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Abstract

In vivo skin exhibits viscoelastic, hyper-elastic and non-linear characteristics. It is under a constant state of non-equibiaxial
tension in its natural configuration and is reinforced with oriented collagen fibers, which gives rise to anisotropic behaviour.
Understanding the complex mechanical behaviour of skin has relevance across many sectors including pharmaceuticals,
cosmetics and surgery. However, there is a dearth of quality data characterizing the anisotropy of human skin in vivo. The
data available in the literature is usually confined to limited population groups and/or limited angular resolution. Here, we
used the speed of elastic waves travelling through the skin to obtain measurements from 78 volunteers ranging in age from 3
to 93 years old. Using a Bayesian framework allowed us to analyse the effect that age, gender and level of skin tension have
on the skin anisotropy and stiffness. First, we propose a new measurement of anisotropy based on the eccentricity of angular
data and conclude that it is a more robust measurement when compared to the classic “anisotropic ratio”. Our analysis then
concluded that in vivo skin anisotropy increases logarithmically with age, while the skin stiffness increases linearly along
the direction of Langer Lines. We also concluded that the gender does not significantly affect the level of skin anisotropy,
but it does affect the overall stiffness, with males having stiffer skin on average. Finally, we found that the level of skin ten-
sion significantly affects both the anisotropy and stiffness measurements employed here. This indicates that elastic wave
measurements may have promising applications in the determination of in vivo skin tension. In contrast to earlier studies,
these results represent a comprehensive assessment of the variation of skin anisotropy with age and gender using a sizeable
dataset and robust modern statistical analysis. This data has implications for the planning of surgical procedures and ques-
tions the adoption of universal cosmetic surgery practices for very young or elderly patients.

Keywords Langer lines - Skin tension - In-vivo tension - Reviscometer - Rayleigh surface wave - Bayesian - Skin anisotropy

Associate Editor Ellen Kuhl oversaw the review of this article.

Michael Fop and Aisling Ni Annaidh have contributed equally to

this work.
< Matt Nagle 1" SFI Centre for Research Training in Foundations of Data
matt.nagle @ucdconnect.ie Science, University College Dublin, Belfield, Dublin 4,
Ireland

> Michael Fop

michael.fop@ucd.ie

Susan Price
pricesusane.94 @gmail.com

Antonia Trotta
Antonia.trotta90 @ gmail.com

Michel Destrade

michel.destrade @universityofgalway.ie
Aisling Ni Annaidh

aisling.niannaidh @ucd.ie

School of Mechanical and Materials Engineering, University
College Dublin, Belfield, Dublin 4, Ireland

School of Mathematics and Statistics, University College
Dublin, Belfield, Dublin 4, Ireland

Charles Institute of Dermatology, University College Dublin,
Belfield, Dublin 4, Ireland

School of Mathematical and Statistical Sciences, University
of Galway, Galway, Ireland

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10439-023-03185-2&domain=pdf
http://orcid.org/0000-0002-4549-3879

1782

M. Nagle et al.

Introduction

The skin is a vital organ for a range of bodily functions
including protection from the environment and tempera-
ture regulation [1]. It is constantly under varying amounts
of tension and must be able to withstand significant flexion
and deformation for daily tasks like locomotion. Under-
standing the mechanical properties of the skin is impor-
tant for many different applications and industries: in the
cosmetic industry, products must be assessed in terms
of emolliency and hydration of the skin; in the design of
anthropomorphic devices like crash test dummies and sur-
gical simulators [1], the mechanical behaviour of the skin
must be replicated as closely as possible; and in a surgical
setting, a thorough understanding of the skin’s mechanical
properties is essential. For example, understanding skin
growth through tissue expansion is necessary for breast
reconstruction and burn victims [2].

Previous publications have examined many different
mechanical properties of skin including viscoelasticity [3],
the nonlinear stress—strain relationship [4, 5], failure prop-
erties [6, 7] and anisotropy [8, 9]. The experimental meth-
ods employed have included extension [8], suction [10],
torsion [11], indentation [12] and expansion [2], amongst
others. In this paper, we focus mainly on the anisotropic
nature of the in vivo skin tension which was first noted in
the 19th century by anatomist Karl Langer [13]. Preferred
lines of tension have become known as “Langer Lines”
or skin tension lines and are used by surgeons to select
the optimum orientation of skin incisions so as to reduce
scarring [14]. Identification of these patient-specific lines
is non-trivial and surgeons must rely on generic maps or
an imprecise pinch test that requires significant experi-
ence to interpret [15-17]. Recent research has shown that
minimising the skin tension across wounds is the single
most important factor in scar prevention that is within a
surgeon’s control [18, 19]. To that end, quantitative knowl-
edge of both the direction and the anisotropic nature of
skin tension lines is an essential component of wound
closure. A deeper understanding of how they vary across
a population may provide further optimisation of closure
techniques, particularly for elderly or very young patient
cohorts.

More recently, researchers have sought to develop
techniques to determine the in vivo orientation of skin
tension lines objectively: these include those using suc-
tion based devices [20], in vivo extensometry [21, 22] and
elastic wave propagation [15, 3]. These papers have shown
that these techniques can successfully identify skin ten-
sion lines, and that their orientation is patient-specific,
depending on many different factors including location,
age, health, BMI, ethnicity and hydration [15].

@ Springer

However, with the exception of Ruvolo et al. [3], none
of these papers have comprehensively considered the level
of anisotropy of these skin tension lines in vivo, i.e. how
the tension levels in two orthogonal directions differ, and
how that aspect varies by age and gender. In Ruvolo et al.,
239 volunteers ranging in age from newborn to 75 years old
underwent testing using elastic wave propagation. Ruvolo
et al. noted that previous studies had found only a weak
dependence on elastic wave speed with age [23-25]; how-
ever, these studies all employed poor resolution angular data
(measurements taken every 45°) and, having undersampled,
they may have missed important information. While great
care was taken by Ruvolo et al. to overcome this issue by
sampling every 3°, their anisotropy results are reported in
terms of the classic “anisotropic ratio”, which is a simple
ratio between the fastest and slowest wave speed. In the cur-
rent study we propose, instead, to report the eccentricity of
an ellipse fit to the circular data, which may offer a more
representative and robust measure of the in vivo anisotropy.
Additionally, the current study includes a sizeable dataset
with a large range of ages (78 individuals, age 3-93) in con-
trast to Laiacona (19 subjects, age 18-30) [20], Boyer (20
subjects, age 20-65) [21] and finally, Hermanns (110 sub-
jects, age 19-93) [25], who did not include infants.

Finally, previous papers have all employed hypothesis
testing to support their conclusions. It is now commonly
accepted that there are significant issues with the use of
p-values in scientific research [26]. Bayesian methods for
data analysis provide a principled framework for inference,
uncertainty assessment and inclusion of prior information
[27]. These methods are flexible, capable of handling com-
plex correlation structures and can eliminate the need for
p-values and Null Hypothesis Significance Testing (NHST)
[28-30].

The objective of this paper is to determine the level of
in vivo skin anisotropy and determine how it varies with age
and gender. Here we used elastic wave propagation to deter-
mine the speed of surface waves traveling through the skin
of 78 subjects (age 3-93). Bayesian statistical methods were
then employed to examine the significance and effects of age
and gender. Furthermore, we examine how skin anisotropy
is affected by skin tension and discuss its implications for
surgical practice.

Materials and Methods

Data Collection

The Reviscometer® (Model RVM 600, Courage & Khazaka
Electronic GmbH) is used to examine the mechanical prop-

erties of the skin. The device consists of a handheld probe
connected to a central controller and a laptop (see Fig. 1a).
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Table 1 Analytical conversions for three different materials from
RRT to seconds.

Elastomer material p (kg/m? E Avg. RRT 1RRT
conversion
(us)
Techsil 25 Silicone 928 463260 503 0.322
Polyurethane 1237 2517780 323 0.249
MVQ Elastomer 1348 330000 820 0.282
Average 0.284

The tip of the probe contains two piezoelectric transducers
that are 2 mm apart. One transducer emits a Rayleigh surface
wave in the form of an acoustic pulse on the skin surface,
the other detects the resulting wave and records the time
taken for the wave to propagate across the surface of the
skin, in one orientation. A hollow plastic fixture also facili-
tates precise measurements at 10° increments (see Fig. 1b)
allowing us to see how the surface wave speed varies for
different angles.

By default, the measurement is in arbitrary units called
“Resonance Running Time” (RRT). The device was cali-
brated by assuming the wave speed follows that of a Ray-
leigh wave travelling on an unstressed, incompressible, lin-
ear elastic, isotropic material [31]. The wave speed is then
related to the stiffness through:

E = py?(3.284), (1)

where E is the Young modulus, p is the material density and
v is the wave speed [32]. Specifically, the Young moduli of
3 elastomers (Techsil 25 Silicone, Polyurethane and MVQ
Elastomer) were determined with tensile tests and the aver-
age RRT (3 tests) determined for each sample. The conver-
sion for each material is detailed in Table 1. The average
RRT was found to be 0.284 us.

Ethical approval for the study was granted by the Human
Research Ethics Commitee at University College Dublin
(25-18-75). A total of 78 subjects were tested with 37 female
and 41 male volunteers, aged between 3 and 92 years of age,
see Table 2.

Measurements were obtained on either the left or right
volar forearm approximately 5 cm proximal to the wrist, see
Fig. 1b. This site was chosen as a convenient, flat surface
with minimal body hair, veins or bone.

For each volunteer, two configurations were explored:
the “natural configuration”, where measurements were car-
ried out on the skin with no interference and the “stretched
configuration”, where an additional stretch was applied
to the skin in the direction of the fastest traveling surface
wave. The purpose of this protocol was to demonstrate that
an increase in skin tension corresponds to an increase in
the wave speed (or equivalently, a decrease in the arrival

|«—— Probe

Central
Controller

Emitter Receiver

— Skin

Surface
Wave

Fig. 1 Experimental set up displaying a the laptop, central controller
and Reviscometer probe b Measuring site set up and plastic probe fix-
ture to facilitate accurate angular measurements.

Table 2 Age distribution of subjects in 10 year increments.

Agerange  Total number  Number of Meanage  Standard
(years) of subjects females (years) deviation
(years)

0-10 7 5 59 2.73
11-20 10 3 16.1 3.07
21-30 18 8 25.6 2.28
3140 9 2 34.3 2.17
41-50 7 4 453 3.04
51-60 10 5 54.3 241
61-70 7 2 64.4 2.30
71-80 3 2 73.7 1.53
81-90 6 4 85.2 2.79
90+ 1 1 92 -

time) which can be measured in vivo by the Reviscometer® .
Measurements were taken from 0° to 360° in 10° increments
giving a total of 36 observations. This method was repeated
three times per volunteer and an average was calculated.'
Using the “natural configuration” data, the direction of
the Langer line was identified to the nearest 10° by finding

! For practical reasons only one set of observations was performed
on younger subjects who found it difficult to remain in the position
required for the study.
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the direction in which the shortest arrival time was recorded
[15]. Then, using surgical tape, the skin was stretched in
the direction of the identified Langer line. The “stretched
configuration” test was then repeated a further three times
and an average was calculated.!

Anisotropy Measurement

As discussed in the "Introduction”, there is a need to quan-
tify skin anisotropy and understand its relationship to skin
tension. A number of previous studies have been performed
where measures of skin anisotropy are calculated. The most
commonly used measure is the ratio of the maximum and
the minimum measured value (arrival time or wave speed)
[24, 3, 33, 15]. In our study, using the Reviscometer® , this
Anisotropic Ratio (AR) is the ratio of the maximum and
minimum RRT values:

RRT
AR = —=. Q)

While this measure can be indicative of the degree of anisot-
ropy, it is also very sensitive to outliers in the data. Further-
more, if measurements are taken from 0° to 360° (as is often
the case), this measurement ignores much of the available
data and uses only the maximum and minimum values.

In this paper we suggest an alternative measure of anisot-
ropy that is less susceptible to individual outliers and con-
siders all measurements from 0° to 360°. We consider all
RRT observations and fit an ellipse to them. The eccentricity
of this fit ellipse is indicative of the material anisotropy.
Assuming an ellipse is an appropriate model for our data,
we plot the raw data by allowing the arrival time to be the
distance from the origin and the angle to be the angle of
inclination from the positive side of the x axis, see Fig. 2a.

Using this representation in Cartesian coordinates, an
ellipse can be fit to the raw data using the least squares
approach detailed in Ref. [34], which is implemented in the
function “EllipseDirectFit” from the R package “conicfit”
[35, 36], see Fig. 2b. We can then extract the geometric
parameters from the ellipse and use them to infer real-world
attributes of the skin. All code used can be found in the
public GitHub repository accompanying this paper:https://
github.com/matt-nagle/Analysis-of-in-vivo-skin-anisotropy-
using-elastic-wave-measurements-and-Bayesian-modelling.

The geometric parameters extracted from each ellipse
were: the lengths of the semi-major and semi-minor axes
and the angle between the semi-major axis and the positive
x axis (tilt angle). The tilt angle of the ellipse provides the
direction of the slowest traveling wave and 90° from this is
the fastest traveling wave which corresponds to the direction
of Langer lines [15].
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Fig.2 Visualisation of a typical raw Reviscometer data from a 26
year old male subject and b the fit ellipse. Note that the Euclidean
distance from the origin is the arrival time of the surface wave in
units of RRT at that angle (measured counter-clockwise from the pos-
itive side of the x-axis).

The lengths of the semi-major and semi-minor axes allow
us to calculate both the area, A, and the eccentricity, e, of the
fit ellipse using Eqgs. 3 and 4 respectively:

A = rmab 3

a2
ez\/l—ﬁ @

where a is the length of the semi-major axis and b is the
length of the semi-minor axis.

The area relates to an average measure of arrival time in
all directions. The smaller the area, the faster all waves are
traveling on average. Following Eq. 1, we can relate this
wave speed directly to skin stiffness. This parameter is inde-
pendent of the anisotropic nature of the measurements.

Eccentricity relates to the material anisotropy; an eccen-
tricity of O indicates a circle, i.e. the speed of the wave does
not vary depending on the angle and the material is per-
fectly isotropic. As the eccentricity increases from 0, the
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(d) True Eccentricity = 0.7, Sigma = 30
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Fig.3 Sample simulated data for an eccentricity of 0.7 showing a essentially no noise, ¢ = 1, b low noise, ¢ = 10, ¢ medium noise, ¢ = 20, d
high noise, o = 30. The dashed red line is the shape of the underlying ellipse before the noise was added.

difference between the slowest wave and the fastest wave
also increases, i.e. the skin demonstrates more and more ani-
sotropy. An eccentricity of 1 indicates a straight line which
is perfectly transversely isotropic. In practice, eccentricity
values in our study mostly fell between 0.5 and 0.9.

Simulation Study

To evaluate the performance of the two different measures
of anisotropy (AR vs e) a simulation study was performed.
Simulation studies are computer-based experiments that use
artificially generated data to examine the performance of
different methods. Knowledge of the underlying data gen-
eration mechanism enables a thorough evaluation and com-
parison [37].

In short, simulated data was generated following a known
regular shape, random noise was added to the data, then the
two measures of anisotropy were compared to the known
true values. Ellipses with a fixed value of 160 RRT for the
semi-minor axis with eccentricities e = [0.5,0.7,0.9] were
selected as being representative of our dataset. Noise was
added to the ellipses using a random draw from a normal

distribution with mean 0 and standard deviation ¢. Four dif-
ferent values of o were used, ranging from very low to high
amounts of noise, o = [1, 10, 20, 30], see Fig. 3.

For each set of points, both measures of anisotropy
(eccentricity of the fit ellipse and the AR) were calculated
and stored. This procedure was performed 10,000 times for
each value of o.

Bayesian Data Analysis

As discussed in the "Introduction", Bayesian methods for
data analysis are often appealing as they avoid some of the
potential issues with p-values and NHST [26]. In general,
in a frequentist approach, a model coefficient is a single
deterministic fixed value. On the other hand, in a Bayesian
framework, model coefficients are random quantities which
are assumed to have probability distributions that convey
prior beliefs and the uncertainty around their value. The aim
is to perform inference on the “posterior distribution” of the
parameters, taking into account both the prior knowledge
and the evidence provided by the observed data. Inference
in this setting is typically performed using Markov Chain
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Monte Carlo (MCMC) methods [27], which are employed
to derive a large chain of estimates for each model coeffi-
cient. Each coefficient estimate in the chain is a draw from
the posterior distribution and considering a large number of
estimates gives us the shape of this distribution. This allows
us to quantify not only the mean value of the coefficient
(“posterior mean”) but also the uncertainty we have in each
coefficient by considering the spread of the distribution.

In contrast to the confidence interval in the frequentist
approach, Highest Posterior Density Intervals (HPDI) can
be defined which directly relate to a probability, i.e. there is
a probability of 0.95 that the true value of the coefficient lies
within the 0.95 HPDI. Thus, if we are interested in covari-
ate significance, we can simply examine the posterior dis-
tribution of the corresponding coefficient. For example, if
0 is within the 0.95 HPDI for a certain coefficient then we
do not have enough evidence to suggest that the coefficient
is significantly different from zero and must conclude the
covariate does not have a significant effect on our outcome
variable. Bayesian approaches are often much more flexible
and allow for greater model complexity; this is especially
important for the current application as we need to account
for correlated target variables, as well as circular target vari-
ables which would be very difficult to do with a frequentist
approach [27].

To examine the influence that the subject age, subject
gender and the applied additional stretch have on the skin
properties anisotropy, average stiffness and stiffness in the
direction of the Langer line (measured by the eccentric-
ity, area and length of the semi-minor axis of the fit ellipse
respectively), a Bayesian multivariate outcome regression
model was built. The multivariate approach was selected to
account for the fact that e and A are both calculated using
the semi-major and semi-minor axes and are therefore cor-
related. The model is of the form:

log(Eccentricity) Age
Area/1000 = a + B|Gender |+ E, )
Semi-minor Axis Config.

where « is a three-dimensional vector representing the inter-
cept, B is a 3 X 3 matrix of coefficients for age, gender and
configuration, and E ~ N(0, X) is the error term. Note that
as the eccentricity is a parameter bounded by 0 and 1, a
regular linear model would not be suitable as we cannot
obtain values of e > 1or e < 0 regardless of the input values.
Therefore, a log of the eccentricity was taken as the outcome
variable. For numerical stability the Area was normalised by
a factor of 1000.

Inference for a Bayesian model of the form Eq. 5 can be
performed via Markov Chain Monte Carlo (MCMC) meth-
ods using the function “stan_mvmer” implemented in the R
package “rstanarm” [38—40]. We use default non-informative
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True Eccentricity = 0.7, True AR = 1.4003
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Fig.4 Schematic demonstrating how outliers (in grey) might change
the AR dramatically (in this example by increasing the Max RRT and
decreasing the Min RRT beyond a range that represents the data) but
only slightly elongate the fit ellipse. The red dotted line represents the
underlying ellipse with eccentricity 0.7 before noise or outliers were
added. The fit ellipse can be seen in blue and has an eccentricity of
0.756. The true AR for the underlying ellipse would be 1.4; however,
due to the outliers, the AR in this case would be 2.7.

priors and obtain draws from the posterior distribution of the
regression parameters.

Results
Simulation Study Results

In the section "Anisotropy Measurement" we suggested that
the eccentricity of a fit ellipse would be a more robust meas-
ure of anisotropy than the ratio of the max and min values.
An illustrative example in Fig. 4 shows how outliers could
drastically affect the anisotropy ratio, providing misrepre-
sentative results. However, a more systematic evaluation is
required to directly compare the two methods, see the sec-
tion "Simulation Study".

The results of the simulation study can be seen in Fig. 5.
Unsurprisingly, when the noise is very low (¢ = 1), both
anisotropy measures perform extremely well, they are tightly
distributed and centered over the true values. We can see
that, as the level of noise increases, the distributions of both
measures widen and stray away from the true value. How-
ever, we can see that for low to high amounts of noise the
eccentricity is far more robust than the AR: the distribution
tends to widen but it is still distributed around (or very close
to) the true known value. In contrast, as the noise increases,
the AR distribution strays further and further away from
the true value and the tails of the distribution become more
pronounced with extreme outliers appearing. It should also
be noted that the AR consistently overestimates the degree
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Fig.5 Results of the simula-

tion study for 10,000 observa-

tions, e = [0.5,0.7,0.9] and 1.00
o =[1,10,20,30]. The true

known value of the measure is —- -:.-
represented by the dashed lines.
Note that in order to capture

the extreme outliers in the AR
measure plot (right), the y axis
was log transformed. It is clear
that for low to high amounts of
noise the eccentricity distribu-
tions are centered around (or are
close to) the true value, whereas
the AR distributions stray fur-
ther and further away from the
true value with increasing noise.

Eccentricity
o
3
-
=

0.25

Simulation Results for Eccentricity

0.00

1 10
Sigma

of anisotropy, introducing a bias into our measurement,
whereas the eccentricity provides a more consistent estimate
on average (albeit underestimating the actual eccentricity in
some scenarios with high noise).

Analysis of particular simulations which resulted in outli-
ers for the eccentricity/AR (where the measure was far from
the true value) can be found in Appendix A. From this, and
the analysis of the overall distributions, we can conclude that
the eccentricity is a more robust and reliable measurement
of anisotropy for this type of data.

Influence of Age and Gender on Skin Properties

As discussed in the section "Bayesian Data Analysis", using
a Bayesian approach we can examine the significance of the
model covariates by examining the posterior distribution for
each parameter. A model of the form Eq. 5 was built and the
posterior distributions can be seen in Fig. 6.

Let us first consider the influence of age. We can see in
Fig. 6a that the 0.95 HPDI (grey area) for the age coefficient
does not contain 0. Thus, given the data, there is a 95%
probability that age has a significant effect on the degree of
anisotropy as measured by the eccentricity. The age coeffi-
cient is positive and centred around a posterior mean value
of 0.007 (see Table 3). Therefore, there is a positive effect
of the age on the log of the eccentricity, i.e. the eccentricity
increases logarithmically with age. Furthermore, due to the
shape of the log function we can conclude that the eccentric-
ity (degree of anisotropy) increases as age increases with

Simulation Results for AR
30~

|

I

1

I

|
o
.

oo

Anisotropic Ratio
[ ]

30 1 10 20 30
Sigma

a steep increase from childhood into adulthood. This can
also be seen by assuming no correlation between the out-
come variables and plotting the age of the subject against
the eccentricity (see Fig. 7).

In Fig. 6b we can see that the 0.95 HPDI (grey area)
barely includes the value zero. Hence, according to the data,
age may not have a significant effect on the average stiffness
as measured by the ellipse area. However, it is worth noting
that a considerable part of the posterior distribution is above
the zero threshold, which is in line with the many reports
in the literature indicating that skin stiffness increases with
age. We must keep in mind that the area here refers to the
“average stiffness” across all directions.

In Fig. 6¢, we see the posterior distribution of the effect
of age on stiffness in the direction of the Langer line (max
stiffness) measured by the length of the semi-minor axis.
We can see the age of the subject is significant according to
the data. The age coefficient is negative and centered around
a posterior mean value of —0.391. Therefore, the data sug-
gests there is a negative effect of age on the length of the
semi-minor axis, i.e. as age increases, the length of the semi-
minor axis decreases (arrival time of the wave decreases in
the direction of the Langer line indicating increased stiffness
of the skin in that direction), as expected.

Now, let us consider the influence of gender. We can see
in Fig. 6a that the 0.95 HPDI (grey area) for the male coef-
ficient contains 0. Thus, it is unlikely that the gender coef-
ficient has a significant effect on the eccentricity (degree of
anisotropy), i.e. according to the data, there is no significant
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Fig.6 Posterior Distributions (
for the age, gender and configu-
ration regression coefficients
from Eq. 5. Note that the shaded
region between the two vertical
black lines represents the 0.95
HPDI and the vertical dashed
red line denotes the location of
0. If 0 is within the 0.95 HPDI,
there is not enough evidence to
say the covariate has a signifi-
cant effect on the outcome vari-
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Table 3 Posterior mean values Age Gender Configuration
and 0.95 HPDI for the age
gender and configuration Mean 0.95 HPDI Mean 0.95 HPDI Mean 0.95 HPDI
coefficients where * indicates
that the interval does not log(Ecc.) 0.007*  [0.005, 0.009] 0.032 [—0.081, 0.144] 0.137* [0.067, 0.207]
include.the nu}l V_alue 0, Area 0.316 [-0.006, 0.636]  —16.725* [-31.898,—1.546] —19.832* [—26.745,—12.864]
suggesting a significant result. Semi-maj —0.391% [0.696,—0.085] —15.174* [-29.723,-0.667] —26.808* [~34.182,—19.310]

difference between the degree of anisotropy in males versus
females. In Fig. 6b we can see that the data shows evidence
of a difference between the average stiffness of male subjects
versus female subjects. We can also see that, using the cat-
egory female as the baseline, the coefficient for the shift in
area due to the male category is negative and centred around
a posterior mean value of —16.725. Therefore, the area of
the fit ellipse is on average smaller (average skin stiffness is
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higher) for males than females. Finally, in Fig. 6c we can see
that the data provides evidence for a significant difference
between the length of the semi-minor axis (arrival time in
the direction of the Langer line) for male and female sub-
jects. The male coefficient is negative and centered around
a posterior mean value of —15.174. Therefore, the skin stiff-
ness in the direction of the Langer line is on average higher
for males than females.
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Fig. 7 Scatter plot of the eccentricity (i.e. anisotropy) of the fit ellipse
vs age of the subject. It is clear that there is a positive relationship:
as the age of the subject increases the degree of anisotropy also
increases. The red line corresponds to a simple log-linear model fit
with R? = 0.5105.
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Fig.8 Subject 29, a 26 year old male showing both the natural con-
figuration in black and the stretched configuration in red. Note that
the stretched ellipse is narrower and more elongated, but pointing
in the same direction, which confirms that the skin tension greatly
affects the surface wave speed along the direction of Langer lines.

Influence of Skin Tension

To explore the effect of skin tension on the speed of travel-
ling surface waves and determine the potential efficacy of the
Reviscometer in evaluating skin tension, an additional stretch
(in the direction of the fastest wave) was manually applied to
the skin and the same measurement procedure was carried out.
Following this procedure, in theory, we would expect that:

1. The tilt angle should be conserved, provided the stretch
is applied in the direction of the fastest traveling wave
(along the Langer line).

2. The length of the semi-minor axis should decrease due
to the increase in wave speed along the direction of the
applied stretch.

3. The eccentricity should increase, as we would expect
that the stretched data would be more anisotropic due
to the additional applied stretch and decrease in semi-
minor axis length.

For an example of this behaviour see Fig. 8.

Following the same analysis of age and gender in the sec-
tion "Influence of Age and Gender on Skin Properties" we
can also examine the effect that the additional applied stretch
had on the length of the semi-major axis and the eccentricity
by examining the posterior distribution of each parameter.

Note that as our covariate is a categorical variable with
two outcomes (either natural or stretched), the “stretched
coefficient” is the shift in outcome variable from the base-
line natural configuration to the stretched configuration. From
Fig. 6, we can see that the data provides evidence of a signifi-
cant difference between the natural and stretched configura-
tions in the log eccentricity and the length of the semi-minor
axis. The 0.95 HPDI (grey area) does not contain 0 and the
posterior distributions are concentrated far from this value.
Furthermore, we can see that the shift for the stretched con-
figuration is positive for the log of the eccentricity outcome
(posterior mean of 0.137) and negative for the length of the
semi-minor axis (posterior mean of —26.808). This demon-
strates that the eccentricity of the fit ellipse increases and the
length of the semi-minor axis decreases on average from the
natural to the stretched configuration, as expected.

Finally, to examine the effect that the additional applied
stretch had on the angle of the fit ellipse, which indicates the
direction of the Langer line, a model was built of the form:

Angle of fit ellipse = @ + f(Config.) + ¢, 6)

where a is the intercept, f is the coefficient for the configura-
tion and € is the error. Note that as our covariate is a cate-
gorical variable with binary outcomes (natural or stretched),
the intercept represents the baseline category (natural) and f
is the shift in angle for the alternative category (stretched).

Note that here we have a circular response variable and
cannot build a regular linear model. Following the discussion
in Ref. [41], we fit a circular regression model using the pro-
jected normal distribution within a Bayesian framework, using
the MCMC methodology implemented in the function “bpnr”
from the package “bpnreg” [42]. The posterior distributions
for the natural and stretched configurations can be seen in
Fig. 9. We see that the 0.95 HPDI overlap for the natural and
stretched configurations. Therefore, in the data, there is no
indication of a significant difference in the posterior circular
means of the two configurations. This indicates that the con-
figuration does not affect the angle of the fit ellipse, hence the
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Natural vs Stretched Configuration HPD Interval

Posterior Density

0.9 1.2 1.5 1.8 2.1
Angle (Rad)

Configuration |:] Natural El Stretched

Fig.9 Posterior estimates of the circular means of the angle of the
fit ellipse for the natural and stretched configurations. Note that the
0.95 HPDI are represented by the shaded regions which overlap and
indicate there is no significant effect of configuration on the angle of
the fit ellipse.

direction of the Langer line, as expected. Howeyver, there is a
degree of uncertainty as the posteriors do not overlap com-
pletely, so for some subjects there may be variation in angle
due to the additional stretch, but the difference in configura-
tion does not appear to be strong in the data.

Discussion

As discussed in the section "Anisotropy Measurement" we
have demonstrated that the eccentricity of a fit ellipse is a bet-
ter measure of the anisotropy, as it is more robust to outliers
and noise, than the commonly used anisotropic ratio [3, 21,
24]. Robustness to noise and outliers is an important attrib-
ute for biological measurements and particularly in vivo skin
measurements as we expect experimental error, patient vari-
ability and subject movement to impact data collection.
Using our new measure of anisotropy, the relationship
between the skin anisotropy and age was explored, see the
section "Influence of Age and Gender on Skin Properties".
We found that as age increases, the degree of anisotropy also
increases, with a steep increase occurring from childhood
to adulthood. Many early authors previously reported only
a weak dependence of elastic wave speed with age [23-25],
but as noted by Ruvolo et al., these studies employed poor
resolution angular data (measurements taken every 45° only).
More recent studies have noted an increase in anisotropy
with age [43, 44], but none of these studies included infants
and therefore the steep increase in anisotropy which occurs
from childhood into adulthood would not have been captured.
Ruvolo et al. did include infants within their study and report
an exponential increase in the anisotropic ratio with age, while
in the current study, we have found a logarithmic increase in
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anisotropy with age. The reason for the different observations
may be, in part, due to the use of the anisotropic ratio in Ruvolo
et al. and also due to the fact that participants were divided
into 5 age ranges for the purpose of the statistical analysis. In
the current study, age was considered a continuous variable
and hence provides a richer insight into the true relationship
between age and anisotropy. This detailed information can pro-
vide evidence as to the validity of applying universal cosmetic
surgery practises to very young or elderly patients, where we
expect the level of anisotropy to vary significantly.

It has variously been reported in the literature that skin
stiffness increases [45, 46], decreases [25, 3, 21, 43], or is not
affected at all [24] as the age of the subject increases. In the
section "Influence of Age and Gender on Skin Properties", we
concluded that age does not appear to have a significant effect
on the area of the fit ellipse (our measure of overall stiffness,
independent of direction). However, by virtue of considering
the area of the ellipse independent of its shape we are “averag-
ing” over the known fact that the skin of older subjects is more
anisotropic. And while the area of the ellipses does not seem
to be affected by age, the length of the semi-minor axis (i.e.
max stiffness) does appear to be affected (see Fig. 6¢). This
indicates that as the age of the subject increases, the stiffness
of the skin increases in the direction of the Langer line only.
In this context, our results agree with [44, 46] who found that
there is increased stiffness along the direction of Langer Lines
with age. The current results are, however, in direct disagree-
ment with Ruvolo et al. and Hermanns-L£ et al. who found that
age influenced the maximum RRT (equivalent to the length of
the semi major axis in the current study) but not the minimum
RRT (equivalent to the length of the semi minor axis in the
current study). It is possible that these differences may have
arisen due to the method of data analysis e.g. in contrast to
the length of the semi-major and semi-minor ellipses fit to the
circular data, the use of maximum and minimum RRT values
does not account for outliers and does not offer a robust meas-
urement. Contrasting results with other studies may be as a
result of reporting “average” stiffness which does not consider
the significant anisotropy of skin (in particular elderly skin).
We should acknowledge also a degree of uncertainty with the
conclusion that the “average stiffness” (area of ellipse) is not
affected by age, as 0 is just inside the 0.95 HPDI and a large
portion of the posterior distribution is concentrated above this
value (see Fig. 6b). Therefore, perhaps it is unsurprising that
there is disagreement in the literature on this point.

Similarly, we acknowledge a degree of uncertainty with
the conclusion that males have stiffer skin than females on
average since for both the Area (average stiffness) and the
length of the semi-minor axis (arrival time in the direction of
the Langer line), 0 is just outside the 0.95 HPDI (See Fig. 6).
This result is consistent with [46] who state that males have
stiffer skin (albeit only within certain age ranges, 21-40 years)
but contrasts with [47] who state that women have stiffer skin.
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These contrasting results found in the literature may be as a
result of the complex interactions between the influence of
age, gender, and body location on the skin stiffness.

On average, the angle of the ellipse is conserved from the
natural to the stretched configuration; however, there is quite a
wide range of individual behaviours (see Figs. 9 and 11). While
some extreme behaviours like subjects going from close to 0° to
close to 180° or vice versa can be explained due to the circular
nature of the variable, other variations are likely due to experi-
mental error. As discussed in the section "Data Collection", a
fixture was used to take measurements every 10°. Therefore, the
identified direction of fastest wave speed (i.e. Langer line) was
to the nearest 10°, i.e. an accuracy of +5°. Once the direction
of the Langer line was identified, tape was applied manually to
stretch the skin in that direction, which also introduces a source
of error. This in turn could affect the fundamental mechanics of
the probe, introducing further uncertainty, and explaining some
of the uncertainty in this result.

During the calibration of the Reviscometer® the material
being tested was assumed to be linearly elastic, isotropic
and unstressed. While these assumptions are true for the
reference materials used (see Table 1), the application of
Eq. 1 to in vivo skin is not strictly valid, because of the pre-
tension and the oriented collagen fibers. Future mathemati-
cal relations relating elastic wave speed to stiffness should
seek to take these effects into account. Such a relationship
may provide a means to explicitly determine both in vivo
skin tension and skin stiffness using elastic waves.

A core assumption of this study was that the ellipse is a good
fit for our data. We believe this is a reasonable assumption due
to the flexibility of an ellipse fit and the data collection proce-
dure which should result in axisymmetric measurements (due
to the repeated measurements from 180° to 360°) about and
perpendicular to the Langer lines. It should be noted, however,
that the raw measurements from some subjects did not exhibit
this symmetry and thus the ellipse fit was poor in those cases.

In this paper, an in vivo elastic wave technique was employed
to investigate the role of age, gender and skin tension on both
skin anisotropy and skin stiffness measurements on a sizeable
population. By fitting an ellipse to angular data and report-
ing its eccentricity, we have proposed a more reliable, robust
and informative metric of anisotropy than the classic “aniso-
tropic ratio” favoured so far in the literature. Using a Bayesian
approach, we have concluded that skin anisotropy increases
logarithmically with age, with a steep increase occurring from
childhood into adulthood. Furthermore, the maximum stiffness
of skin increases linearly with age, but this increase is only seen
along the direction of Langer Lines. We have also concluded
that gender does not significantly influence the degree of skin
anisotropy, but that both the average skin stiffness, and skin
stiffness along the direction of Langer Lines is higher for males
than females. Finally, we have also concluded that both the skin
anisotropy and skin stiffness measurements are significantly

influenced by the level of skin tension present. This suggests
that in vivo elastic wave measurements may be a suitable
method for inferring in vivo skin tension.

To the best of our knowledge, this is the first study which
uses a sizeable sample of in vivo subjects and modern
Bayesian statistical analysis to evaluate the effect of age and
gender on in vivo skin anisotropy. This dataset will provide
a useful reference to those wishing to evaluate the effect of
subject specific parameters such as age and gender on the
anisotropic response of skin.

Appendix A: Simulation Study—
Examination of Poor Performance

In addition to examining Fig. 5, we can go one step fur-
ther by analysing examples of poor performance for each
measure. For example, lets choose the medium ellipse with
medium noise scenario (e = 0.7 and ¢ = 20) and examine
the performance of both the eccentricity and the AR for two
different simulations where:

1. Eccentricity is furthest from the true value (i.e. the simu-
lation that produced the largest outlier in the eccentricity
distribution).

2. AR is furthest from the true value (i.e. the simulation
that produced the largest outlier in the AR distribution).

This allows us to explore the conditions in which each meas-
ure performs poorly and how the other measure performs in
those conditions, see Fig. 10. As we have chosen the mid-
dle ellipse, the true eccentricity and AR values are 0.7 and
1.4003 respectively.

In Simulation 668 (Fig. 10b), the eccentricity of the fit
ellipse was 0.7196 and the AR was 3.6236. For this dataset
the ellipse performs very well and the poor performance
in the AR is driven solely by the two extreme points which
are used to calculate the AR but are not representative of
the data as a whole.

In Simulation 583 (Fig. 10a), the eccentricity of the fit
ellipse was 0.4672 and the AR was 2.0644. For this data-
set neither the AR or the eccentricity are close to their
true values, the AR significantly overestimates the degree
of anisotropy using two extreme values that are only 30
degrees apart (rather than 90° which would make physi-
cally intuitive sense). The poor performance in the eccen-
tricity is because, by chance, the random noise pulled the
points along the semi-major axis closer to the origin and
pushed the points along the semi-minor axis away from
the origin. Thus, even though we know the “true” eccen-
tricity before noise to be 0.7, it could be argued that the
calculated eccentricity of 0.4672 is a better measure of
the anisotropy as it is representative of the data.
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(a) Poor Eccentricity Performance, e = 0.7, sigma = 20

200

100

-100

-200 -100 0 100 200

-200 -100 0 100 200

Fig. 10 Examination of the conditions under which a measure per-
forms poorly for the scenario e = 0.7, 6 = 20. The red dashed ellipse
is the underlying ellipse with true values e = (0.7 and AR = 1.4003
before noise was added, the blue ellipse is the fit ellipse and the large
blue points highlight the Maximum and Minimum RRT values. a
Case & = 0.4672, AR = 2.0644: The green arrows show the net shift
in points by random chance, effectively squashing the ellipse, the blue
ellipse appears to be representative of the data despite the low eccen-
tricity. b Case 2 = 0.7196, AR = 3.6236: the ratio considers only the
max and min points in blue, disregarding all the other points and per-
forming poorly while the ellipse performs well.

This, along with the analysis in the section "Simulation
Study Results" allows us to conclude that eccentricity is a
more robust measurement of anisotropy for this type of data.

Appendix B: Individual Subject Behaviours

As well as looking at the average behaviours in Fig. 6 and
Fig. 9 we can examine the specific behaviour of individual
subjects using spaghetti plots (see Fig. 11). Most subjects
exhibit the expected behaviour for the length of the semi-
minor axis and the eccentricity with only a small minority
of subjects that have alternative behaviours (see Figs. 11b
and 11c). For the angle, we can see quite a range of different
behaviours (see Fig. 11a) but on average, most subject angles
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remain more or less the same. Note that some subjects go
from close to 0° to close to 180° or vice versa, this behaviour
is equivalent to a small increase/decrease in angle due to the
circular nature of the measurement.

(a) Angle vs Configuration

150

50

Natural Stretched
Configuration

(b) Semi-minor Axis vs Configuration
250

200

150

Semi-minor Axis

100

Natural Stretched
Configuration

(C) Eccentricity vs Configuration

1.00

0.75

Eccentricity
o
3

0.25

0.00

Natural Stretched
Configuration

Fig. 11 Spaghetti plots where the red circles denote the mean and
the light red region is the 95% confidence interval of the mean. a
There is a wide variety of behaviours for the angle but on average the
angle remains constant. Note that some subjects go from close to 0
to close to 180 or vice versa, this behaviour is equivalent to a small
increase/decrease in angle. b There is some variance in behaviour but
the semi-minor axis decreases for the majority of subjects. ¢ There
is some variance in behaviour but the eccentricity increases for the
majority of subjects from the natural to the stretched configuration.
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