and finally (f) attenuation. 
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een hours or days post-mortem. This issue is particularly prob- 

ematic as it is well known that brain tissue stiffness increases 

uickly with post-mortem time. Weickenmeier et al. [54] found 

hat within 16 h post-mortem, the loss and storage moduli were 

wice as stiff. 

Notwithstanding these extra considerations, there are large 

ariations in the experimental protocol used in experiments in 

eneral [56] , which makes it difficult to get consistency between 

esults. However, as seen in Table 2 , these older papers are some 

f the few experimental studies on human brain that are being 

sed in FE models. The experimental data used by the UCD v2 

11] model from MacManus et al. [86] are obtained from experi- 

ents on rats, which is not ideal because the structure of the ro- 

ent brain is considerably different to that of a human [114] . Dai 

t al. [46] recommend instead the use of experimental data from 
74 
arge animals (e.g. pig, rabbit, sheep, etc.) above rodents when data 

rom human brains are not available, and Nicolle et al. [20] report 

o significant difference in viscoelastic behaviour between porcine 

nd human brain matter. 

Furthermore, the assumption that the brain is homogeneous 

ith respect to viscoelastic properties is weak, as results can vary 

reatly depending on what region of the brain is being considered 

86] . It is thus important that the data for the homogeneous brain 

e taken from a representative region. However, the data of Nicolle 

t al. [29] and of Shuck & Advani [79] are in fact obtained from the

orona radiata region. This is a white matter region which is me- 

hanically quite different from the mixed white-grey matter region 

tudied by Rashid et al. [121] . 

Predicted quantities from the collected Prony-series for the ho- 

ogeneous brain as used in FE models are shown in Fig. 7 . In gen-
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ral, most Prony-series are only one-term series and span low fre- 

uency ranges, with the major exceptions of ADAPT [57] , ANISO 

 TH v1 [58] , ANISO K TH v2 [59] , WHIM v1 [74] , ICM [8] and

TH v2 [64] , which use the data of Nicolle et al. [29] . Only these

odels are able to capture frequencies greater than 100 Hz. This 

imits the scope of possible applications. For example, road traffic 

nd low-velocity missile impacts are associated with higher fre- 

uencies, on the order of 0.1–10 kHz [20] . It is worth mention- 

ng that the data from the YEAHM model [77,78] and Khanuja & 

nni model [63] is a two-term Prony-series, coming from the fit of 

ashid et al. [87] . However, the decay coefficients β1 = 38 . 895 Hz

nd β2 = 38 . 911 Hz for this series are so close that an extended

requency range was also used to match a one-term Prony-series. 

gnoring the extended range of the fit from Nicolle et al. [29] , the

ata lies in the region of t ∈ [10 −3 , 10 0 ] . Looking at Fig. 7 a, the data

sed by the Tse et al. and ULP v0 models [68,71] and the mod-

ls of Cai et al. and SIMon v1 [61,66] are the outliers. The data is

ound to span many logarithmic decades, and shows greater vari- 

tion in comparison to the review of Chatelin et al. [47] which 

ound data varying within almost two decades ( g(t) ∈ [20 , 80 0 0] ).

urthermore, the data from FE models is substantially stiffer than 

hat of experimental papers, including both those of the review 

f Chatelin et al., and from this work (see supplementary mate- 

ials). In contrast, the experimental data found in this work com- 

ares well to that in the review of Chatelin et al., showing that it 

s indeed an issue associated with FE model data. 

The outlier datasets of Fig. 7 a are worth further discussion. 

irst, the major outlier is the series of Tse et al. [68] and ULP v0

odels [71] (light blue), which comes from the study of Shuck & 

dvani [79] . As already discussed, this data is substantially stiffer 

han the rest of the literature. Furthermore, there is a second out- 

ier: the relaxation modulus data of Takhounts et al. [90] used in 

he Cai et al. and SIMon v1 [61,66] models (purple) is lower than 

hat in the rest of the literature. In that experiment, the tissue was 

tored by freezing and experimented on between 3 and 24 h post- 

ortem. Other experimental sources used in FE models differ in 

his regard. For example, the experiment of Nicolle et al. [29] (used 

n ADAPT [57] , KTHv2 [64] , ANISO KTH v1 [58] , ANISO KTH v2

59] , WHIM v1 [74] and ICM [8] ) was conducted 24 h post-mortem

nd that of Rashid et al. [87] (used in the Khanuja-Unni [63] and 

EAHM [77,78] models) was conducted within 8 h post-mortem. 

his may explain why the data of Cai et al. [61] and SIMon v1

66] is less stiff than the series of Nicolle et al. [29] . The storage

emperature is consistent with that of the other series of Rashid 

t al. [87] and Nicolle et al. [29] , which range from 4 to 6 ◦C. This

s important because storage temperature can have a very large 

mpact on the stiffness of brain tissue, with lower storage tem- 

eratures leading to stiffer behaviour [52] . The temperature an ex- 

eriment is conducted at is also important, with experiments con- 

ucted at room temperature showing a stiffer response than those 

easured at body temperature [56] . Thus, it is worth noting that 

hilst the experiments of Rashid et al. [87] and Takhounts et al. 

90] were conducted at room temperature, the work of Nicolle 

t al. [29] was conducted at body temperature. Lastly, the specific 

egion of the brain tested by Takhounts et al. [90] is not listed, but

e note that the study of Nicolle et al. [29] was conducted on the

orona radiata (white matter region) whilst that of Rashid et al. 

87] was conducted on mixed white and grey matter samples. This 

ay partly explain why the data of Takhounts et al. [90] appears 

o be an outlier. 

The general disparity in the literature propagates through to the 

redictions of the storage and loss moduli where the same datasets 

re still outliers ( Fig. 7 b and c). In general, the storage modulus

s observed to increase with frequency, as is the loss modulus. A 

haracteristic n-shape is observed for the one-term Prony-series 

ata predictions of the loss moduli, but this is simply due to the 
75 
ow order of the Prony-series and the use of an extended frequency 

ange. For higher-term Prony-series such as that from Nicolle et al. 

29] , this behaviour is not observed. 

Importantly, a further conglomeration of the data is observed 

pon computation of the inverse quality ( Fig. 7 d). This is a par-

icularly important quantity to check as it is independent of the 

alue of the instantaneous shear modulus M 0 . The previous out- 

ier datasets are found to lie within the rest of the data in terms 

f the inverse quality, which shows that the previous differences 

ere predominantly due to their values for M 0 . Oscillations in the 

nverse quality are also observed, which occurs due to a limited 

umber of relaxation mechanisms in the Prony-series [122,123] . 

pproximately constant qualities are also anticipated due to the 

ommonly used assumption of constant quality that is often made 

or determining regions of interest, as long as the dispersion is 

mall [124] . 

A number of Prony-series predict extremely high wave speeds 

(ω) of over 10 m/s ( Fig. 7 e), despite the fact that experiments 

ave not observed speeds this high [17,125] . These predictions oc- 

ur in the cases of series derived from the data of Nicolle et al. 

29] , and for the data of Tse et al. and ULP v0 models [68,71] , both

f which have large instantaneous shear moduli. As evident from 

q. (22) , the wave speed scales linearly with the instantaneous 

hear modulus, which leads to the observed high wave speed pre- 

ictions. Despite all of this variation, the derived attenuation laws 

n Fig. 7 f are indeed generally observed to follow the expected 

ower-law attenuation behaviour. 

.3. Attenuation power-laws in heterogeneous brain 

We discuss both FE data and experimental data predictions for 

he regions of the heterogeneous brain collected during our litera- 

ure review. 

Following the same process shown for the homogeneous brain 

ata of FE models, we computed averaged attenuation power-laws 

or twelve different regions in the brain, using Prony-series from FE 

odels and from recent experimental papers. This yields averaged 

ttenuation power-laws and frequency intervals over which the fit 

s valid. Both FE model data and experimental paper data were not 

lways available for the all regions, but it was nonetheless possible 

o compare a number of key regions, as depicted in Fig. 8 . Detailed

alculations for each region are provided in the supplementary ma- 

erials. Also, note that the frequency axis is not the same for the 

issue types as it is dependent on the Prony-series. 

Figure 8 a shows the average attenuation law in the homoge- 

eous brain tissue in FE models and the experiments together with 

 “reference” power-law for homogeneous brain tissue we have 

sed in our nonlinear (shock) shear wave modelling [17] . The “ref- 

rence” was obtained using ultrasound shear wave imaging exper- 

ments performed on ex vivo porcine brain tissues [12] . The ho- 

ogeneous brain tissue assumption is the most commonly used 

n FE modelling, meaning most data used in FE implementations 

omes from this region (12 unique Prony-series). For experimental 

ata, 18 unique Prony-series were sourced for the homogeneous 

rain and this was not the most common tissue. As evident, the 

brain-FE” law is significantly lower than the “brain” synthesised 

rom the experimental data only. In fact, a relative error calculation 

etween the power-law attenuation of experimental data and FE 

odels, calculated as 

(
a Exp ω 

b Exp − a FE ω 

b FE 

)
a Exp ω 

b Exp 
× 100 , gives a range 

f errors of 43–52% between 10 and 100 Hz, respectively. This sug- 

ests the need to revisit the viscoelastic modelling of brain matter 

n FE models to accurately capture the recent experimental data. 

he underestimation of attenuation in the FE implementation in 

ontrast to experimental data is consistent in all the tissue types 
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Fig. 8. Averaged attenuation power-laws at low frequencies ( < 100 Hz) for twelve different regions of the brain. Dashed lines refer to fits obtained from data used in FE 

models. Fits are only plotted over their respective valid frequency ranges. Shaded regions show one standard deviation ±1 σ . Plotted are (a) the homogeneous brain, (b) 

cerebellum, (c) brainstem, (d) white matter, (e) grey matter and (f) thalamus and hippocampus regions. 
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nd the animal types. The lower attenuation in FE models tends to 

redict higher stiffness in contrast to the experimental data. 

Surprisingly, the experimental power-law closely aligns with 

he power-law attenuation we have used in our simulation stud- 

es [17] . This could possibly be due to increased emphasis on high 

train rate experiments in recent publications. 

Furthermore, there is also a greater degree of variation for FE 

odel data, indicated by the larger ranges of uncertainty. The 

argest degree of uncertainty was found for the cerebellum re- 

ion ( Fig. 8 b). This is not unexpected due to the lack of viscoelas-

ic data in the FE model literature for the cerebellum region (4 

nique Prony-series). For all regions except the brainstem and ho- 

ogeneous brain ( Fig. 8 c), we observed that the fits from the ex- 

erimental data lie within the error interval for the associated FE 

ata. There are a number of possible reasons that may explain 
76 
his. Firstly, as summarised in Table 2 , the data used in FE models 

or the homogeneous brain largely comes from older viscoelastic 

ources, which give stiffer material properties compared to recent 

xperimental sources. Thus, for the homogeneous brain, it is unsur- 

rising that FE models have significantly less attenuating power- 

aws compared to recent experimental data. The question therefore 

ecomes why we do not observe significant differences for other 

egions. The reasons for this may be that the data for FE mod- 

ls is newer for these regions since heterogeneity is only imple- 

ented in recent FE models. Furthermore, there is not much data 

or these regions, which leads to larger error intervals and thus 

ess significant results – specifically, from FE models there are only 

 unique Prony-series for white matter, 5 for grey matter and 4 for 

he cerebellum. By contrast, for the homogeneous brain, there are 

2 unique Prony-series. 
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results in Tables 3, 4 and in the supplementary materials. 
For the white matter in particular, we point out that the power- 

aws in Fig. 8 d for the corona radiata and corpus callosum are dis- 

inct (do not lie within the error regions of one another), but both 

f them lie within the error region for the white matter as used 

n FE models. This underlines the importance of considering het- 

rogeneity in FE models, instead of just white matter as a whole. 

or comparison purposes, the corpus callosum data and corona ra- 

iata data were also pooled to create a single white matter region 

rom experimental data, and this was found to also agree with the 

hite matter data used in FE models. Similarly for grey matter in 

ig. 8 e, we found that the subregions of the basal ganglia, den- 

ate gyrus and cortex all agreed with the grey matter data used in 

E models. Moreover, the pooled data of the basal ganglia, dentate 

yrus and cortex was used to generate a single grey matter region 

rom experimental data and this was also found to agree with the 

ata used for grey matter in FE models. For two regions, namely 

he thalamus and the hippocampus ( Fig. 8 f), no reasonable com- 

arison was possible with other FE model data since, to the best of 

ur knowledge, these regions have not been modelled as viscoelas- 

ic materials in the FE models considered in this work. However, it 

s apparent that the thalamus is found to be the most attenuating 

egion here and thus is mechanically different from other regions. 

his suggests that the thalamus is an important region to include 

n FE models, and should not be neglected. 

.3.1. Homogenisation of attenuation in brain 

We investigate if it is possible to reconstruct the homoge- 

eous brain attenuation predictions using heterogeneous brain 

ata. It is important to test the validity of homogeneous brain 

easurements, because the brain is a highly heterogeneous tissue 

6,39,82,86,112–115,126] . In fact, one the key challenges identified 

n current FE modelling is the obtention of accurate heterogeneous 

ata for models [4,5] . To this end, we pooled (referred as “all”) the

xperimental data for all regions except the homogeneous brain to 

econstruct the power-law for the homogeneous brain from het- 

rogeneous brain data. This was used to quantify the the variation 

n the power-law resulting with the assumption of homogeneous 

rain and the one constructed using the heterogeneous data. The 

esults of these processes are shown in Fig. 9 . 

As expected, different tissue types in brain have different 

ower-laws and the homogeneous brain power-law (black curve) 

ies in between the different laws as seen in Fig. 9 a. Note these

aws are generated using the experimental data (has no contribu- 

ion from data collected from FE models). Also interesting to note 

s that the power-law description for white and grey matter are al- 

ost overlapping as evident from Fig. 9 a (see Table 3 for exact ex- 

ressions). However, the Prony-series representation (for example: 

25,127] ) of these two regions are not as similar as their power- 

aws. The reason for this overlap could be due to our averag- 

ng procedure over different experimental procedures, tissue types, 

emperature, animals, etc. are used in studies on white matter ver- 

us those on grey matter. Nevertheless, such an averaging is re- 

uired in order to compare and leverage different experiments and 

o have some starting point for modelling nonlinear shear waves in 

rain. On the other hand, there have been discussions around the 

ariations in elastic and anisotropic properties of white and grey 

atter. Many studies report conflicting results on the anisotropy 

f white matter (further discussion can be found in Budday et al. 

39] ) and on which tissue is stiffer (discussed in Zhang et al. [128] ).

Furthermore, we found that the “all” data (light blue) does 

ot match the homogeneous brain data (solid black) as shown in 

ig. 9 b as well as the “reference” (light red), however, they are 

ll still within each others’ ±σ . This difference could be due to 

he sampled regions for the homogeneous brain fits versus those 

f the rest of the experimental data. For example, the most com- 

on region found in our literature review is the cortex (43 unique 
77 
rony-series). However, since the locations for the homogeneous 

rain data are not explicitly given, it was not possible to deter- 

ine whether the homogeneous brain data is dominated by the 

ortex data. However, this result nonetheless highlights a current 

iscrepancy in the literature. It furthermore emphasises the need 

or considering the heterogeneity of the brain as opposed to at- 

empting to construct a suitable averaged region, which can be 

ighly subjective due to different averaging techniques. However, 

hese three curves: “reference”, “all”, or the homogeneous “brain”

t from experimental data are not within the error region of the 

he attenuation power-law from FE models (dashed black). A rel- 

tive error 

(
a Hom 

ω 

b Hom − a All ω 

b All 

)
a Hom 

ω 

b Hom 

× 100 of 29–39% between the 

omogeneous brain and the “all” region from 10 to 100 Hz also 

ndicates a discrepancy between the heterogeneous and homoge- 

eous treatments of brain tissue. Similarly, a relative error of 43–

2% was found between the power-law attenuation of experimen- 

al data and FE models from 10 to 100 Hz, highlighting the need 

o revisit the viscoelastic modelling of brain matter in FE models 

o accurately capture recent experimental data. 

.3.2. Intra-layer variability 

We discuss the variation within different tissues of the hetero- 

eneous brain. 

As can be clearly seen in Fig. 9 a and Fig. 8 , differing levels

f intra-layer variability were also observed for different tissues. 

arge degrees of variation were observed for regions with little 

ata, such as the basal ganglia (6 Prony-series) and the thalamus 

11 Prony-series). This high uncertainty is simply a consequence 

f limited data. Of greater interest is the variation in other tis- 

ues where large numbers of data ( ≥ 17 Prony-series) are avail- 

ble. For example, as depicted in Fig. 9 a, larger degrees of vari- 

tion are observed for the homogeneous brain ( σln a = 0 . 09 and 

b = 0 . 03 ), corpus callosum ( σln a = 0 . 10 and σb = 0 . 03 ) and corona

adiata ( σln a = 0 . 09 and σb = 0 . 02 ), with smaller variations found

or the cortex ( σln a = 0 . 05 and σb = 0 . 02 ), grey matter ( σln a = 0 . 05

nd σb = 0 . 01 ) and white matter ( σln a = 0 . 07 and σb = 0 . 02 ) re-

ions. The smaller variation for the white matter region is due to 

he aggregation of two relatively mechanically close regions of the 

orona radiata and corpus callosum, as shown in Fig. 8 d, leading to 

 lower variation in the new unified region. Similarly, low variation 

s also found for the grey matter for the same reason (see Fig. 8 e),

articularly given the low variation in the cortex region, which is 

he most experimentally measured tissue in our review with 43 

rony-series. However, greater degrees of variation are found for 

he corpus callosum and corona radiata regions. This is possibly 

ue to variations in the experimental literature in terms of surro- 

ate tissues used, with human, pig, cow, sheep, rat and dog sur- 

ogates used, and also due to the large degree in variation in in- 

tantaneous shear moduli, with values ranging from approximately 

00 Pa to 60 kPa for both tissues. Large variation is also observed 

or the homogeneous brain tissue due to different testing locations, 

nd due to the fundamentally heterogeneous nature of the brain 

issue. As previously mentioned, additional variations due to dif- 

erent experimental protocols can also be present. 

For completeness, the data for the fits for the experimental data 

nd from FE model data are given for each region, and are shown 

n Tables 3 and 4 , respectively. We have provided further details 

uch as the raw data, full calculations and merged fits for each re- 

ion in the supplementary materials. 

emark. Different Prony-series g(t) are possible depending on the 

urve fitting procedure used. As a result we recommend users un- 

ertake their own curve fitting, but nonetheless we do provide our 
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Table 3 

Derived averaged attenuation power-laws and corresponding Prony-series from averaged experimental data. #Prony-series refers to the number of unique Prony-series. 

M 0 (ω 0 ) is the instantaneous shear modulus obtained from a reference frequency of 75 Hz i.e. ω 0 = 150 π Hz. The white region is formed from merging the corona radiata 

and corpus callosum regions, and the grey region is formed from merging the cortex, dentate gyrus and basal ganglia regions. 

Region (#Prony-series) 

Angular Frequency 

Range [Hz] Power-law [Np/m] Averaged Prony-series ˆ g (t) = 

ˆ M ∞ + 

∑ 

j 
ˆ M j e 

−β j t M 0 (ω 0 ) [Pa] 

ln α = ln a + b ln ω

Var Val-( μ ± σ ) 95% C.I. 

Basal ganglia (6) ω min 2 × 10 −5 ln a −1 . 80 ± 0 . 21 ( −2 . 21 , −1.40) 0 . 012 + 0 . 0115 e −4 . 14 e −05 t + 0 . 0174 e −0 . 0 0 0381 t + 

0 . 0303 e −0 . 00331 t + 0 . 056 e −0 . 0323 t + 0 . 106 e −0 . 379 t + 

0 . 216 e −5 . 82 t + 0 . 551 e −179 t 

4603 

ω max 6 . 1 × 10 2 b 0 . 86 ± 0 . 04 (0.79,0.94) 

Brain (18) ω min 0.01 ln a −2 . 03 ± 0 . 09 ( −2 . 21 , −1.85) 0 . 0902 + 0 . 0608 e −0 . 0223 t + 0 . 0952 e −0 . 291 t + 

0 . 193 e −4 . 88 t + 0 . 561 e −180 t 

4607 

ω max 7 . 3 × 10 2 b 0 . 91 ± 0 . 03 (0.86,0.97) 

Brainstem (23) ω min 0.0048 ln a −1 . 83 ± 0 . 11 ( −2 . 04 , −1.62) 0 . 0988 + 0 . 05 e −0 . 0104 t + 0 . 0774 e −0 . 131 t + 0 . 163 e −1 . 97 t + 

0 . 611 e −55 . 8 t 

4430 

ω max 2 . 1 × 10 2 b 0 . 97 ± 0 . 04 (0.89,1.05) 

Cerebellum (18) ω min 0.0061 ln a −1 . 36 ± 0 . 06 ( −1 . 48 , −1.24) 0 . 0502 + 0 . 0455 e −0 . 0122 t + 0 . 0782 e −0 . 124 t + 0 . 177 e −1 . 5 t + 

0 . 649 e −32 . 6 t 

4417 

ω max 1 . 1 × 10 2 b 0 . 89 ± 0 . 02 (0.84,0.93) 

Corona radiata (19) ω min 0.0016 ln a −1 . 46 ± 0 . 09 ( −1 . 62 , −1.29) 0 . 00544 + 0 . 00509 e −0 . 00298 t + 0 . 00829 e −0 . 0271 t + 

0 . 0168 e −0 . 272 t + 0 . 0361 e −3 . 49 t + 0 . 0977 e −57 . 5 t + 

0 . 213 e −3 . 2 e +03 t + 0 . 618 e −8 . 98 e +04 t 

24277 

ω max 10 5 b 0 . 87 ± 0 . 02 (0.83,0.91) 

Corpus callosum (17) ω min 0.00099 ln a −1 . 38 ± 0 . 10 ( −1 . 57 , −1.19) 0 . 00934 + 0 . 016 e −0 . 00227 t + 0 . 0359 e −0 . 0215 t + 

0 . 0933 e −0 . 246 t + 0 . 249 e −4 . 23 t + 0 . 597 e −173 t 

4596 

ω max 6 . 6 × 10 2 b 0 . 79 ± 0 . 03 (0.73,0.84) 

Cortex (43) ω min 2 × 10 −5 ln a −1 . 71 ± 0 . 05 ( −1 . 82 , −1.60) 0 . 013 + 0 . 0101 e −3 . 59 e −05 t + 0 . 0147 e −0 . 0 0 0319 t + 

0 . 0261 e −0 . 00296 t + 0 . 0472 e −0 . 0317 t + 0 . 0874 e −0 . 369 t + 

0 . 19 e −5 . 45 t + 0 . 612 e −171 t 

4593 

ω max 5 . 8 × 10 2 b 0 . 89 ± 0 . 02 (0.85,0.92) 

Dentate gyrus (7) ω min 0.079 ln a −1 . 55 ± 0 . 06 ( −1 . 68 , −1.43) 0 . 116 + 0 . 104 e −0 . 17 t + 0 . 189 e −1 . 96 t + 0 . 592 e −35 . 3 t 4418 

ω max 83 b 0 . 89 ± 0 . 03 (0.84,0.94) 

Grey (56) ω min 2 × 10 −5 ln a −1 . 69 ± 0 . 05 ( −179 , −1.61) 0 . 0122 + 0 . 00968 e −3 . 61 e −05 t + 0 . 0142 e −0 . 0 0 0321 t + 

0 . 0255 e −0 . 00299 t + 0 . 0466 e −0 . 0323 t + 0 . 0867 e −0 . 379 t + 

0 . 189 e −5 . 62 t + 0 . 616 e −179 t 

4609 

ω max 6 . 1 × 10 2 b 0 . 88 ± 0 . 01 (0.86,0.91) 

Hippocampus (18) ω min 0.01 ln a −1 . 58 ± 0 . 04 ( −1 . 67 , −1.50) 0 . 0874 + 0 . 0892 e −0 . 0291 t + 0 . 192 e −0 . 534 t + 0 . 631 e −18 . 5 t 4412 

ω max 83 b 0 . 89 ± 0 . 02 (0.86,0.92) 

Thalamus (11) ω min 0.0047 ln a −1 . 46 ± 0 . 08 ( −1 . 62 , −1.29) 0 . 0493 + 0 . 0344 e −0 . 0105 t + 0 . 0594 e −0 . 134 t + 0 . 144 e −2 . 16 t + 

0 . 713 e −82 . 4 t 

4454 

ω max 3 . 3 × 10 2 b 0 . 93 ± 0 . 03 (0.88,0.99) 

White (36) ω min 0.0099 ln a −1 . 43 ± 0 . 07 ( −1 . 56 , −1.30) 0 . 0043 + 0 . 00473 e −0 . 0017 t + 0 . 00772 e −0 . 013 t + 

0 . 0154 e −0 . 105 t + 0 . 0307 e −0 . 992 t + 0 . 0559 e −9 . 94 t + 

0 . 101 e −99 . 5 t + 0 . 227 e −1 . 58 e +03 t + 0 . 554 e −3 . 77 e +04 t 

4609 

ω max 10 5 b 0 . 84 ± 0 . 02 (0.80,0.87) 

Table 4 

Derived averaged attenuation power-laws and corresponding Prony-series from averaged FE model data. #Prony-series refers to the number of unique Prony-series. M 0 (ω 0 ) 

is the instantaneous shear modulus obtained from a reference frequency of 75 Hz i.e. ω 0 = 150 π Hz. 

Region (#Prony-series) 

Angular Frequency 

Range [Hz] Power-law [Np/m] Averaged Prony-series ˆ g (t) = 

ˆ M ∞ + 

∑ 

j 
ˆ M j e 

−β j t M 0 (ω 0 ) [Pa] 

ln α = ln a + b ln ω

Var Val-( μ ± σ ) 95% C.I. 

Brain (12) ω min 6.7 ln a −2 . 32 ± 0 . 13 ( −2 . 58 , −2.07) 0 . 312 + 0 . 148 e −9 . 73 t + 0 . 141 e −84 . 3 t + 0 . 178 e −871 t + 

0 . 22 e −3 . 01 e +04 t 

6780 

ω max 10 5 b 0 . 85 ± 0 . 02 (0.80,0.89) 

Brainstem (4) ω min 3.4 ln a −2 . 03 ± 0 . 20 ( −2 . 42 , −1.63) 0 . 222 + 0 . 145 e −5 . 48 t + 0 . 157 e −48 . 7 t + 0 . 228 e −587 t + 

0 . 248 e −2 . 77 e +04 t 

6967 

ω max 10 5 b 0 . 83 ± 0 . 04 (0.74,0.91) 

Cerebellum (4) ω min 3.3 ln a −1 . 82 ± 0 . 82 ( −3 . 42 , −0.22) 0 . 525 + 0 . 475 e −18 . 3 t 4412 

ω max 80 b 0 . 77 ± 0 . 47 ( −0.15,1.69) 

Grey (5) ω min 3.3 ln a −1 . 94 ± 0 . 21 ( −2 . 36 , −1.52) 0 . 264 + 0 . 219 e −8 . 65 t + 0 . 517 e −183 t 4606 

ω max 700 b 0 . 90 ± 0 . 07 (0.76,1.04) 

White (6) ω min 13 ln a −1 . 80 ± 0 . 33 ( −2 . 45 , −1.14) 0 . 484 + 0 . 516 e −45 . 5 t 4423 

ω max 700 b 0 . 85 ± 0 . 11 (0.63,1.06) 

78 
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Fig. 9. Attenuation power-laws at low frequencies ( < 80 Hz) for experimental data. The “all” fit is generated from merging the data for all regions bar the homogeneous 

brain (i.e. hippocampus, thalamus, brainstem, cerebellum, grey matter and white matter). Shaded regions show one standard deviation ±1 σ , as do error bars. Depicted are: 

(a) the power-law attenuation fits from experimental data for all of the gathered regions and (b) the power-law attenuation fits for the homogeneous brain (both FE and 

experimental), and the “all” region (solely experimental). The reference law of Tripathi et al. [17] is also shown for comparison in (b), alongside the average homogeneous 

brain attenuation from FE models (shown as a dashed black line). 
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.4. Variation in attenuation due to animal selection 

We investigate differences between surrogate tissues in the ex- 

erimental literature. There are multiple factors that can cause dif- 

erences in experimental results, but one that is of key importance 

s that of the suitability of surrogate animals. The influence of this 

actor is vital to check because fresh human brain tissue is far 

ore difficult to source than tissue from other animals such as pigs 

r cows. Thus, it is necessary to ascertain if surrogate tissues can 

e used since this will have major ramifications on the ease of ob- 

ention of suitable experimental data. 

Experiments have already investigated this question, but only 

n a per-experiment basis. For example, MacManus et al. directly 

ompared fits for human, pig, rat and mouse brains using inden- 

ation techniques [129] . Nicolle et al. similarly compared porcine 

issue to human tissue using oscillatory experiments [20] . Here we 

eview across multiple experiments, specifically, we investigate the 

veraged properties from a large experimental literature segregated 

y animal type and region as shown in Fig. 10 . 

To achieve this, we employ the same methodology as was done 

or the homogeneous brain characterisation used in FE models. For 

hese comparisons, the following regions were considered: homo- 

eneous brain, cerebellum, brainstem, white matter (i.e. corpus cal- 

osum and corona radiata data merged), grey matter (i.e. dentate 

yrus, cortex and basal ganglia data merged) and “all” region cre- 

ted by merging data from all regions i.e. hippocampus, thalamus, 

rainstem, cerebellum, grey matter and white matter except the 
79 
omogeneous brain. A total of eight different animals were found 

n our literature review - namely, pig, rat, human, mouse, cow, 

heep, monkey and dog. However, due to scarcity of data from 

onkeys, sheep and dog, are not shown in Fig. 10 . 

Our results found that the average power-laws for each sur- 

ogate tissue do not always agree. That is, the variation in re- 

ults with respect to the use of different surrogate tissues is in 

act significant. This finding is not unexpected. For example, dif- 

erences between human tissue and rodent brain tissue are antic- 

pated since the rodent brain is quite anatomically different from 

he human brain [114] . Even for more anatomically similar tissues 

uch as porcine and bovine tissue, differences are still observed in 

his work. We do however still note that there are other sources 

f variation due to different experimental techniques, post-mortem 

ime, temperature, etc. that are also present in our dataset. For ex- 

mple, the data on human tissue comes primarily from indenta- 

ion experiments [23,129–131] whilst for bovine tissue it primar- 

ly comes from dynamic mechanical analysis [108] . Thus, we can 

nticipate that differences between the bovine dataset and human 

ataset will also occur due to differences in testing methods. 

We also point out some general trends observed here. We can 

ee that the experimental data from human tissue is in fact gen- 

rally less attenuating than porcine tissue, but more attenuating 

han bovine tissue, as can be observed for the homogeneous brain 

egion ( Fig. 10 a), white matter ( Fig. 10 d), grey matter ( Fig. 10 e),

nd the “all” region ( Fig. 10 f). Rat and mouse tissues were found 

o be close. Like in the previous section, here also we calculate the 
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Fig. 10. Averaged attenuation power-laws in a low frequency regime (0–50 Hz) for a number of key regions, separated by animal type. The “all” fit is generated from merging 

the data for all regions bar the homogeneous brain (i.e. hippocampus, thalamus, brainstem, cerebellum, grey matter and white matter). Shown are the attenuation power-law 

fits from experimental data for the different animal types for (a) the homogeneous brain, (b) cerebellum, (c) brainstem, (d) white matter, (e) grey matter and (f) “all” regions. 

Shown with a dashed line in subplot (f) are the fits from the homogeneous brain data as shown in subplot (a). 
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ower-laws for the “all” region and the homogeneous brain, which 

re similar for the various animal types ( Fig. 10 f). This is a promis-

ng finding since exact agreement is not expected - the data for the 

all” region may be skewed towards various subregions depending 

n the data we have sourced. For example, 27% of the data for rat 

omes from the cortex region. 

It is particularly interesting to note that in this study the fits for 

arger animals such as porcine and bovine tissue were also found 

n general to be further from the fits for human tissue as compared 

o the fits for smaller animals such as rats and mice. This finding 

eems in direct conflict with the work of Dai et al. [46] , who rec-

mmend the use of larger animals such as cows and pigs as sur- 

ogates over small animals such as rodents. However, there exists 

ther work such as that of MacManus et al. [129] which suggest 

hat mouse tissue is in fact a suitable surrogate. 
80
Furthermore, there are a number of reasons why we may ob- 

erve this in this work. For one, it is important to keep in mind 

hat there is relatively little data for rat and mouse brains, and the 

ata that is presented lies in the low frequency regime ( < 10 Hz). 

s a result, the extrapolation to 50 Hz is exactly that: only an ex- 

rapolation. Thus, any comparisons at higher frequencies should 

e done carefully. Furthermore, we also point out that the cor- 

ex region is also the most commonly experimented upon tissue 

or the rat, mouse and human data, whilst this is not the case 

or the porcine and bovine tissues. These differences in sampled 

ubregions of the brain may also partly explain the trends ob- 

erved in this work. However, this still does not fully explain why 

he porcine tissue seems to be substantially more attenuating than 

ther tissue types. This phenomenon instead appears to come due 

o different experimental techniques. In the collected literature, 
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he dominant experimental technique for porcine tissue is indenta- 

ion tests [86,111,126,132–134] . This is also a common experimental 

echnique for other surrogates such as rat also, but the experimen- 

al results for porcine tissues are substantially different. Specifi- 

ally, there is a disproportionate amount of experiments on porcine 

issue in the literature that find low instantaneous shear moduli, 

hich leads to high predictions for the attenuation. For example, 

f all the Prony-series data collected for porcine tissue, 55% of the 

ig data has an instantaneous shear modulus less than 1500 Pa. By 

ontrast, for rat tissue it is merely 23% and for human it is 33%.

his difference does not appear amongst experiments which have 

onducted experiments on both porcine and other surrogates using 

he same experimental procedure [20,129] . Instead, this arises from 

he fact that there are experiments conducted solely on porcine 

issue which report low values for the instantaneous shear mod- 

lus [48,96,111,135–138] . In particular, this finding emphasises that 

he use substitute data from surrogate tissues must be done with 

uch caution. 

.5. Limitations and shortcomings 

This study does have some limitations. First, the reference val- 

es were not varied per region in this work and we took ρ = 

0 0 0 kg/m 

3 and c = 2 . 1 m/s at 75 Hz for all regions and has been

xed for M 0 calculations. The use of a constant density is in line 

ith the approach of FE models but is nonetheless limiting. The 

eference dispersion value is obtained with the assumption of ho- 

ogeneous brain tissue. Thus, it may not be suitable for tissues 

hat are very different from the homogeneous brain like meninges 

nd spine. We were unable to include these tissues as a result, al- 

hough there does exist experimental Prony-series data for them 

see [103–105,139–142] ). 

Another key issue is the variations of the experimental datasets 

n the literature. Since there are many possible sources of varia- 

ion, it is not feasible to account for all of them at the present

ime, particularly given that the literature does not agree on how 

o quantify their effects. For example, there is even some dispute 

bout the existence of certain effects such as the sex-dependence 

f brain tissue properties [39] . Other studies investigating various 

xperimental conditions are also with limitations. For example, one 

f the few studies into the temperature dependence was conducted 

y Hrapko et al. [56] , but considered just 5 different temperatures 

etween 7 ◦C and 37 ◦C and only considered homogeneous porcine 

rain tissue. As a result, it is not feasible to accurately account for 

ll the effects of various experimental conditions here. It is hoped 

hat by averaging across many series in this work, the variations 

ill even out to some degree. Nevertheless, FE models use data 

rom a wide range of experimental sources, often with large differ- 

nces in experimental conditions and parameters. In order to com- 

are and review such FE data, it is therefore a necessary limitation 

o also compare and aggregate experimental data from such vary- 

ng sources. 

Thirdly, the reliance on Prony-series data is also limiting, par- 

icularly when considering frequency-domain quantities. As men- 

ioned previously, the use of a limited number of mechanisms in 

 Prony-series causes oscillatory artefacts to appear in the pre- 

icted inverse quality [122,123] . Thus, it would be better to di- 

ectly use data from the frequency domain for such quantities, but 

his is not what current FE models are predominantly doing. Fur- 

hermore, during the literature it was found that more experimen- 

al papers yielding Prony-series data were available as compared 

o frequency-domain data. As a result, this was a necessary lim- 

tation to introduce to this work. Similarly, the curve fitting of a 

rony-series is also limiting but necessary in order to give results 

hat can be used by FE models. Nonetheless, we also provide the 
81 
irect power-law fit so frequency-domain data is also available in 

his work. 

It is vital to stress that curve fitting for Q 

−1 is a difficult ex- 

rcise and greatly differing fits can be obtained for the same data 

epending on the chosen algorithm and initial conditions [27] . As 

 result, we recommend that users conduct their own curve fit- 

ing exercises which they can tailor specifically to their application. 

o facilitate this, we provide the averaged power-laws used to de- 

ive our Prony-series. We emphasise that these power-laws should 

e treated as the ground truth as opposed to the averaged Prony- 

eries. 

It is also important to note, in the backward calculation, due to 

xed reference dispersion value in the Kramers-Kronig relation it is 

ot always able to produce a reconstructed dispersion curve con- 

istent with the Prony-series predictions. This is also due to the 

imiting nature of the Kramers-Kronig relation and also due to fac- 

ors like heterogeneity, experimental technique, physical parame- 

ers like temperature, etc. (see appendix for further discussion). 

Lastly, the initial Prony-series are not exact measurements, and 

hould have errors associated with them. Unfortunately, errors 

ere not available for all Prony-series, so it was not feasible to 

tilise such information in this work. 

.6. Recommendations for future work 

The dominant method of modelling viscoelasticity for current 

tate-of-the-art FE models is by means of a Prony-series, though 

ome models, such as the LiUHead model [143] , have opted for 

ther approaches. This state of affair is unlikely to change in the 

mmediate future, but there are a number of improvements we can 

uggest to current techniques. 

First, many FE models are incorporating viscoelasticity by 

eans of a one-term Prony-series [144] , which greatly limits the 

requency range that can be modelled, especially if one is inter- 

sted in modelling the transient viscoelastic behaviour. There also 

xists a large range of higher order viscoelastic models in the lit- 

rature which are included in this work and these laws could be 

everaged instead. 

Furthermore, this work and many others [6,25,39] have estab- 

ished that the brain is heterogeneous, whilst it is often times 

reated as a homogeneous tissue. In some cases, properties for cer- 

ain tissues as used in FE models have also been derived from 

xperiments on different tissues - for example, the homogeneous 

rain properties of the ADAPT [57] , ANISO KTH v1 [58] , ANISO KTH

2 [59] , WHIM v1 [74] , ICM [8] and KTH v2 [64] models are taken

rom experiments by Nicolle et al. [29] on corona radiata tissue. 

imilarly, the homogeneous brain properties derived from the ex- 

eriments of Shuck & Advani [79] are also derived from corona ra- 

iata tissue. This is could lead to erroneous results and should be 

sed with caution. 

There are also differences between the tissues chosen for inclu- 

ion in FE models versus the tissues that are experimented on. Ex- 

eriments can provide different measurements for specific regions 

ompared to the larger regions taken by FE models. For example, 

he cortex region which is sometimes included in FE models is 

easured in a total of six subregions by Menichetti et al. [130] - 

amely the prefrontal cortex, posterior-occipital cortex, superior 

id-frontal cortex, postero-lateral frontal cortex, inferior temporal 

ortex and the postero-superior frontal cortex. A clear difference is 

lso that FE models are currently often modelling the two regions 

f white and grey matter whilst typically experimental papers are 

ot. Instead, a significant amount of experimental work measures 

ubregions of these - white matter is commonly measured as ei- 

her the corona radiata or the corpus callosum, and grey matter 

s the basal ganglia, cortex or the dentate gyrus. Furthermore, our 

ork has found that these subregions are mechanically different 
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see Fig. 8 ). Thus, these subregions should be considered separately 

n future work. 

We also point out that taking viscoelastic and hyperelastic data 

rom different experiments can be problematic as viscoelastic fits 

an change depending on the hyperelastic model used, and also 

ary in general between experiments. Our work also shows that 

xperimental data and data used in FE models do not agree with 

ach other. Thus, we recommend using directly experimental mea- 

urements in future work as opposed to modifying or scaling ex- 

erimental data. In this work we provide both averaged laws for 

welve regions and eight different animals and also a total of 181 

ifferent Prony-series in order to facilitate this. Furthermore, as 

as mentioned in the limitations section, the use of Prony-series 

s not ideal. Future work could directly obtain averaged laws from 

requency-domain data i.e. values of M 

′ and M 

′′ . 
Another important area of future investigation is the incor- 

oration of probabilistic modelling. Currently, our approach char- 

cterises the error in our fitted parameters simply by a single 

tandard deviation or confidence interval. This is currently still 

he commonly implemented approach in giving errors for fitting 

rony-series [82,107,114,145] . However, a probabilistic formulation 

ay deliver other estimates which could be more suitable. Fur- 

hermore, a number of works now exist investigating stochas- 

ic modelling of hyperelastic models such as the Neo-Hookean 

odel [146] , Mooney-Rivlin model [146] and the Ogden model 

147] . Extensions to anisotropic models have also recently been ex- 

lored, for example by Chen and Guilleminot [148] . These works 

rovide a useful new direction to explore, allowing for proba- 

ilistic representations in hyperelasticity. We believe future work 

ould look at a probabilistic formulation for our method, pro- 

iding a richer characterisation of our dataset and allowing us 

o determine the distribution of our fitted parameters. Machine 

earning methods such as the work of Nolan et al. [149] are of 

nterest here, possibly allowing one to better leverage collected 

nformation such as surrogate animal and tissue type to make 

redictions. 

Machine learning methods are also of great interest for FE 

odelling in general. In particular, this review has highlighted 

 number of issues with existing FE models, and an enormous 

mount of variation within the experimental literature. As a re- 

ult, the best choice of material parameters is not always clear 

or both experimentalists and the FE modelling community. Ma- 

hine learning has the possibility to revolutionise both domains. 

or instance, Kutz and collaborators have done significant work 

150–153] in development of sparse-regression based techniques 

or discovery of model parameters using experimental data. Fur- 

hermore, physics-informed neural networks, which allow for the 

fficient evaluation of both forward and inverse problems [154–

56] whilst directly embedding physics knowledge in the neural 

etwork model itself, can be a viable option. Similarly, reduced or- 

er modelling [157,158] also provides a means of efficient evalua- 

ion of parametrised partial differential equations, particularly im- 

ortant for real-time many-query contexts. In particular, machine- 

earning based reduced order modelling approaches [159–164] of- 

er real potential to decrease the computational overhead for trau- 

atic brain injury modelling. In addition, neural operators such as 

eepONets [165–167] and Fourier neural operators [168,169] have 

ecently arisen as a promising new means of reduced order mod- 

lling, directly learning a map between function spaces and typi- 

ally benefitting from the advantageous property of discretisation- 

nvariance [169,170] . The use of such methods is an extremely 

mportant future direction since more efficient simulations would 

pen new avenues for the determination of appropriate material 

arameters by experimentalists, in addition to allowing for a bet- 

er understanding of the effect of varying material parameters in 

E models. 
82 
. Conclusion 

To the best of our knowledge, this work presents 1) the first 

ulti-frequency viscoelastic atlas of the heterogeneous brain, 2) 

he first review focusing on viscoelastic modelling in both FE mod- 

ls and in experimental works, 3) the first attempt to conglomer- 

te the disparate existing literature on the viscoelastic modelling of 

he brain. Thus, our review differs from existing work in a number 

f key ways. 

Our review enables a direct comparison between the experi- 

ental literature and the data used in FE models. Existing reviews 

ocus typically on either reviewing FE models, or reviewing ex- 

erimental techniques, but not both together. This review aims to 

elp bridge the gap between these two domains. To this end, we 

ave gathered a total of 181 differing Prony-series from 48 differ- 

nt experimental papers, and 31 unique Prony-series used in FE 

odels. We have made all of these 212 Prony-series publicly avail- 

ble in the supplementary materials, including information regard- 

ng the anatomical region of the brain and also the surrogate used. 

s such, this review gives the largest collection of viscoelastic pa- 

ameters for human brain tissue. This wealth of data allows us to 

nvestigate differences due to animal tissue choices in the hetero- 

eneous brain with greater granularity, for instance, we can now 

ompare corona radiata of a pig brain with that of the cortex of 

he human brain unlike previous studies. Our work also provides 

 means of comparing Prony-series viscoelasticity to storage and 

oss moduli data (e.g. from MRE measurements), and to attenua- 

ion laws. Previous works have not thoroughly investigated the link 

etween relaxation functions and storage and loss moduli. For ex- 

mple, the review of Chatelin et al. [47] provides many different 

xperimental results for relaxation functions, and also many differ- 

nt distinct experimental results for storage and loss moduli. How- 

ver, their review does not investigate how the predictions of the 

torage and loss moduli from the relaxation function compare with 

he other experimental data for the storage and loss moduli. 

Comparison of FE model data with the recent experimental data 

ields that FE models are generally underestimating the attenua- 

ion than the recent experimental data. Our review uncovers that 

here may be issues with existing commonly used Prony-series 

ata. For example, the most used dataset in FE models is the one 

resented by Shuck and Advani [79] . However, their data is much 

tiffer than the average calculated using our approach. They have 

ound that for a frequency range between 3 and 300 Hz, the stor- 

ge modulus lies between 7 and 30 kPa, and loss modulus lies be- 

ween 1 and 90 kPa, whilst in this work our average Prony-series 

redicts lower values for both the storage modulus (between 1 and 

 kPa) and loss modulus (between 0.3 and 1 kPa). It is thus clear 

rom both this work and other previous reviews such as Chatelin 

t al. [47] and Hrapko et al. [56] that the data of Shuck and Advani

s an outlier with respect to the rest of the experimental literature. 

n addition, another commonly used dataset, namely that of Nicolle 

t al. [20] was found to predict an inverse quality greater than 1. 

herefore there is a need to recalibrate and reassess the material 

roperties used in the computational models describing the brain 

rauma. 

We calculate the average attenuation power-law for the ho- 

ogeneous brain tissue from recent experimental data (obtained 

rom 18 unique Prony-series) as α( f ) = 0 . 70 f 0 . 91 Np/m. The cor- 

esponding average dimensionless Prony-series is ˆ g (t) = 0 . 0902 + 

 . 0608 e −0 . 0223 t + 0 . 0952 e −0 . 291 t + 0 . 193 e −4 . 88 t + 0 . 561 e −180 t , with

n instantaneous shear modulus of 4607 Pa at 75 Hz. The mean 

nd median instantaneous shear modulus in the experimental 

iterature are 6230 Pa and 3750 Pa, respectively. 

Significant differences are also observed between the animal 

ypes, with relative errors of 23–38% between human and bovine 

issue and 78–95% between human and porcine tissue for the at- 
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enuation power-law fits between 10 and 100 Hz for the homoge- 

eous brain region. This emphasises the need to take caution when 

sing surrogate tissues, since substantial differences can exist. 

In addition, this work provides a methodology for computing 

he predictions of a given Prony-series on the storage and loss 

oduli, quality factor, dispersion relation and attenuation. Since 

e have been able to calculate averaged Prony-series and power- 

aws, it also provides a useful methodology for investigating and 

omparing an experimentally obtained Prony-series to the rest of 

he experimental literature. Importantly, it is also possible to verify 

hether or not a Prony-series predicts an inverse quality less than 

 for it to be physically viable. Thus Prony-series which do not 

atisfy this may need to be recalibrated. From a numerical stand 

oint, the methods using one- or two- term Prony-series can limit 

he attenuation and dispersion modelling especially in the nonlin- 
ig. A1. Derivation of averaged attenuation power-laws, and corresponding dispersion a

hown in black. Shown are the predictions for (a) the relaxation function, (b) storage m

ttenuation. (For interpretation of the references to colour in this figure legend, the reade

83
ar regime which results in the generation of higher harmonics 

uch as shear shock formation in brain [17] . 
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ppendix A. Validation of averaged viscoelastic properties 

Our procedure for determining averaged Prony-series data in- 

olves a number of nontrivial steps and thus it is important to ver- 

fy that our method proceeds as expected. Specifically, a number of 

ensible checks can be conducted: 
nd quality (shown in red). An averaged Prony-series and its predictions are also 

odulus, (c) loss modulus, (d) inverse quality factor, (e) dispersion and finally (f) 

r is referred to the web version of this article.) 
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• Can our averaged Prony-series reconstruct the averaged power- 

law from which it was derived? 

• Does our averaged Prony-series lie amongst the experimental 

data from which it was derived? 

• Does our averaged Prony-series or attenuation power-law pre- 

dict Q 

−1 < 1 as expected? 

• Does our determined value of M 0 from our Prony-series match 

that of the experimental data? 

We illustrate this procedure for the experimental data on the 

omogeneous brain tissue. Details for other tissue types can be 

ound in the supplementary materials. 

Following the obtention of an averaged Prony-series as shown 

n Fig. 5 d, the forward calculation step can be conducted on this 

ew Prony-series as outlined in Fig. 5 e. The results of this process 

re shown in Fig. A.1 . 

As evident from Fig. A.1 a, the averaged Prony-series (dashed 

lack) calculated using c(ω) given the Kramers-Kronig relations 

nderestimates the storage/loss modulus and the inverse quality 

 Fig. A.1 b–e, respectively). However, it is able to reconstruct the 

ttenuation power-law (red) shown in Fig. A.1 f. The underestima- 

ion of the storage/loss modulus and the inverse quality is due to 

he use of Kramers-Kronig relations [31] which may not be ideal 

or the point estimates provided for Prony-series, moreover the 

se of the reference value of c = 2 . 1 m/s at 75 Hz further re-

tricts the approximation. It can be seen in Fig. A.1 e that the aver-

ged dispersion is unable to match the predictions of the individ- 

al Prony-series. This is because the Prony-series predict extremely 

igh dispersion values of up to 10 m/s at the reference frequency 

f 75 Hz. Experiments have not observed dispersion values this 

igh, and the experimentally determined reference dispersion is 

nly 2.1 m/s. Combined with the form enforced by the Kramers- 

ronig relation, an underestimation in the dispersion compared to 

he individual Prony series predictions leads to an underprediction 

n the averaged Prony-series also. However, these predictions can 

ary depending on the reference parameters taken which depend 

n the experimental conditions like temperature, tissue type, etc. 

evertheless, this approach does provide a benchmark to unify the 

ifferent observations obtained using different experimental tech- 

iques. 
Fig. B1. Convergence in the fitted attenuation

84
Lastly, we can also examine the prediction for M 0 from our av- 

raged Prony-series, since this an important experimental quantity 

n the literature. It is important to determine whether or not the 

rediction from Eq. (31) is in line with the distribution of values 

f M 0 from the literature. In general, quite a lot of variation ex- 

sts in the predictions for the instantaneous shear modulus since 

his can depend upon experimental techniques and procedures. It 

s not possible to experimentally measure a value for the relaxation 

unction at t = 0 , so differing values of M 0 can occur depending

n what time interval (or frequency range) one investigates. In our 

ork, we find our averaged Prony-series for the experimental ho- 

ogeneous brain tissue has a value M 0 = 4607 Pa at 75 Hz. This 

roadly agrees with the experimental literature, which has a mean 

alue of 6230 Pa and a median value of 3750 Pa. 

ppendix B. Convergence of proposed methodology 

Another important consideration is to investigate the conver- 

ence of our proposed methodology. In this section, we provide 

ome empirical convergence results of our method as a function 

f the number of samples. We consider a situation in which our 

ata may be noisy, and show that our results for the attenuation 

o converge. As discussed in Appendix A , results for our averaged 

rony-series may not converge to the Prony-series from which they 

ere derived due to the reference dispersion value and the form of 

he Kramers-Kronig relation. 

To demonstrate convergence in the averaged attenuation 

ower-law, we consider an arbitrary ground truth Prony-series data 

ˆ  (t) = 

1 
3 

(
e −10 0 0 t + e −10 0 0 0 t + e −10 0 0 0 0 t 

)
with M 0 = 20 0 0 0 . We then 

llow noise to enter the measured Prony-series. Specifically, for the 

arameters ˆ M i and M 0 , we draw noise from a Gaussian distribu- 

ion with mean zero and a standard deviation equal to 10% of the 

round truth value. Convergence in the predictions for the atten- 

ation power-law α(ω) = aω 

b is then empirically found with in- 

reasing numbers of samples, as shown in Fig. B1 . 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at 10.1016/j.actbio.2023.07.040 . 
 power-law parameters (a) a and (b) b. 

https://doi.org/10.1016/j.actbio.2023.07.040
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