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Abstract
In vivo skin exhibits viscoelastic, hyper-elastic and non-linear characteristics. It is under a constant state of non-equibiaxial 
tension in its natural configuration and is reinforced with oriented collagen fibers, which gives rise to anisotropic behaviour. 
Understanding the complex mechanical behaviour of skin has relevance across many sectors including pharmaceuticals, 
cosmetics and surgery. However, there is a dearth of quality data characterizing the anisotropy of human skin in vivo. The 
data available in the literature is usually confined to limited population groups and/or limited angular resolution. Here, we 
used the speed of elastic waves travelling through the skin to obtain measurements from 78 volunteers ranging in age from 3 
to 93 years old. Using a Bayesian framework allowed us to analyse the effect that age, gender and level of skin tension have 
on the skin anisotropy and stiffness. First, we propose a new measurement of anisotropy based on the eccentricity of angular 
data and conclude that it is a more robust measurement when compared to the classic “anisotropic ratio”. Our analysis then 
concluded that in vivo skin anisotropy increases logarithmically with age, while the skin stiffness increases linearly along 
the direction of Langer Lines. We also concluded that the gender does not significantly affect the level of skin anisotropy, 
but it does affect the overall stiffness, with males having stiffer skin on average. Finally, we found that the level of skin ten-
sion significantly affects both the anisotropy and stiffness measurements employed here. This indicates that elastic wave 
measurements may have promising applications in the determination of in vivo skin tension. In contrast to earlier studies, 
these results represent a comprehensive assessment of the variation of skin anisotropy with age and gender using a sizeable 
dataset and robust modern statistical analysis. This data has implications for the planning of surgical procedures and ques-
tions the adoption of universal cosmetic surgery practices for very young or elderly patients.
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Introduction

The skin is a vital organ for a range of bodily functions 
including protection from the environment and tempera-
ture regulation [1]. It is constantly under varying amounts 
of tension and must be able to withstand significant flexion 
and deformation for daily tasks like locomotion. Under-
standing the mechanical properties of the skin is impor-
tant for many different applications and industries: in the 
cosmetic industry, products must be assessed in terms 
of emolliency and hydration of the skin; in the design of 
anthropomorphic devices like crash test dummies and sur-
gical simulators [1], the mechanical behaviour of the skin 
must be replicated as closely as possible; and in a surgical 
setting, a thorough understanding of the skin’s mechanical 
properties is essential. For example, understanding skin 
growth through tissue expansion is necessary for breast 
reconstruction and burn victims [2].

Previous publications have examined many different 
mechanical properties of skin including viscoelasticity [3], 
the nonlinear stress–strain relationship [4, 5], failure prop-
erties [6, 7] and anisotropy [8, 9]. The experimental meth-
ods employed have included extension [8], suction [10], 
torsion [11], indentation [12] and expansion [2], amongst 
others. In this paper, we focus mainly on the anisotropic 
nature of the in vivo skin tension which was first noted in 
the 19th century by anatomist Karl Langer [13]. Preferred 
lines of tension have become known as “Langer Lines” 
or skin tension lines and are used by surgeons to select 
the optimum orientation of skin incisions so as to reduce 
scarring [14]. Identification of these patient-specific lines 
is non-trivial and surgeons must rely on generic maps or 
an imprecise pinch test that requires significant experi-
ence to interpret [15–17]. Recent research has shown that 
minimising the skin tension across wounds is the single 
most important factor in scar prevention that is within a 
surgeon’s control [18, 19]. To that end, quantitative knowl-
edge of both the direction and the anisotropic nature of 
skin tension lines is an essential component of wound 
closure. A deeper understanding of how they vary across 
a population may provide further optimisation of closure 
techniques, particularly for elderly or very young patient 
cohorts.

More recently, researchers have sought to develop 
techniques to determine the in vivo orientation of skin 
tension lines objectively: these include those using suc-
tion based devices [20], in vivo extensometry [21, 22] and 
elastic wave propagation [15, 3]. These papers have shown 
that these techniques can successfully identify skin ten-
sion lines, and that their orientation is patient-specific, 
depending on many different factors including location, 
age, health, BMI, ethnicity and hydration [15].

However, with the exception of Ruvolo et al. [3], none 
of these papers have comprehensively considered the level 
of anisotropy of these skin tension lines in vivo, i.e. how 
the tension levels in two orthogonal directions differ, and 
how that aspect varies by age and gender. In Ruvolo et al., 
239 volunteers ranging in age from newborn to 75 years old 
underwent testing using elastic wave propagation. Ruvolo 
et al. noted that previous studies had found only a weak 
dependence on elastic wave speed with age [23–25]; how-
ever, these studies all employed poor resolution angular data 
(measurements taken every 45°) and, having undersampled, 
they may have missed important information. While great 
care was taken by Ruvolo et al. to overcome this issue by 
sampling every 3°, their anisotropy results are reported in 
terms of the classic “anisotropic ratio”, which is a simple 
ratio between the fastest and slowest wave speed. In the cur-
rent study we propose, instead, to report the eccentricity of 
an ellipse fit to the circular data, which may offer a more 
representative and robust measure of the in vivo anisotropy. 
Additionally, the current study includes a sizeable dataset 
with a large range of ages (78 individuals, age 3–93) in con-
trast to Laiacona (19 subjects, age 18–30) [20], Boyer (20 
subjects, age 20–65) [21] and finally, Hermanns (110 sub-
jects, age 19–93) [25], who did not include infants.

Finally, previous papers have all employed hypothesis 
testing to support their conclusions. It is now commonly 
accepted that there are significant issues with the use of 
p-values in scientific research [26]. Bayesian methods for 
data analysis provide a principled framework for inference, 
uncertainty assessment and inclusion of prior information 
[27]. These methods are flexible, capable of handling com-
plex correlation structures and can eliminate the need for 
p-values and Null Hypothesis Significance Testing (NHST) 
[28–30].

The objective of this paper is to determine the level of 
in vivo skin anisotropy and determine how it varies with age 
and gender. Here we used elastic wave propagation to deter-
mine the speed of surface waves traveling through the skin 
of 78 subjects (age 3-93). Bayesian statistical methods were 
then employed to examine the significance and effects of age 
and gender. Furthermore, we examine how skin anisotropy 
is affected by skin tension and discuss its implications for 
surgical practice.

Materials and Methods

Data Collection

The Reviscometer® (Model RVM 600, Courage & Khazaka 
Electronic GmbH) is used to examine the mechanical prop-
erties of the skin. The device consists of a handheld probe 
connected to a central controller and a laptop (see Fig. 1a). 
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The tip of the probe contains two piezoelectric transducers 
that are 2 mm apart. One transducer emits a Rayleigh surface 
wave in the form of an acoustic pulse on the skin surface, 
the other detects the resulting wave and records the time 
taken for the wave to propagate across the surface of the 
skin, in one orientation. A hollow plastic fixture also facili-
tates precise measurements at 10° increments (see Fig. 1b) 
allowing us to see how the surface wave speed varies for 
different angles.

By default, the measurement is in arbitrary units called 
“Resonance Running Time” (RRT). The device was cali-
brated by assuming the wave speed follows that of a Ray-
leigh wave travelling on an unstressed, incompressible, lin-
ear elastic, isotropic material [31]. The wave speed is then 
related to the stiffness through:

where E is the Young modulus, � is the material density and 
v is the wave speed [32]. Specifically, the Young moduli of 
3 elastomers (Techsil 25 Silicone, Polyurethane and MVQ 
Elastomer) were determined with tensile tests and the aver-
age RRT (3 tests) determined for each sample. The conver-
sion for each material is detailed in Table 1. The average 
RRT was found to be 0.284�s.

Ethical approval for the study was granted by the Human 
Research Ethics Commitee at University College Dublin 
(25-18-75). A total of 78 subjects were tested with 37 female 
and 41 male volunteers, aged between 3 and 92 years of age, 
see Table 2.

Measurements were obtained on either the left or right 
volar forearm approximately 5 cm proximal to the wrist, see 
Fig. 1b. This site was chosen as a convenient, flat surface 
with minimal body hair, veins or bone.

For each volunteer, two configurations were explored: 
the “natural configuration”, where measurements were car-
ried out on the skin with no interference and the “stretched 
configuration”, where an additional stretch was applied 
to the skin in the direction of the fastest traveling surface 
wave. The purpose of this protocol was to demonstrate that 
an increase in skin tension corresponds to an increase in 
the wave speed (or equivalently, a decrease in the arrival 

(1)E = �v
2(3.284),

time) which can be measured in vivo by the Reviscometer® . 
Measurements were taken from 0° to 360° in 10° increments 
giving a total of 36 observations. This method was repeated 
three times per volunteer and an average was calculated.1

Using the “natural configuration” data, the direction of 
the Langer line was identified to the nearest 10° by finding 

Table 1   Analytical conversions for three different materials from 
RRT to seconds.

Elastomer material � (kg/m2) E Avg. RRT​ 1 RRT 
conversion 
( �s)

Techsil 25 Silicone 928 463260 503 0.322
Polyurethane 1237 2517780 323 0.249
MVQ Elastomer 1348 330000 820 0.282
Average 0.284

(a)

(b)

Fig. 1   Experimental set up displaying a the laptop, central controller 
and Reviscometer probe b Measuring site set up and plastic probe fix-
ture to facilitate accurate angular measurements.

Table 2   Age distribution of subjects in 10 year increments.

Age range
(years)

Total number
of subjects

Number of
females

Mean age
(years)

Standard 
deviation
(years)

0–10 7 5 5.9 2.73
11–20 10 3 16.1 3.07
21–30 18 8 25.6 2.28
31–40 9 2 34.3 2.17
41–50 7 4 45.3 3.04
51–60 10 5 54.3 2.41
61–70 7 2 64.4 2.30
71–80 3 2 73.7 1.53
81–90 6 4 85.2 2.79
90+ 1 1 92 –

1  For practical reasons only one set of observations was performed 
on younger subjects who found it difficult to remain in the position 
required for the study.
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the direction in which the shortest arrival time was recorded 
[15]. Then, using surgical tape, the skin was stretched in 
the direction of the identified Langer line. The “stretched 
configuration” test was then repeated a further three times 
and an average was calculated.1

Anisotropy Measurement

As discussed in the "Introduction", there is a need to quan-
tify skin anisotropy and understand its relationship to skin 
tension. A number of previous studies have been performed 
where measures of skin anisotropy are calculated. The most 
commonly used measure is the ratio of the maximum and 
the minimum measured value (arrival time or wave speed) 
[24, 3, 33, 15]. In our study, using the Reviscometer® , this 
Anisotropic Ratio (AR) is the ratio of the maximum and 
minimum RRT values:

While this measure can be indicative of the degree of anisot-
ropy, it is also very sensitive to outliers in the data. Further-
more, if measurements are taken from 0° to 360° (as is often 
the case), this measurement ignores much of the available 
data and uses only the maximum and minimum values.

In this paper we suggest an alternative measure of anisot-
ropy that is less susceptible to individual outliers and con-
siders all measurements from 0° to 360°. We consider all 
RRT observations and fit an ellipse to them. The eccentricity 
of this fit ellipse is indicative of the material anisotropy. 
Assuming an ellipse is an appropriate model for our data, 
we plot the raw data by allowing the arrival time to be the 
distance from the origin and the angle to be the angle of 
inclination from the positive side of the x axis, see Fig. 2a.

Using this representation in Cartesian coordinates, an 
ellipse can be fit to the raw data using the least squares 
approach detailed in Ref. [34], which is implemented in the 
function “EllipseDirectFit” from the R package “conicfit” 
[35, 36], see Fig. 2b. We can then extract the geometric 
parameters from the ellipse and use them to infer real-world 
attributes of the skin. All code used can be found in the 
public GitHub repository accompanying this paper:https://
github.com/matt-nagle/Analysis-of-in-vivo-skin-anisotropy-
using-elastic-wave-measurements-and-Bayesian-modelling.

The geometric parameters extracted from each ellipse 
were: the lengths of the semi-major and semi-minor axes 
and the angle between the semi-major axis and the positive 
x axis (tilt angle). The tilt angle of the ellipse provides the 
direction of the slowest traveling wave and 90° from this is 
the fastest traveling wave which corresponds to the direction 
of Langer lines [15].

(2)AR =
RRTmax

RRTmin

.

The lengths of the semi-major and semi-minor axes allow 
us to calculate both the area, A, and the eccentricity, e, of the 
fit ellipse using Eqs. 3 and 4 respectively:

where a is the length of the semi-major axis and b is the 
length of the semi-minor axis.

The area relates to an average measure of arrival time in 
all directions. The smaller the area, the faster all waves are 
traveling on average. Following Eq. 1, we can relate this 
wave speed directly to skin stiffness. This parameter is inde-
pendent of the anisotropic nature of the measurements.

Eccentricity relates to the material anisotropy; an eccen-
tricity of 0 indicates a circle, i.e. the speed of the wave does 
not vary depending on the angle and the material is per-
fectly isotropic. As the eccentricity increases from 0, the 

(3)A = �ab

(4)e =

√
1 −

a
2

b
2
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Fig. 2   Visualisation of a typical raw Reviscometer data from a 26 
year old male subject and b the fit ellipse. Note that the Euclidean 
distance from the origin is the arrival time of the surface wave in 
units of RRT at that angle (measured counter-clockwise from the pos-
itive side of the x-axis).
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difference between the slowest wave and the fastest wave 
also increases, i.e. the skin demonstrates more and more ani-
sotropy. An eccentricity of 1 indicates a straight line which 
is perfectly transversely isotropic. In practice, eccentricity 
values in our study mostly fell between 0.5 and 0.9.

Simulation Study

To evaluate the performance of the two different measures 
of anisotropy (AR vs e) a simulation study was performed. 
Simulation studies are computer-based experiments that use 
artificially generated data to examine the performance of 
different methods. Knowledge of the underlying data gen-
eration mechanism enables a thorough evaluation and com-
parison [37].

In short, simulated data was generated following a known 
regular shape, random noise was added to the data, then the 
two measures of anisotropy were compared to the known 
true values. Ellipses with a fixed value of 160 RRT for the 
semi-minor axis with eccentricities e = [0.5, 0.7, 0.9] were 
selected as being representative of our dataset. Noise was 
added to the ellipses using a random draw from a normal 

distribution with mean 0 and standard deviation � . Four dif-
ferent values of � were used, ranging from very low to high 
amounts of noise, � = [1, 10, 20, 30] , see Fig. 3.

For each set of points, both measures of anisotropy 
(eccentricity of the fit ellipse and the AR) were calculated 
and stored. This procedure was performed 10,000 times for 
each value of �.

Bayesian Data Analysis

As discussed in the "Introduction", Bayesian methods for 
data analysis are often appealing as they avoid some of the 
potential issues with p-values and NHST [26]. In general, 
in a frequentist approach, a model coefficient is a single 
deterministic fixed value. On the other hand, in a Bayesian 
framework, model coefficients are random quantities which 
are assumed to have probability distributions that convey 
prior beliefs and the uncertainty around their value. The aim 
is to perform inference on the “posterior distribution” of the 
parameters, taking into account both the prior knowledge 
and the evidence provided by the observed data. Inference 
in this setting is typically performed using Markov Chain 
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Fig. 3   Sample simulated data for an eccentricity of 0.7 showing a essentially no noise, � = 1 , b low noise, � = 10 , c medium noise, � = 20 , d 
high noise, � = 30 . The dashed red line is the shape of the underlying ellipse before the noise was added.
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Monte Carlo (MCMC) methods [27], which are employed 
to derive a large chain of estimates for each model coeffi-
cient. Each coefficient estimate in the chain is a draw from 
the posterior distribution and considering a large number of 
estimates gives us the shape of this distribution. This allows 
us to quantify not only the mean value of the coefficient 
(“posterior mean”) but also the uncertainty we have in each 
coefficient by considering the spread of the distribution.

In contrast to the confidence interval in the frequentist 
approach, Highest Posterior Density Intervals (HPDI) can 
be defined which directly relate to a probability, i.e. there is 
a probability of 0.95 that the true value of the coefficient lies 
within the 0.95 HPDI. Thus, if we are interested in covari-
ate significance, we can simply examine the posterior dis-
tribution of the corresponding coefficient. For example, if 
0 is within the 0.95 HPDI for a certain coefficient then we 
do not have enough evidence to suggest that the coefficient 
is significantly different from zero and must conclude the 
covariate does not have a significant effect on our outcome 
variable. Bayesian approaches are often much more flexible 
and allow for greater model complexity; this is especially 
important for the current application as we need to account 
for correlated target variables, as well as circular target vari-
ables which would be very difficult to do with a frequentist 
approach [27].

To examine the influence that the subject age, subject 
gender and the applied additional stretch have on the skin 
properties anisotropy, average stiffness and stiffness in the 
direction of the Langer line (measured by the eccentric-
ity, area and length of the semi-minor axis of the fit ellipse 
respectively), a Bayesian multivariate outcome regression 
model was built. The multivariate approach was selected to 
account for the fact that e and A are both calculated using 
the semi-major and semi-minor axes and are therefore cor-
related. The model is of the form:

where � is a three-dimensional vector representing the inter-
cept, B is a 3 × 3 matrix of coefficients for age, gender and 
configuration, and E ∼ N(0,Σ) is the error term. Note that 
as the eccentricity is a parameter bounded by 0 and 1, a 
regular linear model would not be suitable as we cannot 
obtain values of e > 1 or e < 0 regardless of the input values. 
Therefore, a log of the eccentricity was taken as the outcome 
variable. For numerical stability the Area was normalised by 
a factor of 1000.

Inference for a Bayesian model of the form Eq. 5 can be 
performed via Markov Chain Monte Carlo (MCMC) meth-
ods using the function “stan_mvmer” implemented in the R 
package “rstanarm” [38–40]. We use default non-informative 

(5)
⎡⎢⎢⎣

log(Eccentricity)

Area/1000

Semi-minor Axis

⎤
⎥⎥⎦
= � + B

⎡
⎢⎢⎣

Age

Gender

Config.

⎤⎥⎥⎦
+ E,

priors and obtain draws from the posterior distribution of the 
regression parameters.

Results

Simulation Study Results

In the section "Anisotropy Measurement" we suggested that 
the eccentricity of a fit ellipse would be a more robust meas-
ure of anisotropy than the ratio of the max and min values. 
An illustrative example in Fig. 4 shows how outliers could 
drastically affect the anisotropy ratio, providing misrepre-
sentative results. However, a more systematic evaluation is 
required to directly compare the two methods, see the sec-
tion "Simulation Study".

The results of the simulation study can be seen in Fig. 5. 
Unsurprisingly, when the noise is very low ( � = 1 ), both 
anisotropy measures perform extremely well, they are tightly 
distributed and centered over the true values. We can see 
that, as the level of noise increases, the distributions of both 
measures widen and stray away from the true value. How-
ever, we can see that for low to high amounts of noise the 
eccentricity is far more robust than the AR: the distribution 
tends to widen but it is still distributed around (or very close 
to) the true known value. In contrast, as the noise increases, 
the AR distribution strays further and further away from 
the true value and the tails of the distribution become more 
pronounced with extreme outliers appearing. It should also 
be noted that the AR consistently overestimates the degree 

Fig. 4   Schematic demonstrating how outliers (in grey) might change 
the AR dramatically (in this example by increasing the Max RRT and 
decreasing the Min RRT beyond a range that represents the data) but 
only slightly elongate the fit ellipse. The red dotted line represents the 
underlying ellipse with eccentricity 0.7 before noise or outliers were 
added. The fit ellipse can be seen in blue and has an eccentricity of 
0.756. The true AR for the underlying ellipse would be 1.4; however, 
due to the outliers, the AR in this case would be 2.7.
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of anisotropy, introducing a bias into our measurement, 
whereas the eccentricity provides a more consistent estimate 
on average (albeit underestimating the actual eccentricity in 
some scenarios with high noise).

Analysis of particular simulations which resulted in outli-
ers for the eccentricity/AR (where the measure was far from 
the true value) can be found in Appendix A. From this, and 
the analysis of the overall distributions, we can conclude that 
the eccentricity is a more robust and reliable measurement 
of anisotropy for this type of data.

Influence of Age and Gender on Skin Properties

As discussed in the section "Bayesian Data Analysis", using 
a Bayesian approach we can examine the significance of the 
model covariates by examining the posterior distribution for 
each parameter. A model of the form Eq. 5 was built and the 
posterior distributions can be seen in Fig. 6.

Let us first consider the influence of age. We can see in 
Fig. 6a that the 0.95 HPDI (grey area) for the age coefficient 
does not contain 0. Thus, given the data, there is a 95% 
probability that age has a significant effect on the degree of 
anisotropy as measured by the eccentricity. The age coeffi-
cient is positive and centred around a posterior mean value 
of 0.007 (see Table 3). Therefore, there is a positive effect 
of the age on the log of the eccentricity, i.e. the eccentricity 
increases logarithmically with age. Furthermore, due to the 
shape of the log function we can conclude that the eccentric-
ity (degree of anisotropy) increases as age increases with 

a steep increase from childhood into adulthood. This can 
also be seen by assuming no correlation between the out-
come variables and plotting the age of the subject against 
the eccentricity (see Fig. 7).

In Fig. 6b we can see that the 0.95 HPDI (grey area) 
barely includes the value zero. Hence, according to the data, 
age may not have a significant effect on the average stiffness 
as measured by the ellipse area. However, it is worth noting 
that a considerable part of the posterior distribution is above 
the zero threshold, which is in line with the many reports 
in the literature indicating that skin stiffness increases with 
age. We must keep in mind that the area here refers to the 
“average stiffness” across all directions.

In Fig. 6c, we see the posterior distribution of the effect 
of age on stiffness in the direction of the Langer line (max 
stiffness) measured by the length of the semi-minor axis. 
We can see the age of the subject is significant according to 
the data. The age coefficient is negative and centered around 
a posterior mean value of −0.391. Therefore, the data sug-
gests there is a negative effect of age on the length of the 
semi-minor axis, i.e. as age increases, the length of the semi-
minor axis decreases (arrival time of the wave decreases in 
the direction of the Langer line indicating increased stiffness 
of the skin in that direction), as expected.

Now, let us consider the influence of gender. We can see 
in Fig. 6a that the 0.95 HPDI (grey area) for the male coef-
ficient contains 0. Thus, it is unlikely that the gender coef-
ficient has a significant effect on the eccentricity (degree of 
anisotropy), i.e. according to the data, there is no significant 

Fig. 5   Results of the simula-
tion study for 10,000 observa-
tions, e = [0.5, 0.7, 0.9] and 
� = [1, 10, 20, 30] . The true 
known value of the measure is 
represented by the dashed lines. 
Note that in order to capture 
the extreme outliers in the AR 
measure plot (right), the y axis 
was log transformed. It is clear 
that for low to high amounts of 
noise the eccentricity distribu-
tions are centered around (or are 
close to) the true value, whereas 
the AR distributions stray fur-
ther and further away from the 
true value with increasing noise.
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difference between the degree of anisotropy in males versus 
females. In Fig. 6b we can see that the data shows evidence 
of a difference between the average stiffness of male subjects 
versus female subjects. We can also see that, using the cat-
egory female as the baseline, the coefficient for the shift in 
area due to the male category is negative and centred around 
a posterior mean value of −16.725. Therefore, the area of 
the fit ellipse is on average smaller (average skin stiffness is 

higher) for males than females. Finally, in Fig. 6c we can see 
that the data provides evidence for a significant difference 
between the length of the semi-minor axis (arrival time in 
the direction of the Langer line) for male and female sub-
jects. The male coefficient is negative and centered around 
a posterior mean value of −15.174. Therefore, the skin stiff-
ness in the direction of the Langer line is on average higher 
for males than females.

Fig. 6   Posterior Distributions 
for the age, gender and configu-
ration regression coefficients 
from Eq. 5. Note that the shaded 
region between the two vertical 
black lines represents the 0.95 
HPDI and the vertical dashed 
red line denotes the location of 
0. If 0 is within the 0.95 HPDI, 
there is not enough evidence to 
say the covariate has a signifi-
cant effect on the outcome vari-
able. The posterior mean and 
HPDI intervals for all distribu-
tions can be seen in Table 3.

(a)

(b)

(c)

Table 3   Posterior mean values 
and 0.95 HPDI for the age 
gender and configuration 
coefficients where * indicates 
that the interval does not 
include the null value 0, 
suggesting a significant result.

Age Gender Configuration

Mean 0.95 HPDI Mean 0.95 HPDI Mean 0.95 HPDI

log(Ecc.) 0.007* [0.005, 0.009] 0.032 [−0.081, 0.144] 0.137* [0.067, 0.207]
Area 0.316 [−0.006, 0.636] −16.725* [−31.898, −1.546] −19.832* [−26.745, −12.864]
Semi-maj −0.391* [−0.696, −0.085] −15.174* [−29.723, −0.667] −26.808* [−34.182, −19.310]
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Influence of Skin Tension

To explore the effect of skin tension on the speed of travel-
ling surface waves and determine the potential efficacy of the 
Reviscometer in evaluating skin tension, an additional stretch 
(in the direction of the fastest wave) was manually applied to 
the skin and the same measurement procedure was carried out. 
Following this procedure, in theory, we would expect that: 

1.	 The tilt angle should be conserved, provided the stretch 
is applied in the direction of the fastest traveling wave 
(along the Langer line).

2.	 The length of the semi-minor axis should decrease due 
to the increase in wave speed along the direction of the 
applied stretch.

3.	 The eccentricity should increase, as we would expect 
that the stretched data would be more anisotropic due 
to the additional applied stretch and decrease in semi-
minor axis length.

For an example of this behaviour see Fig. 8.
Following the same analysis of age and gender in the sec-

tion "Influence of Age and Gender on Skin Properties" we 
can also examine the effect that the additional applied stretch 
had on the length of the semi-major axis and the eccentricity 
by examining the posterior distribution of each parameter.

Note that as our covariate is a categorical variable with 
two outcomes (either natural or stretched), the “stretched 
coefficient” is the shift in outcome variable from the base-
line natural configuration to the stretched configuration. From 
Fig. 6, we can see that the data provides evidence of a signifi-
cant difference between the natural and stretched configura-
tions in the log eccentricity and the length of the semi-minor 
axis. The 0.95 HPDI (grey area) does not contain 0 and the 
posterior distributions are concentrated far from this value. 
Furthermore, we can see that the shift for the stretched con-
figuration is positive for the log of the eccentricity outcome 
(posterior mean of 0.137) and negative for the length of the 
semi-minor axis (posterior mean of −26.808). This demon-
strates that the eccentricity of the fit ellipse increases and the 
length of the semi-minor axis decreases on average from the 
natural to the stretched configuration, as expected.

Finally, to examine the effect that the additional applied 
stretch had on the angle of the fit ellipse, which indicates the 
direction of the Langer line, a model was built of the form:

where � is the intercept, � is the coefficient for the configura-
tion and � is the error. Note that as our covariate is a cate-
gorical variable with binary outcomes (natural or stretched), 
the intercept represents the baseline category (natural) and � 
is the shift in angle for the alternative category (stretched).

Note that here we have a circular response variable and 
cannot build a regular linear model. Following the discussion 
in Ref. [41], we fit a circular regression model using the pro-
jected normal distribution within a Bayesian framework, using 
the MCMC methodology implemented in the function “bpnr” 
from the package “bpnreg” [42]. The posterior distributions 
for the natural and stretched configurations can be seen in 
Fig. 9. We see that the 0.95 HPDI overlap for the natural and 
stretched configurations. Therefore, in the data, there is no 
indication of a significant difference in the posterior circular 
means of the two configurations. This indicates that the con-
figuration does not affect the angle of the fit ellipse, hence the 

(6)Angle of fit ellipse = � + �(Config.) + �,
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Fig. 7   Scatter plot of the eccentricity (i.e. anisotropy) of the fit ellipse 
vs age of the subject. It is clear that there is a positive relationship: 
as the age of the subject increases the degree of anisotropy also 
increases. The red line corresponds to a simple log-linear model fit 
with R2 = 0.5105.
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Fig. 8   Subject 29, a 26 year old male showing both the natural con-
figuration in black and the stretched configuration in red. Note that 
the stretched ellipse is narrower and more elongated, but pointing 
in the same direction, which confirms that the skin tension greatly 
affects the surface wave speed along the direction of Langer lines.
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direction of the Langer line, as expected. However, there is a 
degree of uncertainty as the posteriors do not overlap com-
pletely, so for some subjects there may be variation in angle 
due to the additional stretch, but the difference in configura-
tion does not appear to be strong in the data.

Discussion

As discussed in the section "Anisotropy Measurement" we 
have demonstrated that the eccentricity of a fit ellipse is a bet-
ter measure of the anisotropy, as it is more robust to outliers 
and noise, than the commonly used anisotropic ratio [3, 21, 
24]. Robustness to noise and outliers is an important attrib-
ute for biological measurements and particularly in vivo skin 
measurements as we expect experimental error, patient vari-
ability and subject movement to impact data collection.

Using our new measure of anisotropy, the relationship 
between the skin anisotropy and age was explored, see the 
section "Influence of Age and Gender on Skin Properties". 
We found that as age increases, the degree of anisotropy also 
increases, with a steep increase occurring from childhood 
to adulthood. Many early authors previously reported only 
a weak dependence of elastic wave speed with age [23–25], 
but as noted by Ruvolo et al., these studies employed poor 
resolution angular data (measurements taken every 45° only). 
More recent studies have noted an increase in anisotropy 
with age [43, 44], but none of these studies included infants 
and therefore the steep increase in anisotropy which occurs 
from childhood into adulthood would not have been captured. 
Ruvolo et al. did include infants within their study and report 
an exponential increase in the anisotropic ratio with age, while 
in the current study, we have found a logarithmic increase in 

anisotropy with age. The reason for the different observations 
may be, in part, due to the use of the anisotropic ratio in Ruvolo 
et al. and also due to the fact that participants were divided 
into 5 age ranges for the purpose of the statistical analysis. In 
the current study, age was considered a continuous variable 
and hence provides a richer insight into the true relationship 
between age and anisotropy. This detailed information can pro-
vide evidence as to the validity of applying universal cosmetic 
surgery practises to very young or elderly patients, where we 
expect the level of anisotropy to vary significantly.

It has variously been reported in the literature that skin 
stiffness increases [45, 46], decreases [25, 3, 21, 43], or is not 
affected at all [24] as the age of the subject increases. In the 
section "Influence of Age and Gender on Skin Properties", we 
concluded that age does not appear to have a significant effect 
on the area of the fit ellipse (our measure of overall stiffness, 
independent of direction). However, by virtue of considering 
the area of the ellipse independent of its shape we are “averag-
ing” over the known fact that the skin of older subjects is more 
anisotropic. And while the area of the ellipses does not seem 
to be affected by age, the length of the semi-minor axis (i.e. 
max stiffness) does appear to be affected (see Fig. 6c). This 
indicates that as the age of the subject increases, the stiffness 
of the skin increases in the direction of the Langer line only. 
In this context, our results agree with [44, 46] who found that 
there is increased stiffness along the direction of Langer Lines 
with age. The current results are, however, in direct disagree-
ment with Ruvolo et al. and Hermanns-Lê et al. who found that 
age influenced the maximum RRT (equivalent to the length of 
the semi major axis in the current study) but not the minimum 
RRT (equivalent to the length of the semi minor axis in the 
current study). It is possible that these differences may have 
arisen due to the method of data analysis e.g. in contrast to 
the length of the semi-major and semi-minor ellipses fit to the 
circular data, the use of maximum and minimum RRT values 
does not account for outliers and does not offer a robust meas-
urement. Contrasting results with other studies may be as a 
result of reporting “average” stiffness which does not consider 
the significant anisotropy of skin (in particular elderly skin). 
We should acknowledge also a degree of uncertainty with the 
conclusion that the “average stiffness” (area of ellipse) is not 
affected by age, as 0 is just inside the 0.95 HPDI and a large 
portion of the posterior distribution is concentrated above this 
value (see Fig. 6b). Therefore, perhaps it is unsurprising that 
there is disagreement in the literature on this point.

Similarly, we acknowledge a degree of uncertainty with 
the conclusion that males have stiffer skin than females on 
average since for both the Area (average stiffness) and the 
length of the semi-minor axis (arrival time in the direction of 
the Langer line), 0 is just outside the 0.95 HPDI (See Fig. 6). 
This result is consistent with [46] who state that males have 
stiffer skin (albeit only within certain age ranges, 21–40 years) 
but contrasts with [47] who state that women have stiffer skin. 

Fig. 9   Posterior estimates of the circular means of the angle of the 
fit ellipse for the natural and stretched configurations. Note that the 
0.95 HPDI are represented by the shaded regions which overlap and 
indicate there is no significant effect of configuration on the angle of 
the fit ellipse.
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These contrasting results found in the literature may be as a 
result of the complex interactions between the influence of 
age, gender, and body location on the skin stiffness.

On average, the angle of the ellipse is conserved from the 
natural to the stretched configuration; however, there is quite a 
wide range of individual behaviours (see Figs. 9 and 11). While 
some extreme behaviours like subjects going from close to 0° to 
close to 180° or vice versa can be explained due to the circular 
nature of the variable, other variations are likely due to experi-
mental error. As discussed in the section "Data Collection", a 
fixture was used to take measurements every 10°. Therefore, the 
identified direction of fastest wave speed (i.e. Langer line) was 
to the nearest 10°, i.e. an accuracy of ±5◦ . Once the direction 
of the Langer line was identified, tape was applied manually to 
stretch the skin in that direction, which also introduces a source 
of error. This in turn could affect the fundamental mechanics of 
the probe, introducing further uncertainty, and explaining some 
of the uncertainty in this result.

During the calibration of the Reviscometer® the material 
being tested was assumed to be linearly elastic, isotropic 
and unstressed. While these assumptions are true for the 
reference materials used (see Table 1), the application of 
Eq. 1 to in vivo skin is not strictly valid, because of the pre-
tension and the oriented collagen fibers. Future mathemati-
cal relations relating elastic wave speed to stiffness should 
seek to take these effects into account. Such a relationship 
may provide a means to explicitly determine both in vivo 
skin tension and skin stiffness using elastic waves.

A core assumption of this study was that the ellipse is a good 
fit for our data. We believe this is a reasonable assumption due 
to the flexibility of an ellipse fit and the data collection proce-
dure which should result in axisymmetric measurements (due 
to the repeated measurements from 180° to 360°) about and 
perpendicular to the Langer lines. It should be noted, however, 
that the raw measurements from some subjects did not exhibit 
this symmetry and thus the ellipse fit was poor in those cases.

In this paper, an in vivo elastic wave technique was employed 
to investigate the role of age, gender and skin tension on both 
skin anisotropy and skin stiffness measurements on a sizeable 
population. By fitting an ellipse to angular data and report-
ing its eccentricity, we have proposed a more reliable, robust 
and informative metric of anisotropy than the classic “aniso-
tropic ratio” favoured so far in the literature. Using a Bayesian 
approach, we have concluded that skin anisotropy increases 
logarithmically with age, with a steep increase occurring from 
childhood into adulthood. Furthermore, the maximum stiffness 
of skin increases linearly with age, but this increase is only seen 
along the direction of Langer Lines. We have also concluded 
that gender does not significantly influence the degree of skin 
anisotropy, but that both the average skin stiffness, and skin 
stiffness along the direction of Langer Lines is higher for males 
than females. Finally, we have also concluded that both the skin 
anisotropy and skin stiffness measurements are significantly 

influenced by the level of skin tension present. This suggests 
that in vivo elastic wave measurements may be a suitable 
method for inferring in vivo skin tension.

To the best of our knowledge, this is the first study which 
uses a sizeable sample of in vivo subjects and modern 
Bayesian statistical analysis to evaluate the effect of age and 
gender on in vivo skin anisotropy. This dataset will provide 
a useful reference to those wishing to evaluate the effect of 
subject specific parameters such as age and gender on the 
anisotropic response of skin.

Appendix A: Simulation Study—
Examination of Poor Performance

In addition to examining Fig. 5, we can go one step fur-
ther by analysing examples of poor performance for each 
measure. For example, lets choose the medium ellipse with 
medium noise scenario ( e = 0.7 and � = 20 ) and examine 
the performance of both the eccentricity and the AR for two 
different simulations where: 

1.	 Eccentricity is furthest from the true value (i.e. the simu-
lation that produced the largest outlier in the eccentricity 
distribution).

2.	 AR is furthest from the true value (i.e. the simulation 
that produced the largest outlier in the AR distribution).

This allows us to explore the conditions in which each meas-
ure performs poorly and how the other measure performs in 
those conditions, see Fig. 10. As we have chosen the mid-
dle ellipse, the true eccentricity and AR values are 0.7 and 
1.4003 respectively.

In Simulation 668 (Fig. 10b), the eccentricity of the fit 
ellipse was 0.7196 and the AR was 3.6236. For this dataset 
the ellipse performs very well and the poor performance 
in the AR is driven solely by the two extreme points which 
are used to calculate the AR but are not representative of 
the data as a whole.

In Simulation 583 (Fig. 10a), the eccentricity of the fit 
ellipse was 0.4672 and the AR was 2.0644. For this data-
set neither the AR or the eccentricity are close to their 
true values, the AR significantly overestimates the degree 
of anisotropy using two extreme values that are only 30 
degrees apart (rather than 90° which would make physi-
cally intuitive sense). The poor performance in the eccen-
tricity is because, by chance, the random noise pulled the 
points along the semi-major axis closer to the origin and 
pushed the points along the semi-minor axis away from 
the origin. Thus, even though we know the “true” eccen-
tricity before noise to be 0.7, it could be argued that the 
calculated eccentricity of 0.4672 is a better measure of 
the anisotropy as it is representative of the data.
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This, along with the analysis in the section "Simulation 
Study Results" allows us to conclude that eccentricity is a 
more robust measurement of anisotropy for this type of data.

Appendix B: Individual Subject Behaviours

As well as looking at the average behaviours in Fig. 6 and 
Fig. 9 we can examine the specific behaviour of individual 
subjects using spaghetti plots (see Fig. 11). Most subjects 
exhibit the expected behaviour for the length of the semi-
minor axis and the eccentricity with only a small minority 
of subjects that have alternative behaviours (see Figs. 11b 
and 11c). For the angle, we can see quite a range of different 
behaviours (see Fig. 11a) but on average, most subject angles 

remain more or less the same. Note that some subjects go 
from close to 0◦ to close to 180◦ or vice versa, this behaviour 
is equivalent to a small increase/decrease in angle due to the 
circular nature of the measurement.

(a)

(b)

Fig. 10   Examination of the conditions under which a measure per-
forms poorly for the scenario e = 0.7 , � = 20 . The red dashed ellipse 
is the underlying ellipse with true values e = 0.7 and AR = 1.4003 
before noise was added, the blue ellipse is the fit ellipse and the large 
blue points highlight the Maximum and Minimum RRT values. a 
Case ê = 0.4672 , ÂR = 2.0644 : The green arrows show the net shift 
in points by random chance, effectively squashing the ellipse, the blue 
ellipse appears to be representative of the data despite the low eccen-
tricity. b Case ê = 0.7196 , ÂR = 3.6236 : the ratio considers only the 
max and min points in blue, disregarding all the other points and per-
forming poorly while the ellipse performs well.

(a)

(b)

(c)

Fig. 11   Spaghetti plots where the red circles denote the mean and 
the light red region is the 95% confidence interval of the mean. a 
There is a wide variety of behaviours for the angle but on average the 
angle remains constant. Note that some subjects go from close to 0 
to close to 180 or vice versa, this behaviour is equivalent to a small 
increase/decrease in angle. b There is some variance in behaviour but 
the semi-minor axis decreases for the majority of subjects. c There 
is some variance in behaviour but the eccentricity increases for the 
majority of subjects from the natural to the stretched configuration.
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