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a b s t r a c t

Materials with negative Poisson’s ratio, also known as auxetic materials, display exotic properties such
as expansion in all directions under uni-axial tension. For their unique properties, these materials find
a broad range of applications in robotic, structural, aerospace, and biomedical engineering.

In this work we study the wrinkling behavior of thin and soft auxetic membranes, subjected to edge
tractions. We show that spatial inhomogeneities of the Young modulus and of the Poisson ratio can
be suitably tailored to produce non-trivial wrinkling patterns, with wrinkled regions that can appear,
broaden, merge, and eventually disappear again, as the magnitude of applied tractions is increased
monotonically. To model wrinkling in a functionally graded membrane, we employ the mathematically
elegant and physically transparent tension field theory, an approximated method that we implement
in commercially available software.

Beyond unveiling the challenging technological potential to achieve non-standard wrinkling on-
demand in auxetic membranes, our study also confirms the potential of using tension field theory to
study, analytically and numerically, instabilities in functionally graded materials.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Under uniaxial tension, most isotropic materials elongate in
he direction of stress and contract in the lateral directions. The
xtent of deformation is governed by the value of the Poisson
atio, which, for conventional materials lies between 0 and 0.5.
owever, in principle, the theoretical value of Poisson’s ratio for
sotropic solids can range between −1 and 0.5 [1,2].

Over the past few decades, active research has been carried
ut to explore materials with negative Poisson’s ratio. These
xotic materials are referred to as ‘‘auxetic’’ materials; they ex-
and in the lateral directions when stretched longitudinally and
ontract in all directions when compressed. This behavior has
een observed for some solids since the 1970s [3,4]. Due to their
ide range of potential applications, research in auxetic materials
apidly gained significant prominence with the works of Lakes
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[5], Wojciechowski and Brańka [6], Evans and Caddock [7], Milton
[8], and Lakes [9].

Progress in additive manufacturing techniques has recently
enabled the fabrication of mechanical metamaterials with
auxetic properties. Such metamaterials, obtained as the juxta-
position of geometric units or micro-cells, exhibit auxetic prop-
erties at the macro-scale emerging from the architecture at the
micro-scale [10]. These structures are currently investigated in
soft robotics, e.g. to obtain quick motions of deformable struc-
tures [11,12], to produce controllable shape changes [13], and to
develop compliant actuators [14].

Nonlinear elastic membranes have been extensively used as
engineering structures in aerospace and civil engineering, due
to their thin, lightweight and excellent resistance under tension,
with solar sails, airbags, and balloons being some of the repre-
sentative examples [15]. Soft tissues such as skin and arterial cell
walls also fall under this category [16]. However, because of their
almost negligible bending rigidity, membrane structures cannot
sustain in-plane compressive stresses and they lose mechanical
stability instantly, leading to wrinkling phenomena [17–19].

The study of wrinkling in elastic membranes is a classical
topic of mechanics. The most refined methods of analysis are
based on the theory of incremental deformations [20,21], the
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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öppl–von Kármán theory of plates [22,23], numerical bifurcation-
ontinuation analysis [24], reduced-order finite element mem-
rane theory [25]. These advanced models provide detailed
nformation on the wavelength and amplitude of wrinkles, but
hese are also analytically and computationally expensive.

If the focus is put on identifying the location of wrinkled
egions and the orientation of wrinkles therein, a viable
lternative to the aforementioned methods is provided by ten-
ion field theory. This is a mathematically elegant and analyt-
cally treatable theory, first proposed in the works of Wagner
26] and Reissner [27]. The theory relies upon the observation
hat thin membranes have almost negligible out-of-plane bend-
ng rigidity, and henceforth cannot sustain in-plane compressive
tresses. Pipkin [28] proposed that the unilateral constraint of
ack of resistance to compression could be described by introduc-
ng a ‘‘relaxed strain energy’’, that automatically sets to zero a
omponent of stress whenever this would be negative in the
arent energy [28–30]. This method demonstrated its applica-
ility in a broad range of applications involving different ma-
erials like fabrics [31], anisotropic membranes [32], nematic
lastomer membranes [33,34], magnetoelastic membranes [35],
nd electroelastic membranes [36–40].
In this work, we focus our attention on annular membranes.

everal works have analyzed wrinkling and buckling instabili-
ies in circular membranes, auxetic sheets, and membranes with
aterial inhomogeneities. For example, see the works of Coman
nd Liu [41], Lim [42], Bonfanti and Bhaskar [43], Wang et al.
44], Dai and Lu [45], Huang et al. [46], Faghfouri and Rammer-
torfer [47], Wang et al. [48], and Dai et al. [49]. Although many
orks exist in the literature on the occurrence of wrinkling in
ircular membranes under different boundary conditions and by
sing various approaches, there is little literature on the effect
f material properties such as Young’s modulus and negative
oisson’s ratio on the regions of wrinkling in hyperelastic auxetic
embranes. This is the specific focus of the present work, which
e achieve by using tension field theory.
The paper is organized as follows. In Section 2, we introduce

he Kirchhoff strain energy material model, and derive the kine-
atics of deformation. Next, we recap the salient features of

ension field theory and relaxed strain energy functional to derive
he equilibrium equations and corresponding boundary condi-
ions for their numerical implementation in MATHEMATICA [50]
and finite element simulation in COMSOL [51]. In Section 3, we
discuss results from MATHEMATICA and COMSOL for different se-
lections of material properties and applied surface traction loads.
With some prescribed distributions of functional gradients, we
find that increasing the applied traction load can lead to the for-
mation, merging or vanishing of wrinkling regions. Conclusions
and directions for future work are presented in Section 4.

2. Problem description

We consider a compressible auxetic annular disk with inner
radius Rint (rint) and outer radius Rout (rout) in the reference (cur-
rent) configuration, as shown in Fig. 1. Given its auxetic nature,
the disk has a negative Poisson ratio. Moreover, we let the Young
modulus E and the Poisson ratio ν vary radially across the mem-
brane. We identify the position of a point in the reference and
current configurations with the coordinates R, Φ, Z and r, φ, z,
respectively. We use a single, coinciding, set of cylindrical bases
both for the reference and the current configurations, namely
{eR, eΦ , eZ }. We study the deformation and wrinkling instabilities
of an annular membrane where the inner rim is fixed and a radial
traction is applied to the outer rim.

The deformation of the membrane is written as follows:

r = r(R), φ = Φ, z = z(Z). (1)
2

Fig. 1. Undeformed and deformed configurations of a circular membrane. The
reference and current coordinates of a material point are (R, Φ, Z) and (r, φ, z),
respectively, with associated basis vectors {eR, eΦ , eZ }. The inner and outer
radii of the undeformed and deformed membrane are Rint , Rout and rint , rout ,
respectively. The inner rim of the membrane is fixed and a surface traction is
applied on the outer edge.

The corresponding deformation gradient is given by:

F =

(
λR 0 0
0 λΦ 0
0 0 λZ

)
, (2)

where λR = dr/dR, λΦ = r/R and λZ = dz/dZ are the principal
stretches. We consider the 3D strain energy density (function of
the three principal stretch ratios) for a compressible Kirchhoff
material [52,53], in the following form:

W 3D
=

E
8(1 + ν)

( (
λ2
R − 1

)2
+
(
λ2

Φ − 1
)2

+
(
λ2
Z − 1

)2
+

ν

1 − 2ν

(
λ2
R + λ2

Φ + λ2
Z − 3

)2 )
.

(3)

Because the thickness of the membrane in the Z-direction is
negligible compared to its radius (for COMSOL, the initial thickness
is taken as H = Rint/1000), we assume that the material is in a
plane-stress state, i.e. P3D

zZ = 0 where P3D
= ∂W 3D/∂F is the first

Piola–Kirchhoff stress. Using plane-stress condition, we obtain
the out-of-plane principal stretch ratio λZ as:

λZ =

√
1 − (λ2

R + λ2
Φ − 1)ν

1 − ν
, ν ≤ 0. (4)

By substituting Eq. (4) in Eq. (3), we get the strain energy
function in terms of the in-plane principal stretch ratios λR and
λΦ , as:

W =
E

8(1 − ν2)

(
λ4
R + λ4

Φ − 2(λ2
R + λ2

Φ )

+ 2ν(λ2
R − 1)(λ2

Φ − 1) + 2
)

.

(5)

We refer to this as the membrane strain energy function (a
ombination of 3D strain energy density function in Eq. (3) and
lane-stress condition in Eq. (4)). Now, we can calculate the
omponents of the first Piola–Kirchhoff stresses associated with
he membrane strain energy, as:

P11(≡ PrR) =
∂W
∂λR

=
EλR

2(1 − ν2)

(
λ2
R − 1 +

(
λ2

Φ − 1
)
ν

)
,

22(≡ PφΦ ) =
∂W

=
EλΦ

(
λ2

Φ − 1 +
(
λ2
R − 1

)
ν

)
.

(6)
∂λΦ 2(1 − ν2)
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.1. Tension field theory

Following [28], we assume that in the limit of negligible bend-
ng stiffness, wrinkles immediately appear at the outset of in-
lane compressive stresses. To capture this feature, we introduce
‘‘relaxed strain energy density’’ WR, that automatically sets a
omponent of stress to zero, whenever this would be negative in
he parent energy (membrane energy in Eq. (5)):

R
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
W (λR, λΦ) if λR ≥ λ∗

R (λΦ , ν) , λΦ ≥ λ∗

Φ (λR, ν) ,

W
(
λR, λ

∗

Φ (λR, ν)
)

if λR ≥ 1, λΦ ≤ λ∗

Φ (λR, ν) ,

W
(
λ∗

R (λΦ , ν) , λΦ

)
if λΦ ≥ 1, λR ≤ λ∗

R (λΦ , ν) ,

0 if λR ≤ 1, λΦ ≤ 1.

(7)

Here, λ∗

i

(
λj, ν

)
is the natural width in tension, obtained by solv-

ing Pii (i = 1, 2) = 0 (no summation over i). This gives us the
lateral width of the membrane along the direction i when the
membrane is pulled along the direction j. In other words, if λΦ <

λ∗

Φ , the membrane would be shorter than the stress-free width
and hence, it would be compressed along the circumferential
direction, leading to the formation of wrinkles parallel to the
radial direction. Similarly, if λR < λ∗

R, wrinkles would appear
parallel to the circumferential direction. If λR > λ∗

R and λΦ > λ∗

Φ ,
then no wrinkles would appear in the membrane.

Therefore, to calculate the natural width λ∗

Φ when the mem-
brane is stretched along the radial direction, we use Eq. (6) and
we impose that:

P22 = 0, ⇒ λ∗

Φ (λR, ν) =

√
1 + ν − λ2

Rν. (8)

Similarly, we calculate the natural width λ∗

R when the membrane
is stretched along the circumferential direction, as follows:

P11 = 0, ⇒ λ∗

R (λΦ , ν) =

√
1 + ν − λ2

Φν. (9)

From Eq. (8) and Eq. (9), when ν > 0, we observe that λR, λΦ <

1 + 1/ν for all admissible natural widths (λ∗

R, λ
∗

Φ ). Hence, for
conventional Kirchhoff material (ν > 0), there is a threshold
alue of stretch, where the stress values blow to infinity and
atural width values become complex. However, for an auxetic
aterial (−1 < ν < 0), there is no such constraint on natural
idths.

.2. Equilibrium problem and boundary conditions

The deformation of the membrane is governed by the balance
f linear momentum DivPN

= 0, where PN
= {PR, P} and Div is

a divergence operator in referential configuration. Here PR and
refer to relaxed and membrane first Piola–Kirchhoff stresses

espectively. As we are looking for axially-symmetric solutions,
he governing equations depend only on the radial coordinate R
nd reduce to the following equation:

dPN
rR

dR
+ (PN

rR − PN
φΦ ) = 0. (10)

e assume that the inner radius Rint of the membrane is fixed
nd that a surface traction (with respect to per unit undeformed
rea) is applied on the outer radius Rout. The boundary conditions
an then be written as follows:

(Rint) = Rint, PN
rR (Rout) = Prescribed value. (11)

e solve numerically (first with MATHEMATICA and then with
OMSOL) the problem in Eq. (10) and Eq. (11) to obtain the current
adial coordinate r . Later, we use the relations in Eq. (2) to obtain
he principal stretch ratios. Using the principal stretch ratios
3

Fig. 2. Case 1: Distribution of Young’s modulus E (R) (black line) and Poisson’s
ratio ν (R) (blue curve) in the membrane with respect to the referential radial
coordinate R. The curves are obtained from Eq. (12) with the following param-
eters: Eint = 1.30 MPa, Eout = 1.00 MPa, c0 = −0.9223, offset = 1.670 cm,
divider = 0.8941 cm, Rint = 0.5 cm, Rout = 4.0 cm. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version
f this article.)

nd Eq. (6), we compute the stress components PR
rR, P

R
φΦ , PrR, and

φΦ for different spatial distributions of the material parameters
the Young modulus and the Poisson ratio) across the membrane.
e then discuss how the spatial variation of these parameters

ffects the formation of wrinkles in the membrane.

. Numerical results

In this section, we consider the following three scenarios. In
ase 1 we assume that the Young modulus varies linearly with
he radial coordinate R (i.e. the radius in the reference configu-
ation) and the Poisson ratio follows a Gaussian distribution with
espect to R. In Case 2, we fix the Poisson ratio to a constant value
nd we let the Young modulus vary as a two-step function with
espect to R. Finally, in Case 3, we take the Young modulus to
ary as a step-function with respect to the radial coordinate r
i.e. the radius in the deformed configuration) and the Poisson
atio to vary linearly with r .

.1. Case 1: Gaussian variation of the Poisson ratio

When an auxetic membrane is under tension, it expands in
ll directions. Due to the fixed boundary condition at the inner
dge, we expect that compressive stresses might develop in that
eighborhood and possibly, wrinkles. To allow for that possibility,
e consider the material to be highly auxetic near the inner rim.
uch property can be achieved by assuming the Poisson ratio
o follow a Gaussian distribution across the membrane. We take
he Young modulus to vary linearly with respect to the radius R.
ccordingly, we write E and ν as follows:

(R) = Eout +

( Eout − Eint
Rout − Rint

)
(R − Rout), ν (R) = c0e−(c1(R))2 ,

(12)

here, c1 (R) =
R−offset
divider and Eout, Eint, c0, offset and divider are

constants.
We found that a linearly decreasing Young modulus generates

wrinkles at a lower value of applied traction load, compared to
a linearly increasing Young modulus profile. So, for Case 1, we
consider Young’s modulus with a linearly decreasing profile and
Gaussian distribution of the Poisson ratio as shown in Fig. 2.
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Fig. 3. Case 1: Radial and circumferential components of the deformation
gradient, λR (r) and λΦ (r), plotted with respect to the current radial coordinate
for an applied surface traction of 0.75 MPa. The solid lines and markers are

esults obtained from MATHEMATICA and COMSOL, respectively.

Since the material is under radial tension, the circumferential
tretch λΦ = r/R increases with r . However, because the mem-
rane is auxetic at any point, λΦ ≥ 1 implies that λR ≥ 1. This
ehavior could be observed in Fig. 3, where for a fixed traction
oad, we plot the principal stretches with respect to the current
adial coordinate r .

The stress profiles for different traction loads are shown in
ig. 4. These are obtained by solving the equilibrium equations
n Eq. (10) and boundary conditions in Eq. (11), where we have
sed Eq. (12) for Young’s modulus and Poisson’s ratio expressions.
ote that when the circumferential stress is zero (i.e. PR

φΦ = 0),
he radial stress can be analytically deduced from the equilibrium
quation Eq. (10) as follows:

dPR
rR

dR
+ PR

rR = 0, ⇒ PR
rR =

P0
R

. (13)

here the value of P0 can be calculated by using the fixed bound-
ry condition in Eq. (11). We then obtain the analytical expression
or the relaxed stress in the wrinkled region attached to the inner
im of the membrane as:

R
rR =

RintPR
rR (r = Rint)

R
. (14)

To validate our physical intuition that wrinkling occurs only
long the circumferential direction, we plot Fig. 4. We notice
hat the radial stresses are tensile and circumferential stresses
ontain regions of zero values in Fig. 4. As we know that zero
tresses correspond to the regions of wrinkling, we conclude that
rinkling occurs only along the circumferential direction, thus
eeting our expectations.
From the zoomed inset in Fig. 4B, we observe that for all

raction loads considered (0.15 MPa to 1.50 MPa), there is a
egion near the inner edge where the circumferential stress is
ero. Moreover, in this region, the radial stress computed from
ATHEMATICA and COMSOL matches with the analytical solution
n Eq. (14), although, for brevity, this particular result is not
hown here.
In Fig. 4B, for the traction load 0.15 MPa (blue curve), there

s only one region, at the inner edge, where the circumferential
tress is zero. As we increase the traction load to 0.50 MPa (red
urve), a new region emerges. Then both regions start to widen
s we increase the traction load further (1.00 MPa, cyan curve),
ntil they merge into one large region, see (violet curve) for the
raction load 1.50 MPa. For higher traction loads (up to 12.0 MPa),
4

we find that the wrinkling region slightly grows without the
formation of new regions.

To highlight this feature, we plot the quadrants of the de-
formed circular membrane for each applied traction load (taking
advantage of the axisymmetry in the problem) in Fig. 5, from 0.15
MPa (left top case) to 1.50 MPa (left bottom case) in the clockwise
direction. Dark regions correspond to the regions of wrinkling.
The values of wrinkling regions are reported in Table S1 (SI).

3.2. Case 2: Two-step variation of Young’s modulus

In this section, to obtain three regions of wrinkling we fix the
Poisson ratio at a constant value and we take the Young modulus
to vary as a two-step function with respect to the radius R, as
ollows:

(R) =E0

(
e2E1(R) − 1
e2E1(R) + 1

)
− E0

(
1.9e2E2(R) − 1
e2E2(R) + 1

)
+ E0

(
e2E3(R) − 1
e2E3(R) + 1

)
− E0

(
1.2e2E4(R) − 1
e2E4(R) + 1

)
+ Eres,

(15)

here, Ei (R) =
R−offseti
divider1

and E0, Eres, divider1 and offseti, with
i={1, . . . , 4}, are constants.

The profile of Young’s modulus according to Eq. (15) and
constant Poisson’s ratio are shown in Fig. 6. For Case 2, we
increase the traction load from 0.25 MPa to 15 MPa and plot
two representative stress plots in Fig. 7. Also, the corresponding
wrinkling profiles are plotted in Fig. 8.

For low values of traction, we find three wrinkling regions
where the circumferential stress is zero (Fig. 7), i.e. three re-
gions where wrinkles appear along the circumferential direction
(Fig. 8). For a traction load of 0.25 MPa, we see that there is
one wrinkling region close to the inner edge, one region close to
the outer edge, and an intermediate region. Then, as we increase
the traction load, the inner wrinkled region grows, while an
interesting behavior is observed for the outer wrinkled region.
Hence, when the traction is set to 2.50 MPa, we observe that a
small region close to the outer edge starts to ‘‘unwrinkle’’. This
is clearly seen from the non-zero circumferential stress in the
zoomed inset plot of Fig. 7B and from a thin white region occur-
ring near the outer edge in Fig. 8. By looking at the stresses in the
current configuration (see Fig. 7), we notice that the intermediate
wrinkling region has shifted its location away from the inner fixed
rim of the membrane as the traction load increased. The geometry
of the wrinkling regions and the deformed radial coordinate are
tabulated in Table S2 (SI) for 0.25 MPa and 2.50 MPa traction
loads.

3.3. Case 3: Young’s modulus and Poisson’s ratio vary with current
radius r

Finally, we assume that the material properties vary with
respect to the current radial coordinate r , in contrast to Cases
1 and 2, where they depend on R. Our rationale is that auxetic
microstructures can change shape during the deformation and
hence the effective Young modulus and effective Poisson ratio
may vary with the deformation.

Similar to Case 2, we are interested in capturing two wrinkling
regions in the material; thus we choose a step function in terms
of r for the Young modulus while the Poisson ratio varies linearly
with r . For Case 3, the Young modulus and the Poisson ratio
depend on r , which is unknown, and are therefore unknown
variables in the solution procedure, as opposed to Case 1 and 2,
where the material parameters are functions of R, and therefore
known quantities.
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Fig. 4. Case 1: The results from MATHEMATICA and COMSOL are represented by solid lines and markers, respectively. Surface traction on the outer edge of the
membrane is increasing in the direction of the arrow (0.15 MPa, 0.50 MPa, 0.75 MPa, 1.50 MPa). For increasing traction loads, radial and circumferential components
f the relaxed first Piola–Kirchhoff stress, (PR

rR) and (PR
φΦ ), with respect to the current radial coordinate r are shown in (A) and (B), respectively.
R
c
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c
s
s
p

t
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f
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T

t
i
i
r

Fig. 5. Case 1: Distribution of wrinkling profiles with an increase in the traction
oad from the left top in clockwise direction. Each quadrant refers to a different
pplied traction load (0.15 MPa to 1.50 MPa). Thanks to axisymmetry, only
uadrants of the circular membrane are shown here. In the gray (wrinkled)
egions, the circumferential stress PR

φΦ is zero.

Once we incorporate the relation between current and refer-
ntial radial coordinates, we can visualize the Young modulus and
he Poisson ratio as functions of the referential radial coordinate
, and current radial coordinate r , as shown in Fig. 9. As the de-
ormation of the circular membrane is different for each applied
raction load, we observe that the material properties also change
ith the prescribed traction load, see Fig. 9. The variations of
oung’s modulus and Poisson’s ratio with respect to r are given
y:

(r) = E∗

res + E∗

0

(
e2Ea(r) − 1
e2Ea(r) + 1

)
− E∗

0

(
1.75e2Eb(r) − 1

e2Eb(r) + 1

)
,

(r) = νout +

( νout − νint

Rout − Rint

)
(r − Rout),

(16)

where, Ei (r) =
r−offseti
dividera

and E0, Eres, νint, νout, dividera and offseti,
ith i={a, b}, are constants.
5

Fig. 6. Case 2: Distribution of Young’s modulus E (R) (black curve) and Poisson’s
ratio ν (R) (blue line) in the membrane with respect to the referential radial
coordinate R. The plot for the Young modulus is obtained by using Eq. (15).
The parameters are: Eres = 0.60 MPa, E0 = 0.50 MPa, offset1 = 1.00 cm,
offset2 = 1.75 cm, offset3 = 2.50 cm, offset4 = 3.25 cm, Rint = 0.50 cm,
out = 4.00 cm, divider1 = 0.05 cm. (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of this
rticle.)

We solve the equilibrium equations in Eq. (10) and boundary
onditions in Eq. (11), to compute the relaxed first Piola–Kirchhoff
tress components PR

rR and PR
φΦ . Furthermore, we calculate the

tresses PrR and PφΦ for the membrane strain energy. These are
lotted in Fig. 10 for the material function in Eq. (16).
We observe two wrinkling regions appearing as we increase

he applied traction load. We plot the corresponding stress pro-
iles in Fig. 10 and the corresponding wrinkling profiles in Fig. 11.

As opposed to Cases 1 and 2, although the inner wrinkling
egion grows in size with increasing traction load, there is hardly
ny growth in the other wrinkling region. This can be clearly seen
rom the wrinkling plot in Fig. 11. The values of wrinkling regions
nd current radial coordinates of the membrane are tabulated in
able S3 (SI).
Since the Poisson ratio is deformation-dependent, we remark

hat at higher traction loads (≥ 0.48 MPa), there will be regions
n the membrane with positive Poisson’s ratio. As mentioned
n Eq. (9), natural width values for a conventional Kirchhoff mate-
ial (ν > 0) are not physically admissible at higher stretch ratios
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Fig. 7. Case 2: Relaxed first Piola–Kirchhoff stress (PR) components with respect to the current radial coordinate (r) for different traction loads: (A) Traction load:
.25 MPa, (B) Traction load: 2.50 MPa. The solid lines and markers are results obtained from MATHEMATICA and COMSOL respectively. The black solid line and
lack markers represent the radial component of relaxed first Piola–Kirchhoff stress (PR

rR), while the blue solid line and blue markers represent the circumferential
omponent of relaxed first Piola–Kirchhoff stress (PR

φΦ ). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
f this article.)
ecause there is a threshold stretch value where the stresses
low to infinity. So we restrict our attention here to negative
oisson’s ratio and consider traction loads lower than 0.48 MPa.
or representative purposes, we show the wrinkling regions of
he material for traction loads of 0.05 MPa and 0.20 MPa in Table
3 (SI).
In Fig. 10, we compare the circumferential stresses obtained

rom relaxed and membrane strain energy functions. The plots
how that it is not the entire region under compressive stresses
btained from the unrelaxed strain energy that contributes to
rinkling, and it reinforces the importance of the relaxed strain
nergy function. We observe that the inner region of zero circum-
erential stresses obtained from the relaxed strain energy function
s only a subset of the inner region of compressive stresses
btained from the membrane strain energy function, although the
ifference is not large for this case.

. Conclusions

We studied the effect of varying material properties such as
oung’s modulus and Poisson’s ratio on wrinkling instability in
uxetic circular membranes using tension field theory. We solved
he equilibrium equations in Eq. (10) and boundary conditions
n Eq. (11) numerically with MATHEMATICA and verified the re-
ults with finite element simulations in COMSOL. We assumed
hat the material properties are functions of the radial coordi-
ates (in turn, referential R and current r). We also discussed
he importance of using the relaxed strain energy in compari-
on to the membrane strain energy for accurately capturing the
rinkling regions.
For the purpose of this study, we considered three scenarios

ssociated with different spatial variations of the Young modulus
nd the Poisson ratio. We concluded that:

1. We can obtain regions of wrinkling at desired locations
in the membrane by prescribing appropriate variations in
material properties.

2. With increasing applied traction load:

(a) We can find new wrinkled regions emerging, which
can merge with the earlier existing ones;

(b) Regions of wrinkling can grow in place;
(c) The size of wrinkling regions can remain unchanged;
(d) Unwrinkling of existing wrinkling regions can occur.
6

Fig. 8. Case 2: Distribution of wrinkling profiles with increasing traction load
from left (0.25 MPa) to right (2.50 MPa). Each quadrant refers to a different
applied traction load. At the lower load, there are three wrinkled regions (gray)
and two unwrinkled regions (white). At the higher load, a third unwrinkled
region emerges near the outer rim.

The method we proposed here can be generalized to other
geometries, such as rectangular membranes, and the effect of
dimensions (size effects) on wrinkling instability using tension
field theory can be further explored. The results presented here
provide a proof of concept. Based on the insights from this study,
the results can be further refined with more sophisticated nu-
merical techniques to account for bending and shear stiffnesses
and obtain a fine-scale description of the wrinkles, including
amplitude and wavelength.

Experimentally, the fabrication of membranes with graded
properties to be used in wrinkling experiments is challenging.
With recent advancements in additive and subtractive manufac-
turing techniques, functionally-graded materials with complex
designs can be manufactured, especially structures involving step
functions of material properties and with a pointwise variable
Young modulus [54]. To obtain negative and/or variable Poisson
moduli, the mechanical metamaterial approach can be used [55].
This introduces a further dimensional scale, for which it will
be necessary on the one hand, to work with homogenization
techniques, on the other hand, to adapt the model proposed
here to improve its predictive power in relation to the spe-
cific fabrication technique selected, so that it can become an
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Fig. 9. Case 3: Distribution of Young’s modulus E (r) and Poisson’s ratio ν (r) in the membrane. (A) With respect to the current radial coordinate r; (B) With
espect to the referential radial coordinate R. The solid lines and dash-dotted lines correspond to traction loads of 0.05 MPa and 0.20 MPa, respectively. Once the
urrent radial co-ordinate r is obtained by solving Eq. (10) and Eq. (11), the material property curves are plotted using Eq. (16) with the following parameters:
∗
res = E∗

0 = 0.50 MPa, offseta = 1.25 cm, dividera = 0.05 cm, offsetb = 2.75 cm, Rint = 0.5 cm, Rout = 4.0 cm, νout = −0.3, νint = −0.6.
Fig. 10. Case 3: Relaxed (Membrane) first Piola–Kirchhoff stress PR (P) components with respect to the current radial coordinate r for different traction loads:
A) Traction load: 0.05 MPa, (B) Traction load: 0.20 MPa. The solid (and dash-dotted) lines and markers are results obtained from MATHEMATICA and COMSOL,
espectively. The black solid line and black markers represent the radial component of relaxed first Piola–Kirchhoff stress (PR

rR), blue solid line and blue markers
epresent the circumferential component of relaxed first Piola–Kirchhoff stress (PR

φΦ ), and blue dash-dotted line represents the circumferential component of membrane
irst Piola–Kirchhoff stress (PφΦ ). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 11. Case 3: Distribution of wrinkling profiles with an increase in the traction
load from left (0.05 MPa) to right (0.20 MPa). Each quadrant refers to a different
applied traction load.

agile tool to support designers. Finally, the displacement field
can be measured with digital image correlation (DIC) techniques
[56].
7

This study lays the foundations for the development of analyti-
cal tools that can assist designers in the construction of morphing
surfaces. These surfaces, which have the ability to assume desired
3D shapes, have numerous potential applications in Engineering.
Here we elaborate on three examples.

In the field of Wearable Robotics, it is important to ensure
the safety and comfort of the interaction surfaces, i.e. of the sur-
faces that connect the robot to the human body [57]. Traditional
interaction surfaces are unable to accommodate the wrinkling
exhibited by the skin during flexion-extension of the body joints.
We believe that the development of surfaces capable of exhibit-
ing programmed wrinkling can overcome this limitation, making
possible the fabrication of interaction surfaces that are safer for
the skin (lower risk of abrasion) and more comfortable for the
user.

In Tissue Engineering, it is often necessary to create 3D scaf-
folds with appropriate porosity and biocompatibility properties
to allow cell engraftment. Currently, 3D printing techniques are
being used for the development of such scaffolds. The possibility
of producing 3D geometries through controlled wrinkling would
make it possible to print flat membranes which would assume
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heir final 3D shape upon application (or removal) of stress.
his would facilitate the deposition of cells [58], and would
lso represent savings in terms of printing time and amount of
iomaterial used.
In Aerospace Engineering, and in particular in the develop-

ent of small battery-operated unmanned aerial vehicles (UAV),
he need to increase aerodynamic efficiency to ensure good bat-
ery life is increasingly felt, especially in light of the ever more
tringent requirements in terms of maneuverability. The possi-
ility of changing the geometry of an aerofoil in a simple way,
or example through traction, could allow the improvement of
he aerodynamic efficiency of UAVs, with positive implications on
nergy autonomy [59].
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