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Noninvasive measurement of local stress inside soft
materials with programmed shear waves
Zhaoyi Zhang1, Guo-Yang Li2*, Yuxuan Jiang1, Yang Zheng1, Artur L. Gower3, Michel Destrade4,5,
Yanping Cao1*

Mechanical stresses across different length scales play a fundamental role in understanding biological systems’
functions and engineering soft machines and devices. However, it is challenging to noninvasively probe local
mechanical stresses in situ, particularly when the mechanical properties are unknown. We propose an acous-
toelastic imaging–based method to infer the local stresses in soft materials by measuring the speeds of shear
waves induced by custom-programmed acoustic radiation force. Using an ultrasound transducer to excite and
track the shear waves remotely, we demonstrate the application of themethod by imaging uniaxial and bending
stresses in an isotropic hydrogel and the passive uniaxial stress in a skeletal muscle. These measurements were
all done without the knowledge of the constitutive parameters of the materials. The experiments indicate that
our method will find broad applications, ranging from health monitoring of soft structures and machines to
diagnosing diseases that alter stresses in soft tissues.
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INTRODUCTION
Mechanical stresses are important in biological and artificial soft
materials across different length scales and play an essential role
in their functions. For instance, adherent animal cells generate me-
chanical stress to migrate, divide, sense their environment, and
communicate with other cells (1–4). At the tissue level, differential
and/or constrained growth generates mechanical stresses that may
trigger elastic instabilities and buckling patterns, leading to various
morphological changes observed in nature (5–7). Forces produced
by muscle contractions result in nearly all the movements in the
human body (8–10). In short, it is fair to say that all living tissues
are under mechanical stresses, even at rest, and understanding their
distribution and magnitude is critical for uncovering the biophysics
underpinning various life activities (2).

Stresses play a vital role also in artificial soft materials (11, 12),
which are used, for example, in designing soft machines and devel-
oping wearable and implantable soft bioelectronics. Residual and/or
applied mechanical stresses cannot be avoided in these applications
(10, 13, 14). Being able to probe the mechanical stress in situ is
needed for the optimal design of soft machines/instruments and
for the evaluation of their mechanical behavior, e.g., fatigue life
(15, 16).

To date, it remains a great challenge to probe the mechanical
stresses of soft materials in situ in a noninvasive manner, especially
when their mechanical properties are not known (2). Traditionally,
stresses can be inferred from measured deformations (10, 17), pro-
vided that the mechanical properties and the undeformed configu-
ration of the tested material are known. The hole drilling method

(18, 19) is such an example that enables the measurement of residual
stress destructively. Many nondestructive methods have been devel-
oped, including ones that use x-rays, neutron diffraction, and ultra-
sonic waves (19, 20), but these all require prior knowledge of the
material constants and the undeformed configurations of tested
materials, all of which are challenging to acquire. For example,
stress alters the speed of ultrasonic waves by the acoustoelastic
effect (19, 21–23). However, its interpretation requires knowledge
of the third-order elastic constants, and calibrating for these param-
eters is by no means trivial, even in controlled laboratory environ-
ments (21, 22, 24, 25).

Measuring the constitutive parameters of soft tissues in vivo or
of artificial soft materials in service represents an even greater chal-
lenge. Moreover, the mechanical properties of these materials may
vary with environment, time, and working state. Here, we propose a
nondestructive method based on acoustoelasticity to measure
stresses inside a soft material without invoking the prior knowledge
of these constitutive parameters.

The acoustoelastic effect has previously been reported in soft
materials; see, e.g., (9, 24, 26). Soft materials can undergo large
elastic deformations when subject to mechanical stresses, which
markedly alter the shear wave speeds (∼100%) but barely change
the speed of the longitudinal wave. That is because it only takes
stresses in the kilopascal to deform soft solids, and typically, the
latter speed (vL, say) is such that ρv2

L (where ρ is the mass density)
is in the order of gigapascal, while the former speed (vT, say) is such
that ρv2

T is in the order of kilopascal (27). Technically, the unaffected
longitudinal (ultrasound) waves travel ∼1000 times faster than shear
waves. They provide a unique way to excite (by acoustic beam focus-
ing) and visualize (by ultrasound imaging) shear waves remotely
and locally.

In this method, we create a supershear moving load that remote-
ly excites shear waves propagating along two orthogonal directions
and measure their speeds with a frame rate of 10 kHz. We validate
our method by successfully measuring uniaxial and bending stresses
in a hydrogel sample and tensile stress in a skeletal muscle (which is
intrinsically anisotropic due to the preferred direction of the aligned
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muscle fibers). In these measurements of mechanical stresses, we do
not need to know, or use, the constitutive parameters of the
materials.

RESULTS
Measuring mechanical stresses with shear waves
Consider a plane shear wave with mechanical displacement u =
u0eik(x1cosθ+x3sinθ−vt) propagating in an incompressible soft solid
subject to in-plane stresses σ1 and σ3 (see Fig. 1A), where u0 is the
amplitude that lies in the propagation plane, v is the phase speed, t is
the time, xi (i = 1,2, and 3) is the Cartesian coordinate system
aligned with the principal stress, and k is the wave number. The
wave vector is k = k[cosθ,0, sinθ]T, where k is the wave number
and θ denotes the angle between k and the x1 axis. The material
can have any form of anisotropy, such as due to initial stress (25,
28, 29) or fibers reinforcing the solid (30), as long as they are
aligned with the principal directions of the stress. In effect, for
many tissues, structural anisotropy is coaxial with the stress,
because collagen fibrils often act to optimize the load-bearing ca-
pacity (31–33). Inserting the plane wave form into the equations
of acoustoelasticity, we get (see notes S1 and S2)

ρv2 ¼ αcos4θþ 2βcos2θsin2θþ γsin4θ ð1Þ

where α ¼ A0
1313, 2β ¼ A0

1111 þA
0
3333 � 2A0

1133 � 2A0
3113,

γ ¼ A0
3131, and A0

piqj are the components of the Eulerian elastic
moduli tensor.

Now consider two shear waves, traveling in two perpendicular
directions θ = θ0 and θ = π/2 + θ0 with phase speeds vx and vz, re-
spectively, where x and z denote a Cartesian coordinate system
aligned with the main axes of the transducer (x, y, and z are the
lateral, elevational, and axial directions, respectively).

We find that ρðv2
x � v2

zÞ ¼ ðα � γÞcosð2θ0Þ according to Eq. 1
and that α − γ = σ1 − σ3, regardless of the constitutive model and
out-of-plane stress (see notes S1 and S2). Taking the two equations

together, we conclude that

σ1 � σ3 ¼ ρ
v2
x � v2

z
cos2θ0

ð2Þ

which is the foundation of our method to measure mechanical
stresses in soft materials. For the case of uniaxial stress (σ3 = 0),
Eq. 2 gives direct access to σ1. While Eq. 2 holds for any θ0, we
find that θ0 = 0 is the best choice for practical measurements.
First is because θ0 = 0 gives the best sensitivity to the stress when
the speeds are measured. Second is because it is simpler to
measure the group speed vg ≡ ∂(kv)/∂k with ultrasound shear
wave elastography (34) than the phase speed v in Eq. 2 and these
two speeds are the same along the principal directions (see fig.
S1), which is the case here when θ0 = 0 (Fig. 1B). See note S2 for
more details.

Generating shear waves propagating in perpendicular
directions with programmed acoustic radiation force
Our experimental setup to generate two shear waves propagating
perpendicularly to each other, shown in Fig. 2A, was based on a
medical ultrasound imaging system (see Materials and Methods).
The ultrasound transducer sent 7-MHz ultrasound waves that
were used to excite and detect shear waves in soft materials. In
effect, the absorption of the ultrasound waves leads to a transfer
of momentum to the soft materials, giving rise to the acoustic radi-
ation force (ARF). A focused ultrasound beam can deliver the ARF
locally, resulting in a Gaussian-shaped body force at the focus (see
fig. S2B). Micrometer amplitude shear waves traveling perpendicu-
lar to the ultrasound beam (x axis) are then generated by the ARF,
and measuring their speed enables what is called shear wave elastog-
raphy (35, 36). However, with a standard setup, shear waves travel-
ing along the beam direction (z axis) are not easily detectable,
because they are small and attenuate rapidly (see movies S1B and
S2B for simulation and experimental results, respectively) (37).

To excite the laterally and vertically propagated shear waves si-
multaneously, we present a previously unreported programming
method that successively focuses the ultrasound beam at six loca-
tions (the duration at each location is ∼43 μs), separated by a dis-
tance of d = 1 mm, along the lateral direction x, as shown in Fig. 2A.
These ARFs mimic a laterally moving load with a supershear wave
speed (the ratio of the moving speed and the shear wave speed, i.e.,
the Mach number, is ∼10). The shear waves generated by the
moving load mutually interfere following the Huygens-Fresnel
principle, which significantly enlarges the amplitude of the vertical
wave. The vertically propagated shear waves are primarily vertically
polarized. They are often called longitudinal shear waves, and have
been used in ultrasound elastography of the liver for example (38,
39). Approximately 0.3 ms after the wave excitation, unfocused ul-
trasound beams are sent by the same ultrasound transducer to
perform ultrafast ultrasound imaging (40), which records the
shear wave propagation in the region of interest (ROI) at a rate of
10,000 frames per second.

We tested our experimental setup on a polyvinyl alcohol (PVA)
hydrogel (mass density of ρ ∼ 1 g/cm 3 and initial shear modulus of
∼8.6 kPa; see Materials and Methods). The approximate size is
29 by 6 cm 2 cross section and 4 cm in depth (Fig. 2C). Figure 2D
depicts the snapshots of the shear wave propagation in the sample
and shows that the shear waves propagated in lateral and vertical

Fig. 1. Principle of acoustoelastic imaging of stresses. (A) Schematic showing
that the principal stresses σ1 and σ3 change the speed of the vertically polarized
shear waves. Here, an isotropic material subject to moderate stress is taken as an
example. (B) An ultrasonic transducer with the axial direction (z) aligned with the
principal direction x3 is used to measure the wave speeds vx and vz along the two
principal directions. The principal stresses are connected to the two shear
wave speeds.
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directions are generated simultaneously, in excellent agreement
with the finite element simulations (see Materials and Methods)
shown in Fig. 2E and movie S1A. For anisotropic materials, we
also performed three-dimensional (3D) finite element simulations
to confirm that vertically propagated shear waves are primarily
excited using our programmed ARFs and that the shear waves trav-
elling in lateral and vertical directions are generated simultaneously
(see fig. S3).

To measure the shear wave speeds, we extract the spatiotemporal
data along the lateral (x axis) and vertical (z axis) directions, respec-
tively. As shown in Fig. 2F, six shear waves propagate to the left and
to the right, with a linear wavefront that suggests that the wave speed
vx is constant. However, the vertically propagated waves gradually
decelerate from the near field to the far field (Fig. 2G), with the mea-
sured speed vz approximately following zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2þð2:5dÞ2
p v, where v is the

shear wave speed along θ ¼ tan� 1 z
2:5d

� �
. This is expected and is

likely due to the wave interference pattern depicted in Fig. 2B.
Note that for large enough z, we have zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2þð2:5dÞ2
p v ≏ v and v

should be the speed of the vertically propagated shear wave that
we want to measure. For this reason, we only use the data for z >
7 mm (the dashed square in Fig. 2G) in the subsequent analysis.

To derive the group velocities in a robust way, we apply the
Radon transformation (41) to the spatiotemporal data shown in
Fig. 2 (F and G) to compute vx and vz (for the lateral direction x,

a directional filter is performed to the spatiotemporal data before
the Radon transformation; see note S3 and fig. S4). In the absence
of mechanical stress, we get vx = 2.81 ± 0.05 m/s and vz = 2.82 ± 0.06
m/s, which agrees with the theoretical prediction that vx = vz in the
absence of mechanical stress. The initial shear modulus derived
from the shear wave speeds is μ = 8.46 ± 0.33 kPa, in agreement
with the mechanical characterization performed by indentation
tests (shear modulus 8.6 ± 0.3 kPa; see note S4).

Measuring stresses in hydrogel and muscle without the
knowledge of their constitutive parameters
For our first test, to demonstrate the usefulness of our theory and
method, we applied uniaxial stress to the hydrogel sample σ1 along
the x direction and then measured vx and vz. As shown in Fig. 3A,
the tensile/compressive stress increases/decreases vx but decreases/
increases vz. The identified stress shows a good agreement with the
applied stress, with a maximum error of ∼5% (Fig. 3B).

Furthermore, we measured the stress induced by the bending de-
formation of the hydrogel sample. As shown in Fig. 3C, we applied a
4-cm deflection to bend the sample, which resulted in an approxi-
mately linear stress field across the thickness of the sample (see the
simulation in Fig. 3C). We perform measurements within four
planes parallel to the neutral plane of zero stress, at y = −20,
−14.7,12.8, and 20 mm. Figure 3D shows the stresses measured at

Fig. 2. Acoustoelastic imaging using ultrasound shear wave elastography. (A) Schematic of the experimental setup. An ultrasound beam focuses successively from
left to right along the x axis at six locations inside the material separated by distance d = 1mm to excite multiple shear waves. Interference of the shear waves gives rise to
a strong vertically propagated shear wave (along the z axis). Wave propagation in the region of interest (ROI) is measured by planewave ultrasound imaging. (B) Schematic

showing the propagation of the interference at (2.5d, z), with a speed of z=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þ ð2:5dÞ2
q� �

v. (C) Photograph of the hydrogel sample at rest. (D) Snapshots showing the

shear wave propagation in the ROI. The maps depict the vertical particle velocity fields. Exp, experiment. (E) Finite element simulations of the shear wave propagation.
a.u., arbitrary units; Sim, simulation. (F andG) Spatiotemporal maps of the laterally (along x) and vertically propagated (along z) shear waves. (G) shows that the shear wave

speed is constant only when the shear wave propagates far away (z > 7mm, the dashed square), in linewith the theoretical prediction z=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þ ð2:5dÞ2
q� �

v ! vz for large

z. The shear wave speeds vx and vz are measured from (F) and (G), respectively, by the Radon transformations (see fig. S4).
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different locations, which agree with the theoretical values obtained
using finite element simulations.

We proceed to demonstrate the effectiveness of our method in
probing the mechanical stresses in anisotropic soft tissues. To this
end, we performed ex vivo measurements on a sample of porcine
skeletal muscle, as shown in Fig. 4A. The elastic deformation of
the skeletal muscle can be captured using a transversely isotropic
model reflecting the preferential orientation of the muscle fibers,
as shown by the ultrasound brightness mode (B-mode) image
(Fig. 4B). In this experiment, we applied tensile stress along the
muscle fibers using several weights (each weight is ∼500 g), mim-
icking a passive stretch of the skeletal muscle (42). Figure 4C shows
a representative snapshot (∼2.6 ms after the AFRs push) of the shear
wave propagation, when the applied stress is ∼3.6 kPa. The ARFs are
applied on the left side of the ROI, and then vx is measured for the
shear wave propagating from left to right. Compared with the hy-
drogel, it is apparent that the wavefronts are broader because of a
larger shear wave speed and that there is a stronger dissipation
(see note S5 for mechanical characterization of the skeletal muscle).

Figure 4D shows the velocities vx and vz obtained when the
muscle is subject to different levels of mechanical stresses. The mea-
surement uncertainties on thewave speeds are larger compared with
the measurements on the hydrogel sample due to the broader wave-
fronts. As expected, intuitively, the wave speed vx along the tension/
fiber direction increases with the tensile stress. Notably, the shear
wave speed vz in the skeletal muscle increases with tension along
x, in contrast to the isotropic hydrogel where vz decreases. This is

likely due to the nonlinear elastic response of the skeletal muscle,
which makes it stiffer when increasing the tension (43, 44). In the
analysis, we find that a phenomenological model incorporating ex-
ponentially stiffening effects (see note S5) fits the experimental data,
as shown in Fig. 4D.

The nontrivial acoustoelastic properties of the muscle again
highlight the key advantage of our acoustoelastic imaging method:
No acoustoelastic parameters of the materials were needed to
predict the stress. We simply derive the tensile stresses from the
shear wave speeds, as shown in Fig. 4E. The stress identified by
our method shows a good agreement (maximum error of ∼15%)
with the applied stress. We attribute the larger error to the viscoelas-
ticity of the biological sample.

DISCUSSION
On the basis of the acoustoelastic principle, we proposed a theory
and a method to probe mechanical stresses in soft materials without
prior knowledge of their constitutive parameters, in contrast to the
existing methods presented to date. A key step to realizing our
method was to program multiple ARFs to mimic a supershear
moving load, generating shear waves in two mutually perpendicular
directions. We were then able to obtain the speeds of both waves by
ultrasonic imaging, which, according to our theory, allowed us to
measure the mechanical stresses remotely. Hence, we successfully
measured the spatial variation of bending stress in a hydrogel and
of tensile stress in a passively stretched muscle, which is intrinsically
anisotropic. The stretched muscle test illustrates how our method

Fig. 3. Acoustoelastic imaging of a soft material. (A) Shear wave speeds mea-
sured in a hydrogel subject to a uniaxial stress. (B) Comparison of identified stress
with the applied stress. Dashed line represents the 45° line for visual guide. (C)
Photograph showing the sample under bending deformation and finite element
computation of the bending stress. US, ultrasonic transducer. (D) Bending stress is
measured by acoustoelastic imaging and in comparison with theory. Error bars
denote the SDs of five measurements. FEA, finite element analysis.

Fig. 4. Acoustoelastic imaging of a skeletal muscle. (A) Photograph of the skel-
etal muscle. (B) Grayscale B-mode image of the sample. In this view, the muscle
fibers (some are indicated by the arrows) and the applied stress are along the hor-
izontal direction. The acoustic radiation forces (ARFs) are applied along the red line.
Dashed square represents the ROI where the wave speeds are measured. (C) A rep-
resentative snapshot (∼2.6 ms after ARFs push) of the wave propagation when the
applied stress is ∼3.6 kPa. Scale bars, 1 cm (A to C). (D) Shear wave speeds mea-
sured at different levels of stress. Markers, experiment. Error bar denotes the SDs of
five measurements. Dashed lines represent theoretical curves that are obtained
using a phenomenological model (see note S5). (E) Comparison between
applied stress and identified stress. Dashed line represents the 45∘ line for
visual guide.
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works even in the presence of structural anisotropy when it is
aligned with the stress. Our method relies on the measurement of
vertically polarized shear waves in specific imaging orientations rel-
ative to the material axis of symmetry. When such an experimental
setup is not achievable in an in vivo measurement, further efforts
such as using 3D rotational imaging (45) or 3D ultrasonic transduc-
er are needed to ensure that these waves can be excited and mea-
sured to infer the mechanical stress.

The effect of the viscoelasticity of soft materials on the proposed
method deserves a careful discussion. As indicated by our experi-
ments on skeletal muscle, inaccuracies may appear when neglecting
viscosity. For high enough frequencies, biological tissues exhibit fre-
quency-dependent responses due to viscosity, which, in turn, may
affect the predictions of our method. To address this issue, we
invoke the quasi-linear viscoelasticity theory, which models the
stress relaxation with a Prony series,
μðtÞ ¼ μ0½1 �

Pn
i¼1gið1 � e� t=τiÞ�, where μ(t) is the relaxation

shear modulus in response to a step constant strain, μ0 is the instan-
taneous shear modulus, τi is a characteristic relaxation time, and gi is
a dimensionless relaxation modulus (i = 1,2, …, n). For simplicity,
we take n = 1 and find that this model fits well the viscoelastic dis-
persion of shear waves in skeletal muscle over the 100- to 500-Hz
range, with g1 = 0.79 and τ1 = 0.49 ms (see fig. S6E). We then use
this model to evaluate the effect of viscoelasticity on the identified
mechanical stresses based on a recently proposed acousto-viscoelas-
tic theory (46). The results show that, over a broad frequency range
(10 to 1000 Hz), the stress is underestimated when viscoelasticity
comes into play (see note S5 and fig. S7). However, in our
method, we use the group velocity of the shear waves (4-dB band-
width from 100 to 1000 Hz; see fig. S8), and the average error over
the frequency band is ∼16%, consistent with our measurements. For
soft materials where the extent of stress relaxation is less than ∼50%,
which covers a wide range of soft materials including most hydro-
gels and soft tissues, our analysis indicates that shear wave disper-
sion caused by viscosity has a negligible effect on mechanical
stresses measured with the reported acoustoelastic imaging
method (the maximum error is less than 10%).

Measuring the constitutive parameters of a soft material in situ is
challenging, because the parameters change with time, environ-
ment, and from one working state to another. By bypassing this dif-
ficulty, our constitutive parameter-free theory and method to probe
mechanical stresses in a nondestructive manner should find broad
applications across different disciplines including, but not limited
to, biomedical engineering, biology, medicine, materials science,
and soft matter physics.

MATERIALS AND METHODS
Ultrasound setup
Our ultrasound experimental system was built on the Vantage 64 LE
system (Verasonics Inc., Kirkland WA, USA). The central frequen-
cy, pitch, and element number of the ultrasound transducer (L9-4,
JiaRui Electronics Technology Co., Shenzhen, China) used in our
experiments were 7 MHz, 0.3 mm, and 128, respectively. The
imaging sequence of the ultrasound experiment is depicted in fig.
S2A. In the excitation stage, the focused ultrasound beams were
generated by 32 elements (with a voltage of ∼10 V, aperture size
of ∼10 mm, and uniform apodization). The focus was ∼13 mm

away from the transducer. In the imaging stage, while all the 128
elements (with a voltage of ∼10 V, aperture size of ∼40 mm, and
uniform apodization) were used to transmit unfocused ultrasound
beams, only the 64 elements at the center of the transducer were
used as receivers. The ultrasound in-phase and quadrature signals
during the wave propagation were acquired at a frame rate of 10
kHz. The plane wave imaging with delay and sum beamforming
was adopted to reconstruct each frame (47). The particle velocity
field was calculated offline based on the Loupas’ estimator (48)
using a kernel size of 5 by 2 (0.275 mm in x and 0.2 ms in t). A
spatial filter (mean filter) with a kernel size of 8 by 8 (0.87 mm in
x and 0.44 mm in z) was then used to reduce the noise of the particle
velocity. For all the experiments, 10 successive measurements (∼56
ms) were performed, and the average of the measurements was
taken to improve the signal-to-noise ratio.

Hydrogel phantom preparation
The hydrogel consisted of 10% PVA, 3% cellulose, and 87% deion-
ized water by weights. We dissolved the PVA powder (Sigma-
Aldrich, 341584, Shanghai, China) into 80°C water. We then
added cellulose powder (Sigma-Aldrich, S3504, Shanghai, China)
into the solution and fully stirred the solution to get a suspension
of the cellulose powder. The cellulose particles act as ultrasonic scat-
terers to enhance the imaging contrast. We poured the suspension
into a square plastic box (with a length of ∼30 cm, width of ∼7 cm,
and height of ∼4 cm) and then cooled the suspension to room tem-
perature (∼20∘C) before putting it into a −20∘C freezer. We froze the
sample for 12 hours and then thawed it at room temperature for
another 12 hours. The stiffness of the sample can be tuned by freez-
ing/thawing (F/W) cycles (49). The hydrogel sample used in this
study underwent two F/W cycles. We performed indentation tests
on the hydrogel and measured the dispersion relation of the Ray-
leigh surface waves to characterize its elastic and viscoelastic prop-
erties (see note S4 and fig. S5).

Finite element analysis
The finite element analyses (FEA) were performed using Abaqus
(Abaqus 6.14, Dassault Systèmes). We built a plane strain model
with Abaqus/Standard for the shear wave generation in isotropic
materials. The size of the model was 50 by 50 mm 2. The ARF
was modeled as a body force with a Gaussian shape of the form

f ¼ f 0exp �
½x � xðiÞ�2

2r2x
�
½z � zðiÞ�2

2r2z

( )

ð3Þ

where f0 is the magnitude of the force, with a direction parallel to the
ultrasound beam and magnitude small enough to generate small-
amplitude waves, and [x(i), z(i)] (i = 1,2, …,6) are the coordinates
of the six focal points. We took rx = 0.5 mm (see fig. S2, B and C)
and rz = 1.0 mm. We used a uniform mesh grid (element size of 0.1
mm) and the CPE8RH element (plane strain, eight-node biqua-
dratic, reduced integration, hybrid with linear pressure). Other pa-
rameters used in the simulations and the postanalyses were
consistent with our experimental setup.

To check that our programmed ARFs generates vertically prop-
agated waves, we built a 3D model with Abaqus/explicit. We used a
geometry that was similar to the plane model for isotropic materials
but extended the model thickness to 20 mm along the elevational
direction (y axis). The Gaussian radius of the ARF along the y
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axis is ry = rx. We used the C3D8 (eight-node linear brick, hybrid
with constant pressure) element in the simulation, and the average
mesh size for the 3D model was about 0.1 by 0.1 by 0.1 mm.

In the FEA of the bending stress, we built a plane stress model
that was 30 cm long and 4 cm wide. The size of the model was con-
sistent with our physical sample. We fixed the sample’s lower left
and right corners and prescribed the displacement (6 cm) at the
middle of the lower boundary. We used a uniform mesh (0.5 cm)
and the CPS8R element (plane stress, eight-node biquadratic,
reduced integration).

Supplementary Materials
This PDF file includes:
Supplementary notes S1 to S5
Figs. S1 to S8
Legends for movies S1 and S2
References

Other Supplementary Material for this
manuscript includes the following:
Movies S1 and S2
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Supplementary Note 1: The stress identity

Here we prove the following identity, used in the paper to connect wave speeds with stress:

𝜎11 − 𝜎33 = A0
1313 − A0

3131. (S-1)

In the paper we write these moduli as 𝛼 = A0
1313 and 𝛾 = A0

3131, and considered scenarios

where the components of the Cauchy stress 𝜎11 and 𝜎33 are the principal stresses 𝜎1 and 𝜎3,

respectively. Here A0
𝑝𝑖𝑞 𝑗
are the Cartesian components of the Eulerian elasticity tensor. For

incompressible solids, they are determined from the strain energy function𝑊 and the deformation

gradient tensor with components 𝐹𝑖𝐽 as (28,50)

A0
𝑝𝑖𝑞 𝑗 = (𝜎𝑝𝑞 + 𝑝𝛿𝑝𝑞)𝛿𝑖 𝑗 + 4𝐹𝑝𝑃𝐹𝑞𝑄

𝜕2𝑊

𝜕𝐶𝐼𝑃𝐶𝑄𝐽
𝐹𝑖𝐼𝐹𝑗 𝐽 , (S-2)

where𝐶𝐼𝐽 = 𝐹𝑘 𝐼𝐹𝑘𝐽 , summation over repeated indices is implied, and 𝛿𝑖 𝑗 is the Kronecker delta.

Hence

A0
1313 = 𝜎11 + 𝑝 + 4𝐹1𝑃𝐹1𝑄

𝜕2𝑊

𝜕𝐶𝐼𝑃𝐶𝑄𝐽
𝐹3𝐼𝐹3𝐽 , (S-3)

A0
3131 = 𝜎33 + 𝑝 + 4𝐹3𝑃𝐹3𝑄

𝜕2𝑊

𝜕𝐶𝐼𝑃𝐶𝑄𝐽
𝐹1𝐼𝐹1𝐽 = 𝜎33 + 𝑝 + 4𝐹1𝑃𝐹1𝑄

𝜕2𝑊

𝜕𝐶𝐼𝑃𝐶𝑄𝐽
𝐹3𝐼𝐹3𝐽 , (S-4)

where for the last equation we swapped the dummy variables 𝐼 ↔ 𝑃 and 𝑄 ↔ 𝐽, and then we

used the symmetries 𝐶𝐼𝑃 = 𝐶𝑃𝐼 . By subtraction we obtain the identity (S-1).

Often the stress is modeled as being caused by a finite elastic deformation from a stress-free

configuration. When instead, we consider small elastic waves in an initially stressed reference

where the initial stress, denoted by 𝜏𝑖 𝑗 is due to any origin, then in the above we would take

𝐹𝑝𝑃 = 𝛿𝑝𝑃 (28,29), and the identity would still hold.

For future reference, we recall that the Cauchy stress is computed as (50)

𝜎𝑖 𝑗 = 𝐹𝑖𝐾
𝜕𝑊

𝜕𝐹𝑗𝐾
− 𝑝𝛿𝑖 𝑗 , (S-5)

where 𝑝 is a Lagrange multiplier due to the constraint of incompressibility.
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Supplementary Note 2: Phase and group velocity

Here we relate the wave speeds to the moduli appearing in the stress identity (S-1).

We start with the equation of motion for plane shear waves of the form 𝒖 = 𝒖0𝑒
𝑖𝑘 (𝒏·𝒙−𝑣𝑡) ,

which is given by Equation (5.16) in Ref. (51):

(𝑰 − 𝒏𝒏T)𝑸(𝒏) (𝑰 − 𝒏𝒏T)𝒖0 = 𝜌𝑣2𝒖0, (S-6)

where 𝒙 = (𝑥1, 𝑥2, 𝑥3), 𝒏 = (𝑛1, 𝑛2, 𝑛3), 𝑄𝑖 𝑗 (𝒏) = A0
𝑝𝑖𝑞 𝑗

𝑛𝑝𝑛𝑞, and 𝒖0 is a unit vector along the

direction of polarization (orthogonal to 𝒏, the unit vector along the direction of propagation).

Then its wave speed 𝑣 is given by

𝜌𝑣2 = 𝒖T
0𝑸(𝒏)𝒖0. (S-7)

Let 𝑣𝑥 and 𝑣𝑧 be the speeds of the shear waves when 𝒏 = (1, 0, 0), 𝒖0 = (0, 0, 1), and

𝒏 = (0, 0, 1), 𝒖0 = (1, 0, 0), respectively. From the above it follows that

𝜌𝑣2
𝑥 = A0

1313, 𝜌𝑣2
𝑧 = A0

3131. (S-8)

To guarantee that there are two shear waves with speeds (S-8) that satisfy the equation of 

motion (S-6), we assume that all forms of anisotropy are coaxial with the deformation tensor 

𝑪 = 𝑭𝑭T. Different types of anisotropy, such as the ones captured by an initial stress tensor 

𝝉 (28–30) or a structural anisotropy tensor 𝑴𝑴T (where 𝑴 is a unit vector along the preferred 

direction in the reference configuration for t ransversely i sotropic m aterials, s ee for example 

Ref. (51)), can be included in the strain-energy 𝑊 , from which we can deduce the moduli A0
𝑝𝑖𝑞 𝑗 

with (S-2). For example, 𝝉 and 𝑴𝑴T are coaxial with 𝑪, and themselves, when

𝑪𝝉 = 𝝉𝑪, 𝑪𝑴𝑴T = 𝑴𝑴T𝑪, and 𝝉𝑴𝑴T = 𝑴𝑴T𝝉.

This condition implies, for example, that 𝑴 is aligned with the principal directions of the initial 

stress 𝝉 and the final stress 𝝈.
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In more detail,𝑊 can be written as a sum and multiplication of terms of the form tr (𝑨𝑪𝑛𝑩)

for integer 𝑛 where 𝑨 and 𝑩 are some multiplication of anisotropy tensors such as 𝝉 and 𝑴𝑴T.

When all these tensors are coaxial, and we choose a coordinate system aligned with their axes,

we find that

A0
𝑝𝑖𝑞 𝑗 = 0 unless


𝑝 = 𝑖 & 𝑞 = 𝑗 , or
𝑝 = 𝑞 & 𝑖 = 𝑗 , or
𝑝 = 𝑗 & 𝑞 = 𝑖.

(S-9)

By assuming the above, we can deduce which elastic shear waves can give us access to the stress

identity (S-1).

Let 𝒏 = (cos 𝜃, sin 𝜃, 0) and 𝒖0 = (− sin 𝜃, cos 𝜃, 0), which substituted into (S-7) leads to

𝜌𝑣2 = 𝛼 cos4 𝜃 + 2𝛽 cos2 𝜃 sin2 𝜃 + 𝛾 sin4 𝜃, (S-10)

where the moduli 𝛼, 𝛽, 𝛾 are defined as 𝛼 = A0
1313, 2𝛽 = A0

1111 + A0
3333 − 2A0

1133 − 2A0
3113,

𝛾 = A0
3131. Note this is the same result as deduced in (25, 50, 52) with the difference that here

we showed that it holds in general when (S-9) holds. This justifies how and when our method

applies to anisotropic solids under stress.

Now consider two shear waves, one with propagation direction 𝜃 = 𝜃0 and the other with

𝜃 = ±𝜋/2 ± 𝜃0 with the speeds 𝑣𝑥 and 𝑣𝑧, respectively. Then, according to Eq. (S-10) and (S-1),

we find that

𝜎1 − 𝜎3 = 𝜌
𝑣2
𝑥 − 𝑣2

𝑧

cos 2𝜃0
, (S-11)

a generalization of the result established in (25) for isotropic solids.

The group velocities 𝒗𝑔 are often easier to measure in shear wave elastography experiments, 

in comparison to the phase speed given by Eq. (S-10). The group velocity depends on the 

anisotropy of the material, and the initial forcing of the wave (34), what we call the Acoustic 

Radiation Force (ARF). For the ARF we programmed, as shown in Fig. 2 and Fig. S2, we were 

able to generate waves propagating along the 𝑥 and 𝑧 directions whose wavefronts are locally
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flat. In these cases, the phase velocity can be measured, so in conclusion we can use Eq. (S-10).

However, it is certainly easier to generate a point ARF. So we also discuss this case.

For an ARF focused on one point that equally excites bulk waves in all directions, the group

velocity is given by 𝒗𝑔 = 𝜕 (𝑘𝑣)/𝜕𝒌 (34), where 𝒌 = 𝑘𝒏 denotes the wave vector. For the phase

velocity 𝑣 given by Eq. (S-10) we obtain the group velocities:

𝑣𝑔1 =
𝛼 cos 𝜃 + (2𝛽 − 𝛼 − 𝛾) sin4 𝜃 cos 𝜃

𝜌𝑣
, (S-12)

and

𝑣𝑔3 =
𝛾 sin 𝜃 + (2𝛽 − 𝛼 − 𝛾) sin 𝜃 cos4 𝜃

𝜌𝑣
. (S-13)

Equations (S-12) and (S-13) show that the phase and group speed are identical in the principal

directions 𝜃 = 0 and 𝜋/2, because there, 𝜌𝑣2 = 𝛼, 𝛾, respectively. The coincidence of the two

speeds along and at the right angle to the axis of symmetry always holds, see (53, p.16) for

example. For isotropic materials subject to moderate stress we have the further simplification

2𝛽 ≈ 𝛼 + 𝛾 (52), which results in

𝜌𝑣2 = 𝛼 cos2 𝜃 + 𝛾 sin2 𝜃, 𝑣𝑔1 =
𝛼 cos 𝜃
𝜌𝑣

, 𝑣𝑔3 =
𝛾 sin 𝜃
𝜌𝑣

, (S-14)

and thus
𝑣2
𝑔1

𝛼/𝜌 +
𝑣2
𝑔3

𝛾/𝜌 = 1, (S-15)

which describes an elliptical wavefront. This elliptical wavefront has also been revealed by 

Rouze et al. (34) in the case of the Mooney-Rivlin material, where 2𝛽 = 𝛼 + 𝛾 always holds 

regardless of the stress level. However, for other constitutive models such as the Arruda–Boyce 

model, Rouze et al. (34) show that cusp structures in wavefront may emerge in isotropic materials 

when sufficiently large stress is applied. These cusps are usually induced by structural anisotropy 

of materials, as shown in Fig. S1.

For experiments where only the group velocities are available (which is not our case), it 

would be necessary to first calculate the phase velocities from the measured group velocities.
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Supplementary Note 3: Measurement of the lateral shear wave
speed

Weperformed two-dimensional Fourier transforms onFig. S4A to get the frequency-wavenumber

domain data, as shown in Fig. S4B. To identify the left-to-right (LR) shear waves, we performed

an inverse Fourier transform to the data in the first and third quadrants (and set the data points in

the second and fourth quadrants to zero), as shown in Fig. S4C. Similarly, the right-to-left (RL)

shear waves were obtained by inverse Fourier transform on the data in the second and fourth

quadrants (Fig. S4D).

We then performed Radon transformations to the spatiotemporal data to obtain the shear

wave group velocity. The Radon transform sums the intensity of pixels in a spatiotemporal map

along projections with different slopes (denoted by tanΘ) and intercepts. The optimal projection

is identified by the peak Radon sum (41). For the lateral shear waves, the six wavefronts induced

by the six ARF pushes are parallel, resulting in multiple peaks in the Radon sum (Figs. S4E and

F). Therefore, we summed the absolute values of the Radon sums obtained from the projections

with the same slopes (each column of the Radon sums), as shown in Figs. S4G and H. We

identified the maxima in Figs. S4G and H, respectively, to get the group velocities of the LR

and RL shear waves, i.e., ∼ | tan 67◦ |Δ𝑥
Δ𝑡
and ∼ | tan 113◦ |Δ𝑥

Δ𝑡
, respectively, where Δ𝑥 = 0.1 mm

and Δ𝑡 = 0.1 ms are the grid size of spatiotemporal maps. Finally we reported the average of

the two optical group velocities as the value of 𝑣𝑥 .
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Supplementary Note 4: Hydrogel sample characterization

The hydrogel consists of 10% polyvinyl alcohol (PVA), 3% cellulose and 87% deionized water

by weights. We dissolved the PVA powder (sigma Aldrich 341584, Shanghai, China) into

80◦C water. We then added cellulose powder (Sigma-Aldrich S3504, Shanghai, China) into the

solution and fully stirred the solution to get a suspension of the cellulose powder. The cellulose

particles act as ultrasonic scatterers to enhance the imaging contrast. We poured the suspension

into a square plastic box (length ∼ 30 cm, width ∼ 7 cm, and height ∼ 4 cm), and then cooled the

suspension to room temperature (∼ 20◦C) before putting it into a −20◦C freezer. We froze the

sample for 12 hours and then thawed it at room temperature for another 12 hours. The stiffness

of the sample can be tuned by the freezing/thawing (F/W) cycles (49). The hydrogel sample

used in this study underwent two F/W cycles.

We performed indentation tests (Fig. S5A) to characterize the viscoelastic properties of

the hydrogel sample. To get the long-term modulus, we performed three indentation tests

using a low loading rate (∼ 0.1 mm/s), as shown in Fig. S5B. The long-term shear modulus

𝜇∞ = 𝜇(𝑡 → +∞) can be obtained by fitting the loading curve with the formula

𝐹 =
16
9
𝜇∞𝑅

1/2ℎ3/2, (S-16)

where 𝑅 ≈ 7.5 mm is the radius of the indenter, 𝐹 is the force, and ℎ is the indentation depth. 

As shown in Fig. S5B, the best fitting gives 𝜇∞ = 8.6 ± 0.3 kPa. We then increased the loading 

rate (∼ 100 mm/s) and measured the stress relaxation when holding the indentation depth at ∼ 5 

mm. Figure S5C shows the normalized stress relaxation curve. We find the two-term Prony 

series with 𝑔1 = 0.07, 𝜏1 = 0.08 s, 𝑔2 = 0.05 and 𝜏2 = 2.05 s fits the stress relaxation data well. 

The total stress relaxation is small (𝑔1 + 𝑔2 ≈ 10%), indicating a weak viscosity of the hydrogel 

sample, which only introduces a ∼ 5% variation in shear wave speed over the frequency range

from ∼ 0.5 Hz (𝜏2
−1) to ∼ 12.5 Hz (𝜏1

−1).
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While the stress relaxation characterizes the viscoelasticity in the low frequency regime

(below ∼ 12.5 Hz), we further measured the surface wave phase velocity up to 800 Hz using

our ultrasound elastography system. In this measurement, we relied on a mechanical shaker

(SA-JZ002, Shiao, Jiangsu, China) to apply a surface pressure locally to generate harmonic

surface waves. The surface waves were acquired by the ultrasound transducer. We then

computed the wavelengths of the surface waves to get the phase velocity. As shown in Fig.

S5D, interestingly, we do not observe an increase in the speed, but instead a slight decrease. We

attribute this decrease to the slight stiffness gradient (softer at shallower locations) of the hydrogel

sample introduced by the fabrication process (54). Despite the slight material heterogeneity,

the dispersion relation suggests a weak dependence of the surface wave speed on the frequency,

indicating a weak viscosity of the hydrogel in the frequency range of 100 to 800 Hz.
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Supplementary Note 5: Acoustoelastic model for skeletal mus-
cle and the effect of viscoelasticity

Linear elastic parameters

To characterize the anisotropy of the skeletal muscle, we measured the shear wave group

velocities along different directions. Our main assumption is that the skeletal muscle can be

modeled as an incompressible transversely isotropic material due to a preferred direction of the

muscle fibers. Such a material has three independent elastic parameters, say 𝜇𝑇 , the transverse

shear modulus, 𝜇𝐿 , the longitudinal shear modulus, and 𝐸𝐿 , the longitudinal Young modulus.

We measured the horizontal shear wave speeds 𝑣𝑥 in the undeformed material at three

different orientations of the fibers with respect to the 𝑥 axis (0, 35, 90◦, see Figs. S4a-c) to get

𝑣0◦
𝑥 , 𝑣35◦

𝑥 , and 𝑣90◦
𝑥 . Then the three elastic parameters can be calculated by the formulas (51)

𝜇𝑇 = 𝜌(𝑣90◦
𝑥 )2

, 𝜇𝐿 = 𝜌(𝑣0◦
𝑥 )

2
, 𝐸𝐿 =

4
[
𝜌(𝑣35◦

𝑥 )2 − 𝜇𝐿
]

sin2 (2 × 35◦)
+ (4𝜇𝐿 − 𝜇𝑇 ). (S-17)

Figure S6 shows the statistical results for the shear wave speeds, which clearly point to the

mechanical anisotropy of the muscle. From the wave speeds we get 𝜇𝑇 ≈ 10.7 kPa, 𝜇𝐿 ≈ 22.4

kPa, and 𝐸𝐿 ≈ 40.1 kPa.

Acoustoelastic model for skeletal muscle

To model the acoustoelasticity of the skeletal muscle, we take the phenomenological model

proposed by Murphy (55),

𝑊 =
𝜇𝑇

2𝑐2
[𝑒𝑐2 (𝐼1−3) − 1] + 𝐸𝐿 + 𝜇𝑇 − 4𝜇𝐿

2𝑐4
[𝑒𝑐4 (

√
𝐼4−3) − 1] + 𝜇𝑇 − 𝜇𝐿

2
(2𝐼4 − 𝐼5 − 1), (S-18)

where 𝑐2 and 𝑐4 are non-dimensional strain-hardening parameters, and the strain invariants are

defined as

𝐼1 = tr𝑪, 𝐼2 = 1
2 [𝐼

2
1 − tr (𝑪2)], 𝐼4 = 𝑴 · (𝑪𝑴), 𝐼5 = 𝑴 · (𝑪2𝑴). (S-19)
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This model reduces to the neo-Hookean model,

𝑊 = 𝜇(𝐼1 − 3), (S-20)

when we take 𝜇𝑇 = 𝜇𝐿 = 1
3𝐸𝐿 = 𝜇 and 𝑐2 = 0.

Inserting (S-18) into (S-2) we obtain the expressions for 𝛼, 𝛽, and 𝛾, which determine the

shear wave speed according to Eq. (1) in the main text. When 𝑴 = (1, 0, 0), we find

𝜌𝑣2 = 𝜇𝑇𝜆
2 sin2 𝜃𝑒𝑐2 (𝐼1−3) + 𝜆−1 cos2 𝜃

[
𝜇𝑇𝑒

𝑐2 (𝐼1−3) + (𝜇𝑇 − 𝜇𝐿) (2 − 3𝜆−1)
]

+ 𝜆−1 cos2 𝜃
[
(𝐸𝐿 + 𝜇𝑇 − 4𝜇𝐿)𝑒𝑐4 (𝜆−1)2 (1 − 𝜆−1)

]
,

(S-21)

where 𝐼1 = 𝜆2+2𝜆−1, and 𝜆 is the stretch ratio along the direction of tension, obtained by solving

𝜎1 = 𝜆

[
𝜇𝑇𝜆𝑒

𝑐2 (𝐼1−3) + (𝐸𝐿 + 𝜇𝑇 − 4𝜇𝐿) (𝜆 − 1)𝑒𝑐4 (𝜆−1)2 + 2(𝜇𝑇 − 𝜇𝐿) (𝜆 − 𝜆3)
]

− 𝜇𝑇

𝜆
𝑒𝑐2 (𝐼1−3) ,

(S-22)

given the principal stress 𝜎1. Figure S1 shows the typical dependence of the wave speed on 

direction when the material is subject to a uni-axial tension.

Inserting 𝜇𝑇 = 10.7 kPa, 𝜇𝐿 = 22.4 kPa, and 𝐸𝐿 = 40.1 kPa into Eq. (S-21), and then using 

this equation to fit 𝑣 𝑥 ( 𝜃 =  0) and 𝑣 𝑧 ( 𝜃 =  𝜋/2) shown in F ig. 4d, we get 𝑐 2 ≈  3.5 and 𝑐 4 ≈  8. 

The fitting curves are shown in Fig. 4d of the main text.

Viscoelasticity of the skeletal muscle and its effect on shear wave propagation

The dispersion relation of the Rayleigh surface wave in the muscle sample was measured using 

the same setup as described in Note 4. Figure S4E shows the surface wave speeds measured 

along the muscle fiber. We fi t th e di spersion re lation wi th a on e-term Pr ony se ries, to  get 

𝑔1 ≈ 0.79 and 𝜏1 ≈ 0.49 ms.

To evaluate the effect of the viscoelasticity on the acoustoelastic imaging, we use the acousto-

visco-elastic model recently proposed by Berjamin and de Pascalis (46). For simplicity, we

10



consider the quasi-linear viscoelasticity (QLV) theory with the neo-Hookean model (Eq. (S-20))

and a one-term Prony series. According to (46), the shear wave speed 𝑣𝑥 is a function of the

frequency 𝑓 ,

𝑣𝑥 =

√︄
2(1 + 𝐷2)

1 +
√

1 + 𝐷2

√︄
|Re 𝜇𝑥 |
𝜌

(S-23)

where

𝐷 = 𝐷0
2ΩΩ0

Ω2 +Ω2
0
, Ω = 2𝜋 𝑓 𝜏1,

𝐷0 =
𝑔

2Ω0

𝜇̄v
𝑥

𝜇̄v
𝑥 + (1 − 𝑔) [𝑇e

d ]11
, Ω2

0 = (1 − 𝑔)
𝜇̄v
𝑥 + [𝑇e

d ]11

𝜇̄v
𝑥 + (1 − 𝑔) [𝑇e

d ]11
,

(S-24)

and

𝜇𝑥 = (1 − 𝑔1) [𝑇e
d ]11 + (1 − 𝑔1

1 + 𝑖𝜔𝜏1
) 𝜇̄v

𝑥 . (S-25)

In (S-24) and (S-25), 𝑖 =
√
−1,

[𝑇e
d ]11 = 𝜇(𝜆2 − 𝐼1/3), 𝜇̄v

𝑥 = 𝜇𝐼1/3. (S-26)

and 𝜆 is the stretch ratio, which can be determined from the stress 𝜎1 by solving the cubic

𝜆3 − 𝜎1
𝜇∞
𝜆 − 1 = 0, (S-27)

where 𝜇∞ = 𝜇(∞) = (1 − 𝑔1)𝜇0 is the long-term shear modulus and 𝐼1 = 𝜆2 + 2𝜆−1. To get 𝑣𝑧, 

we follow the same procedure, replacing 𝜆 with 𝜆−1/2 in (S-26).

In Fig. S7, we plot the dispersion relations of 𝑣𝑥 and 𝑣𝑧 with 𝜇∞ = 8.4 kPa, 𝑔1 = 0.79 and 

𝜏1 = 0.49 ms. Then we use Eq. (2) in the main text to derive the stress 𝜎1. As shown in Fig. 

S7B, the stress is underestimated when the viscoelasticity comes into play.
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Fig. S1: Effect of the uniaxial stress on the shear wave speeds. (A) neo-Hookean material
with shear modulus 𝜇 = 36 kPa, subject to uniaxial stress 𝜎1 = 0.3𝜇. (B) Transversely isotropic
material with material parameters 𝜇𝑇 = 9 kPa, 𝜇𝐿 = 25 kPa, 𝐸𝐿 = 216 kPa, 𝑐1 = 1, 𝑐2 = 10, and
𝜎1/𝐸𝐿 = 0.1. The fiber direction is aligned with 𝑥1. (i) and (ii) depict phase and group speeds,
respectively, showing that they are the same along the principal axes. Solid lines: prestressed.
Dashed lines: stress-free.
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Fig. S2: Imaging protocol and finite element simulation of shear wave excitation. (A)
Imaging protocol. Six ARFs are applied by successively focusing the ultrasound beam along
the horizontal direction. The duration of each ARF is ∼ 0.1 ms. After the excitation (∼ 0.6
ms), the transducer is switched to perform plane wave (PW) imaging (unfocused beam, duration
5 ms) at a frame rate of 10 kHz. Ten successive measurements (∼ 56 ms) are performed and
then the average of the measurements is taken to improve the signal-to-noise ratio. (B) Acoustic
pressure of the focused ultrasound beam measured within the focal plane (∼ 13 mm away from
the transducer). (C) Distribution of the pressure along 𝑥 axis. Half width at half maximum
(HWHM) is approximately ∼ 0.25 mm, in agreement with the ultrasound wavelength ∼ 0.23
mm. (D) Finite element simulations showing the six ARFs successively applied to excite the
shear waves. The time when the PW imaging starts is set to 0. The dashed square shows the
region of interest where the wave propagation is measured by the PW imaging.
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Fig. S3: Finite element simulation of the shear wave excitation by programmed acoustic
radiation forces in anisotropic materials. (A) The snapshots of the shear wave propagation,
which suggest the SV shear waves are primarily excited. The maps depict the vertical par-
ticle velocity fields. (B) and (C) Spatiotemporal data for the horizontal and vertical waves,
respectively. The speeds measured along the two directions are identical, ∼ 4.7 m/s (

√︁
𝜇𝐿/𝜌),

indicating the SV shear waves are measured in both directions. The material is incompressible
transversely isotropic. The fiber direction is aligned with 𝑥. The material parameters used in the
simulation are 𝜇𝑇 = 10.7 kPa, 𝜇𝐿 = 22.4 kPa, 𝐸𝐿 = 40.1 kPa, and 𝜌 = 1000 kg/m3 (see Note 5
for definitions of the material parameters).
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Fig. S4: Measurement of the lateral shear wave speed 𝑣𝑥 . (A) Spatiotemporal map of the 
shear waves propagating along the horizontal direction (𝑥 axis). (B) Fourier transformation of 
the spatiotemporal data. (C) Inverse Fourier transformation of the data in the first and third 
quadrants. The right-to-left (RL) waves have been filtered out in this map. (D) Inverse Fourier 
transformation of the data in the second and fourth quadrants. The left-to-right (LR) waves have 
been filtered out in this map. (E) and (F) The Radon transformations of (C) and (D). Then We 
sum the absolute values of the data points in (E) and (F) along each column to get the solid lines 
in (G) and (H), respectively. The peaks identified on the lines give the optimal phase velocities 
of the LR and RL waves.
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Fig. S5: Mechanical characterization of the hydrogel phantom at rest. (A) Photography
showing the indentation tests on the hydrogel phantom. (B) Load-displacement curve of the
indentation experiments obtained from the loading process with a low loading rate (∼ 0.1 mm/s).
Error bar, standard deviations over five measurements. (C) Normalized stress relaxation curve.
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Fig. S6: Mechanical characterization of the skeletal muscle at rest. (A)-(C) Grayscale
ultrasound images of the skeletal muscle. Red arrows in (A) and (C) indicate some of the
parallel muscle fibers. For (B) the sample is tilted at ∼ 35◦. The schematics underneath each
image show the orientations of the muscle fibers. For all three cases, the horizontal shear wave
group velocities 𝑣𝑥 are measured. Therefore, the angles between the shear wave propagation
direction and muscle fibers are (A) 0◦, (B) 35◦, and (C) 90◦. (D) Statistical results (five
independent measurements) for the horizontal shear wave group velocities. (E) Dispersion
relation of the surface waves (0◦). Markers, experiments. Dashed line, fitting curve obtained
using one-term Prony series with 𝑔1 = 0.79 and 𝜏1 = 0.49 ms.
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Fig. S7: Effect of viscoelasticity on the acoustoelastic imaging. (A) Dispersion relations of 𝑣𝑥
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stress is 2.6 kPa, indicating an underestimation of ∼ 38%. (C) The underestimation of the stress
as a function of 𝑔1.
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Movie S1 (separate file). Amovie given by finite element (FE) simulations compares the shear

waves generated by programmed acoustic radiation force (ARF) and the conventional single

ARF. (A) FE results of the shear waves generated by the programmed ARF; (B) FE results of

the shear waves gener-ated by a single ARF.

Movie S2 (separate file). A movie compares the shear waves generated in experiments by the

programmed ARF and the conventional single ARF. (A) Experimental measurements of the

shear waves generated by the programmed ARF; (B) Experimental measurements of the shear

waves generated by a single ARF.
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