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A B S T R A C T

The operating frequency range of passive topological phononic crystals is generally fixed and narrow, limiting
their practical applications. To overcome this difficulty, here we design and investigate a one-dimensional
soft dielectric phononic crystal (PC) plate system with actively tunable topological interface states via the
mechanical and electric loads. We use nonlinear electroelasticity theory and linearized incremental theory
to derive the governing equations. First we determine the nonlinear static response of the soft dielectric PC
plate subjected to a combination of axial force and electric voltage. Then we study the motion of superimposed
incremental bending waves. By adopting the Spectral Element Method, we obtain the dispersion relation for the
infinite PC plate and the transmission coefficient for the finite PC plate waveguide. Numerical results show that
the low-frequency topological interface state exists at the interface of the finite phononic plate waveguide with
two topologically different elements. By simply adjusting the axial force or the electric voltage, an increase or
decrease in the frequency of the topological interface state can be realized. Furthermore, applying the electric
voltage separately on different elements of the PC plate waveguide is a flexible and smart method to tune
the topological interface state in a wide range. These results provide guidance for designing soft smart wave
devices with low-frequency tunable topological interface states.
1. Introduction

Dielectric elastomers (DEs) are a type of smart materials that re-
spond to rapidly to electric stimulus and develop large deformations.
DEs have attracted enormous attention from academia and industry
alike, due to excellent characteristics such as high energy density,
high fracture toughness and light weight, and promising potential in
artificial muscles, soft robotics, actuators, and energy harvesters (Carpi
et al., 2011; Anderson et al., 2012; Zhao and Wang, 2014).

Recently, it has also been shown that applying an electric field offers
an effective approach to manipulating acoustic/elastic waves in DEs via
the induced finite deformations. Based on nonlinear electroelasticity
theory and associated incremental theory (Dorfmann and Ogden, 2006,
2010), many investigations have been conducted to study superim-
posed infinitesimal waves in DEs subjected to the external mechanical
and electric loads. For an infinite soft electroactive hollow tube with
axial pre-stretch and axial electric field, Su et al. (2016) analyzed
the non-axisymmetric wave propagation characteristics. Shmuel and
Pernas-Salomón (2016) employed the stable Hybrid Matrix Method to
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investigate the manipulation of flexural waves in DE films controlled
by an axial force and voltage. Galich and Rudykh (2016) studied
both the propagation of pressure and shear waves in DEs under the
action of electric stimuli. Based on the State Space Method, Wu et al.
(2017) presented a theoretical analysis of guided circumferential wave
propagation in soft electroactive tubes under inhomogeneous elec-
tromechanical biasing fields, and found it could be used for ultrasonic
non-destructive testing. Wu et al. (2020) studied nonlinear finite defor-
mations and superimposed axisymmetric wave in a functionally graded
soft electroactive tube, when it is subjected to mechanical and electric
biasing fields. Ziser and Shmuel (2017) showed experimentally that the
flexural wave mode in a DE film can be tuned by voltage, and that
the wave velocity can be slowed down. This setup was also modeled
theoretically by Broderick et al. (2020). Jandron and Henann (2018)
demonstrated the tunable effect of electric load on the linearized wave
propagation in infinite periodic composite DEs, based on Finite Element
Method simulations.
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Phononic crystals (PCs), which are essentially artificial periodic
composites, have attracted intensive interests because of their outstand-
ing characteristics in steering acoustic/elastic waves. Ascribed to the
Bragg scattering (Kushwaha et al., 1993), local resonance (Liu et al.,
2000) or inertial amplification (Yilmaz et al., 2007) mechanisms, the
existence of a band gap (BG) is the most important feature possessed
by PCs, wherein the propagation of acoustic/elastic wave is forbidden.
Due to the exotic BG and the dispersive pass band properties, PCs
can be applied to realize peculiar wave behaviors, such as negative
refraction (Feng et al., 2006; Zhang and Liu, 2004), cloaking (Zhang
et al., 2011; Chen et al., 2017) and one-way propagation (Fleury et al.,
2014; Chen et al., 2019b).

To achieve active control of wave propagation, many studies have
been carried out to design PCs with wide tunable BGs, especially by
using electric stimuli to tune the BGs in soft DE PCs. For the first
time, Shmuel and deBotton (2012) investigated the electrostatically
tunable BGs of incremental shear waves propagating perpendicular to
the neo-Hookean ideal DE periodic laminates by the transfer matrix
method. Galich and Rudykh (2017) re-checked the problem studied
by Shmuel and deBotton (2012) and found that the BGs are not af-
fected directly by the electric load for the shear waves propagating
perpendicular to the layers in the neo-Hookean ideal DE laminates,
which corrected the conclusion of Shmuel and deBotton (2012). Shmuel
(2013) analyzed the propagation characteristics of incremental anti-
plane shear waves in finitely extensible Gent DE fiber composites, and
provided the first accurate demonstration of electrostatically tunable
BGs in the DE composites. In addition, Getz et al. (2017) showed that
the complete BGs of a soft dielectric fiber composite can be tuned
by electric voltage, due to the resulting changes in geometry and
physical properties of the structure. Getz and Shmuel (2017) designed
PC plates composed of two DE phases, and achieved voltage-controlled
BGs, which can be used for active waveguides and isolators. By ad-
justing the axial force and electric voltage applied to one-dimensional
(1D) PC cylinders made of DE materials, Wu et al. (2018) studied
active tunability of superimposed longitudinal wave propagation. For
a periodic compressible DE laminate, Chen et al. (2020) shed light
on the influence of pre-stress and electric stimuli on the nonlinear
response and small-amplitude longitudinal and shear wave propagation
behaviors. For more details on tunable and active PCs, the interested
readers are referred to a recent review paper by Wang et al. (2020b).

Inspired by the concept of topological interface state in electronic
systems, attention has been devoted in recent years to topological
PC systems with particular topologically protected interface or edge
states, which are unidirectional and immune to backscattering (Xiao
et al., 2015; Ma et al., 2019). The topological invariants, named
Berry phase (Zak, 1989) for two-dimensional (2D) systems and Zak
phase (Atala et al., 2013) for 1D systems, play an important role in
characterizing the topological properties of band structures for PCs.
Mimicking the quantum Hall effect, a first type of 2D topological
PCs breaks the time-reversal symmetry with gyroscopes (Nash et al.,
2015), time-modulated materials (Chen et al., 2019a), or external flow
fields (Khanikaev et al., 2015). The unidirectional topologically pro-
tected interface state in this type of topological PCs was observed exper-
imentally by Fleury et al. (2014). A second type of 2D topological PCs
breaks the spatial-inversion symmetry while conserving time-reversal
symmetry, which support the pseudospin-dependent edge states and
are named as quantum spin Hall topological insulators (Brendel et al.,
2018; Zhang et al., 2017). Because of the spin–orbit mechanism,
quantum spin Hall topological PCs may feature forward and backward
edge states by relying on appropriate polarization excitation (Yu et al.,
2018). A third avenue is to break the inversion or mirror symmetry
of 2D topological PCs, where the quantum valley Hall effect provides
topologically protected interface states between two parts with opposite
valley vortex states (Pal and Ruzzene, 2017; Wang et al., 2020a).
For 1D topological systems, the topological transition process can be
2

achieved by breaking spatial symmetry. Hence, topological interface
states were observed in waveguides composed of base elements with
different topological properties (Xiao et al., 2015; Yin et al., 2018).

However, for topological PCs made of passive materials, the work-
ing frequency range of topological interface/edge modes is narrow and
fixed. In particular, the topological interface state in 1D systems usually
emerges at a single frequency transmission peak in the overlapped BG.
Therefore, actively tunable topological PCs are designed to possess a
wider operating frequency range in practical applications. Zhou et al.
(2020b) realized tunable topological interface states in a piezoelectric
rod system with periodic electric boundary conditions. By adjusting the
strain field, Liu and Semperlotti (2018) actively tuned the topological
edge states in a 2D topological PC waveguides based on the quan-
tum valley Hall effect. Feng et al. (2019) designed 1D magnetoelastic
topological PC slabs and used a magnetic field to tune the topological
interface states for Lamb waves contactlessly and nondestructively.

Among the many studies on tunable topological PCs, soft topolog-
ical PCs are receiving some attention because of their low operating
frequency and the possibility of tunability by external loads. Li et al.
(2018) presented topological interface states in a designed soft circular-
hole PC plate that were dynamically tuned by altering the filling ratio
and adjusting the external mechanical strain. Huang et al. (2020)
showed that mechanical deformations can be used to actively tune the
topological interface states in a 1D soft PC plate consisting of base
elements with different topological properties. Nguyen et al. (2019)
presented a 2D quantum valley Hall topological insulator, composed
of soft cylinder inclusions and an elastic matrix. They found that the
mechanical deformations can be exploited to modulate the topological
properties of the structure and tune the topologically protected states.
Chen et al. (2021) proposed a 1D soft waveguide composed of two topo-
logically different PC elements, in which the low-frequency topological
interface states for longitudinal waves were tuned by the axial force in
a wide frequency range. Based on the quantum valley Hall effect, Zhou
et al. (2020a) designed a soft membrane-type PC consisting of a DE
membrane and metallic particles, and broadened the frequency range
of the topological interface mode in this voltage-controlled system.

However, a high density of metallic particles can result in excessive
deformations of the DE membrane, whose planar configuration may
collapse. Motivated by the excellent electromechanical behaviors of
DEs, here we design a 1D soft dielectric topological PC plate with step-
wise cross-sections for the incremental bending waves, where the Bragg
BGs are generated due to the geometric periodicity and the topological
transition process can be realized by changing the geometric parameter.
The low-frequency topological interface states in the soft dielectric PC
plate can be actively tuned by applying electromechanical loads, which
is a smarter and more convenient method to adjust the topological
properties of PC waveguides compared with only applying a mechanical
stimulus.

This paper is organized as follows. The basic formulations of non-
linear electroelasticity theory and its linearized incremental theory
are summarized in Section 2. In Section 3, we analyze the nonlinear
deformations of the designed soft dielectric PC plate with periodically
varying cross-sections. By employing the Spectral Element Method, in
Section 4 we derive the dispersion relation and transmission coefficient
for the incremental bending waves in the soft dielectric PC plate. The
numerical results in Section 5 show how the applied electric voltage
and axial force affect the frequency of topological interface states in
the soft dielectric plate waveguide. Some conclusions are made in
Section 6.

2. Preliminary formulations

This section briefly reviews the theoretical background of nonlinear
electroelasticity and the related linearized incremental theory. For
more detailed descriptions, interested readers are referred to the papers

and textbook by Dorfmann and Ogden (2006, 2010, 2014).
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2.1. Theory of nonlinear electroelasticity

Consider an incompressible, soft deformable electroelastic contin-
uum. The undeformed reference configuration is denoted by 𝑟 with
oundary 𝜕𝑟 and outward unit normal 𝐍. A material particle in this
onfiguration is labeled by its position vector 𝐗. When subjected to
n external load, the body deforms and occupies the deformed current
onfiguration 𝑡 at time 𝑡 with boundary 𝜕𝑡 and outward unit normal
𝑡. The material point which was at 𝐗 is now at 𝐱 = 𝝌(𝐗, 𝑡), where

is an invertible vector function defined for all points in 𝑟. The
eformation gradient tensor is defined as 𝐅 = 𝜕𝐱∕𝜕𝐗 = Grad𝝌 with
ts Cartesian components 𝐹𝑖𝛼 = 𝜕𝑥𝑖∕𝜕𝑋𝛼 , where ‘Grad’ is the gradient
perator in 𝑟.

In the absence of free charges and currents, and under the assump-
ion of quasi-electrostatic approximation, the electric displacement vec-
or 𝐃 and electric field vector 𝐄 in 𝑡 satisfy Gauss’s law and Faraday’s
aw, respectively, as

iv𝐃 = 0, curl𝐄 = 𝟎, (1)

here ‘curl’ and ‘div’ are the curl and divergence operators defined in
𝑡. In Eulerian form, the equation of motion without body force is given
y

iv𝝉 = 𝜌𝐱,𝑡𝑡, (2)

here 𝝉 is the ‘total Cauchy stress tensor’ accounting for the contri-
ution of electric body forces, 𝜌 is the material mass density, which
emains constant due to the material incompressibility constraint 𝐽 =
et 𝐅 = 1, and the subscript 𝑡 following a comma signifies the material
ime derivative. The symmetry of 𝝉 is ensured by the conservation of
ngular momentum.

For an incompressible electroelastic material, the nonlinear con-
titutive relation can be derived from the total energy density func-
ion 𝛺(𝐅,) per unit undeformed reference volume as (Dorfmann and
gden, 2006)

= 𝜕𝛺
𝜕𝐅

− 𝑝0𝐅−1,  = 𝜕𝛺
𝜕

, (3)

here 𝐓 = 𝐅−1𝝉,  = 𝐅−1𝐃 and  = 𝐅T𝐄 are the ‘total’ nominal stress
ensor, Lagrangian electric displacement, and electric field vectors,
espectively, and 𝑝0 is a Lagrange multiplier accounting for the ma-
erial incompressibility. Here, the superscript T signifies the transpose
peration.

For an incompressible isotropic electroelastic material, the energy
ensity function can be written as 𝛺 = 𝛺(𝐼1, 𝐼2, 𝐼4, 𝐼5, 𝐼6), where

𝐼1 = tr𝐂, 𝐼2 = [(tr𝐂)2 − tr(𝐂2)]∕2, 𝐼4 =  ⋅,

𝐼5 =  ⋅ (𝐂), 𝐼6 =  ⋅ (𝐂2),
(4)

and 𝐂 = 𝐅T𝐅 is the right Cauchy–Green deformation tensor. Substitu-
tion of Eq. (4) into Eq. (3) leads to

𝝉 = 2𝛺1𝐛 + 2𝛺2(𝐼1𝐛 − 𝐛2) + 2𝛺5𝐃⊗ 𝐃
+2𝛺6(𝐃⊗ 𝐛𝐷 + 𝐛𝐷⊗ 𝐃) − 𝑝0𝐈,

𝐄 = 2(𝛺4𝐛−1𝐃 +𝛺5𝐃 +𝛺6𝐛𝐷),
(5)

where 𝐛 = 𝐅𝐅T is the left Cauchy–Green deformation tensor, 𝐈 is the
identity tensor, and 𝛺𝑚 = 𝜕𝛺∕𝜕𝐼𝑚(𝑚 = 1, 2, 4, 5, 6).

In this paper, we consider a dielectric elastomer plate coated by
compliant electrodes on its surfaces, so that there is no electric field
outside the material according to Gauss’s theorem. As a result, the
electric boundary conditions on 𝜕𝑡 are

𝐄 × 𝐧𝑡 = 𝟎, 𝐃 ⋅ 𝐧𝑡 = −𝜎f , (6)

where 𝜎f is the free charge density on 𝜕𝑡. In addition, the mechanical
boundary condition on 𝜕𝑡 can be written in Eulerian form as

𝝉𝐧𝑡 = 𝐭𝑎, (7)
𝑎

3

where 𝐭 is the applied mechanical traction vector per unit area of 𝜕𝑡.
2.2. Linearized theory for incremental motions

Following Dorfmann and Ogden (2010), a time-dependent infinites-
imal incremental motion 𝐱̇ (𝐗, 𝑡), together with an incremental change
̇ in the electric displacement vector is superimposed on an underlying
static, finitely deformed configuration  with boundary 𝜕 and out-
ward unit normal 𝐧. Here and thereafter, a superposed dot is used to
denote incremental quantities.

The incremental governing equations can be written in the updated
Lagrangian form as

div̇0 = 0, curl̇0 = 𝟎, div𝐓̇0 = 𝜌𝐮,𝑡𝑡, (8)

where 𝐓̇0 = 𝐅𝐓̇, ̇0 = 𝐅̇ and ̇0 = 𝐅−T̇ are the ‘push-forward’
versions of the Lagrangian increments 𝐓̇, ̇ and ̇, respectively; 𝐮(𝐱, 𝑡) =
𝐱̇ (𝐗, 𝑡) is the incremental mechanical displacement vector and the
subscript 0 identifies the resulting ‘push-forward’ quantities.

For an incompressible soft electroelastic material, the linearized
incremental constitutive laws are

𝐓̇0 = 0𝐇 +0̇0 + 𝑝0𝐇 − 𝑝̇0𝐈, ̇0 = T
0𝐇 +0̇0, (9)

here 𝐇 = grad𝐮 denotes the incremental displacement gradient ten-
or, ‘grad’ is the gradient operator in , and 𝑝̇0 is an incremental change
n the Lagrange multiplier 𝑝0. In component form, the instantaneous
lectroelastic moduli tensors 0, 0 and 0 are

0𝑝𝑖𝑞𝑗 = 𝐹𝑝𝛼𝐹𝑞𝛽𝛼𝑖𝛽𝑗 = 0𝑞𝑗𝑝𝑖, 0𝑝𝑖𝑞 = 𝐹𝑝𝛼𝐹
−1
𝛽𝑞 𝛼𝑖𝛽 = 0𝑖𝑝𝑞 , (10)

0𝑖𝑗 = 𝐹−1
𝛼𝑖 𝐹

−1
𝛽𝑗 𝛼𝛽 = 0𝑗𝑖, (11)

here the components of referential electroelastic moduli tensors ,
and  are defined as

𝛼𝑖𝛽𝑗 =
𝜕2𝛺

𝜕𝐹𝑖𝛼𝜕𝐹𝑗𝛽
, 𝛼𝑖𝛽 = 𝜕2𝛺

𝜕𝐹𝑖𝛼𝜕𝛽
, 𝛼𝛽 = 𝜕2𝛺

𝜕𝛼𝜕𝛽
. (12)

Note that Greek and Roman indices are related to 𝑟 and , respec-
tively, and the summation convention for repeated indices is adopted.
The incremental incompressibility condition requires

div𝐮 = tr𝐇 = 0. (13)

The incremental electric and mechanical boundary conditions, which
are written in the updated Lagrangian form and are satisfied on 𝜕, are

̇0 × 𝐧 = 𝟎, ̇0 ⋅ 𝐧 = −𝜎̇F0, 𝐓̇T
0𝐧 = 𝐭̇𝐴0 , (14)

in which 𝜎̇F0 and 𝐭̇𝐴0 indicate the incremental surface charge density and
applied incremental mechanical traction per unit area of 𝜕, respec-
tively, and the incremental electrical variables outside the electroelastic
material are discarded.

3. Nonlinear response of a homogeneous DE plate with step-wise
cross-sections

A single-phase thin soft dielectric PC plate with periodically varying,
step-wise square cross-sections is shown in Fig. 1. In the undeformed
configuration (Fig. 1(a)), the unit cell composed of a homogeneous in-
compressible DE has two thinner sub-plates 𝐴 and 𝐶 with equal length
𝐿(𝐴)∕2 and height 𝐻 (𝐴), sandwiching a thicker sub-plate 𝐵 of length
𝐿(𝐵) and height 𝐻 (𝐵) (we assume 𝐻 (𝐵) > 𝐻 (𝐴)). The physical quantities
of the sub-plate 𝑝 (𝑝 = 𝐴,𝐵, 𝐶) are denoted by the superscript (⋅)(𝑝)

throughout this paper. Geometrically, the total length of undeformed
unit cell is 𝐿 = 𝐿(𝐴) + 𝐿(𝐵) along the 𝑥1 direction, and different sub-
lates have an equal width 𝑤 = 𝑤(𝐴) = 𝑤(𝐵) = 𝑤(𝐶). In addition, the

unit cell of the PC plate is designed to be symmetric with respect to the
neutral 𝑥1−𝑥3 plane in order to decouple the longitudinal and bending
(transverse) waves (Yin et al., 2018). The difference in cross-sectional
areas helps construct the geometric periodicity and results in the Bragg

BGs for this periodic soft dielectric PC plate.



International Journal of Solids and Structures 259 (2022) 112013Y. Chen et al.
Fig. 1. Sketch of an infinite soft dielectric PC plate with step-wise cross-sections: (a)
undeformed configuration and its unit cell along with the geometric size; (b) deformed
configuration and its unit cell along with the geometric size when subjected to an axial
force 𝐹𝑁 , electric voltages 𝑉 (𝐴) and 𝑉 (𝐵) in the thickness direction; (c) incremental
bending waves superimposed on the static finite deformations shown in (b).

When subjected to electric voltages applied between the compliant
electrodes on its top and bottom surfaces, combined with an axial
force 𝐹𝑁 , the soft dielectric PC plate is activated to the deformed
configuration, as shown in Fig. 1(b). The application of electric voltage
across the thickness of the sub-plates generates electrostatic forces,
which decrease the thickness and increase the in-plane (𝑥1-𝑥3 plane)
size. The tensile axial force has a similar influence on the geometry
of the soft dielectric PC plate. Here, the following assumptions are
introduced: (1) For the external loads keeping unchanged in the width
direction, we assume the plane-strain state for the thin dielectric plate
with a large width (compared with the height); (2) The nonlinear
deformations are approximately assumed uniform in each sub-plate
of the unit cell, because inhomogeneous local deformations are con-
fined to small regions near the interfaces between different sub-plates
and hardly affect the response of low-frequency topological interface
states. The latter assumption has been validated by the finite element
simulations for longitudinal waves in soft PC cylinders (Chen et al.,
2021).

In the Cartesian coordinate system with coordinates 𝑥1, 𝑥2 and 𝑥3
along the length, thickness, and width directions of the plate, respec-
tively, the plane-strain nonlinear deformation of each sub-plate can be
described by the uniform deformation gradient tensor as

𝐅(𝑝) = diag[𝜆(𝑝), 1∕𝜆(𝑝), 1], (15)

where 𝜆(𝑝) is the principal stretch of sub-plate 𝑝 in the 𝑥1 direction.
Accordingly, the geometric sizes of each sub-plate in the deformed unit
cell are

𝑙(𝑝) = 𝜆(𝑝)𝐿(𝑝), ℎ(𝑝) = 𝐻 (𝑝)∕𝜆(𝑝), (16)

where ℎ(𝑝), 𝑙(𝐴)∕2 = 𝑙(𝐶)∕2, and 𝑙(𝐵) are the thickness of sub-plate 𝑝 and
the lengths of the thinner and thicker sub-plates in the deformed state,
respectively. Note that we have assumed that sub-plates 𝐴 and 𝐶 are
subjected to the same voltage, leading to 𝑙(𝐴)∕2 = 𝑙(𝐶)∕2. Consequently,
the length of the deformed unit cell is 𝑙 = 𝑙(𝐴)+𝑙(𝐵). Because the electric
voltage 𝑉 (𝑝) is applied along the 𝑥2 direction, the Eulerian electric
displacement vector 𝐃 has only one nonzero component, 𝐷(𝑝)

2 .
To investigate bending wave propagation, we consider that the

soft dielectric PC plate is modeled by the incompressible Gent ideal
dielectric model (Gent, 1996; Wu et al., 2018),

𝛺(𝑝) = −
𝜇𝐽𝑚 ln

(

1 −
𝐼 (𝑝)1 − 3

)

+
𝐼 (𝑝)5 , (17)
4

2 𝐽𝑚 2𝜀
where 𝜇 and 𝜀 = 𝜀0𝜀𝑟 are the shear modulus and material permittivity
in the undeformed state, respectively, with the vacuum permittivity
𝜀0 = 8.85 pF/m and 𝜀𝑟 being the relative permittivity, and 𝐽𝑚 is a
dimensionless constant characterizing the strain-stiffening effect of the
DE plate. The neo-Hookean ideal dielectric model can be recovered
from Eq. (17) in the limit of 𝐽𝑚 → ∞. Here, 𝐼 (𝑝)1 =

(

𝜆(𝑝)
)2 +

(

𝜆(𝑝)
)−2+1

and 𝐼 (𝑝)5 =
(

𝐷(𝑝)
2

)2
are the relevant invariants. For the single phase soft

dielectric PC plate, the electromechanical material parameters 𝜇, 𝐽𝑚
and 𝜀 are the same for three sub-plates, but the stretch 𝜆(𝑝) could be
different due to the non-uniform cross-section.

By substituting Eq. (17) into Eq. (5), the expressions for Cauchy
stress components 𝜏(𝑝)11 and 𝜏(𝑝)22 as well as for the Eulerian electric field
component in the 𝑥2 direction are obtained as

𝜏(𝑝)11 =
𝜇𝐽𝑚

𝐽𝑚 − 𝐼 (𝑝)1 + 3

(

𝜆(𝑝)
)2 − 𝑝(𝑝)0 ,

𝜏(𝑝)22 =
𝜇𝐽𝑚

𝐽𝑚 − 𝐼 (𝑝)1 + 3

(

𝜆(𝑝)
)−2+

(

𝐷(𝑝)
2

)2

𝜀
− 𝑝(𝑝)0 ,

𝐸(𝑝)
2 =

𝐷(𝑝)
2
𝜀

.

(18)

To balance the axial force 𝐹𝑁 and fulfill the traction-free conditions
on the top and bottom surfaces (at 𝑥2 = ±ℎ(𝑝)∕2 with origin located
at the centroid of the plate), the stress components 𝜏(𝑝)11 and 𝜏(𝑝)22 must
satisfy

𝜏(𝑝)11 =
𝐹𝑁

𝑎(𝑝)
, 𝜏(𝑝)22 = 0, (19)

where 𝑎(𝑝) = 𝑤ℎ(𝑝) is the cross-sectional area of sub-plate 𝑝 in the
deformed configuration. Furthermore, because the voltage 𝑉 (𝑝) is ap-
plied across the thickness, the only nonzero component of the Eulerian
electric field vector is

𝐸(𝑝)
2 = 𝑉 (𝑝)

ℎ(𝑝)
, (20)

showing that 𝐸(𝑝)
2 is linearly related to the voltage 𝑉 (𝑝).

Inserting Eqs. (19)2 and (20) into Eq. (18)2,3 yields the Lagrange
multiplier 𝑝(𝑝)0 of each sub-plate as

𝑝(𝑝)0 =
𝜇𝐽𝑚

𝐽𝑚 − 𝐼 (𝑝)1 + 3

(

𝜆(𝑝)
)−2 + 𝜀

(

𝑉 (𝑝)

ℎ(𝑝)

)2
. (21)

Substituting Eqs. (18)1 and (21) into Eq. (19)1, we then obtain the
nonlinear relation between 𝜆(𝑝), 𝑉 (𝑝) and 𝐹𝑁 for sub-plate 𝑝 as

𝜇𝐽𝑚
𝐽𝑚 − 𝐼 (𝑝)1 + 3

[

(

𝜆(𝑝)
)2 −

(

𝜆(𝑝)
)−2] − 𝜀

(

𝑉 (𝑝)

ℎ(𝑝)

)2
=

𝐹𝑁

𝑤ℎ(𝑝)
. (22)

According to Eq. (22), the principal stretch ratio 𝜆(𝑝) of each sub-
plate can be found once the external loads 𝑉 (𝑝) and 𝐹𝑁 are prescribed.
Usually, the resulting stretch ratios for different sub-plates 𝐴 and 𝐵 are
not the same.

4. Incremental bending waves in a soft dielectric PC plate

Based on the nonlinear deformations obtained in Section 3, we
now study the superimposed incremental bending wave (see Fig. 1(c)),
propagating in the dielectric PC plate subjected to the voltage and axial
force. We derive the incremental equation of motion and its solutions
in Section 4.1. In Sections 4.2 and 4.3, we use the Spectral Element
Method (Lee, 2009; Han et al., 2012) to derive in turn the dispersion
relation of an infinite soft PC plate and the transmission coefficient of
a finite soft PC plate waveguide.
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4.1. Incremental motion equation and its solutions

In this subsection, we drop the superscript notation (⋅)(𝑝) of each
sub-plate temporarily for compactness. Following Gei et al. (2010)
and Shmuel and Pernas-Salomón (2016), we assume that the pertur-
bations in the electric quantities generated by the incremental wave
motions are negligible. We assume that the plane-strain state holds
(all physical quantities are independent of coordinate 𝑥3) and that the
deflection 𝑢2 depends on coordinate 𝑥1 only. Then the equation of
motion for bending waves in the soft dielectric PC plate under the
axial force is analogous to that found for a pre-stressed Euler–Bernoulli
beam.

Neglecting the incremental electric quantities, the components 𝑇̇011
and 𝑇̇022 can be obtained by the incremental constitutive relation (9)1
as
𝑇̇011 =

(

01111+𝑝0
)

𝐻11 +01122𝐻22 − 𝑝̇0,
𝑇̇022 = 01122𝐻11 +

(

02222+𝑝0
)

𝐻22 − 𝑝̇0,
(23)

where we used 𝐻33 = 0 (plane-strain assumption), and the components
of 0 for the Gent ideal dielectric model characterized by Eq. (17) can
be derived from Eq. (12)1 as

01111 =
2𝜇𝐽𝑚

(

𝐽𝑚 − 𝐼1 + 3
)2

𝜆4 +
𝜇𝐽𝑚

𝐽𝑚 − 𝐼1 + 3
𝜆2,

01122 =
2𝜇𝐽𝑚

(

𝐽𝑚 − 𝐼1 + 3
)2

,

02222 =
2𝜇𝐽𝑚

(

𝐽𝑚 − 𝐼1 + 3
)2

𝜆−4 +
𝜇𝐽𝑚

𝐽𝑚 − 𝐼1 + 3
𝜆−2 + 1

𝜀
(

𝐷2
)2.

(24)

Making use of the incremental incompressibility constraint 𝐻11+𝐻22 =
0 from Eq. (13), Eq. (23) is expressed in terms of 𝐻11 and 𝑝̇0 as

𝑇̇011 =
(

01111 + 𝑝0 −01122
)

𝐻11 − 𝑝̇0,
𝑇̇022 =

(

01122 −02222 − 𝑝0
)

𝐻11 − 𝑝̇0.
(25)

For bending waves propagating in the Euler–Bernoulli beam or plate
along the 𝑥1 direction, the total bending moment 𝐦𝑡 is

𝐦𝑡 = ∫𝜕𝑟

𝐱 ×
(

𝐓 + 𝐓̇
)T𝐍d𝐴 = ∫𝜕

𝐱 ×
(

𝐓 + 𝐓̇
)T𝐅T𝐧d𝑎

= ∫𝜕
𝑥2𝐢2 ×

(

𝐓 + 𝐓̇
)T𝐅T𝐧d𝑎,

(26)

in which 𝐢1, 𝐢2 and 𝐢3 are the unit vectors along the 𝑥1, 𝑥2 and 𝑥3 direc-
tions, respectively, 𝜕 is the cross-section of the deformed plate with its
normal being 𝐧 = 𝐢1, and we used Nanson’s formula 𝐧d𝑎 = 𝐽𝐅−T𝐍d𝐴 =
𝐅−T𝐍d𝐴, where d𝑎 and d𝐴 are infinitesimal surface elements in  and
𝑟, respectively. Because the nominal stress component 𝑇11 (or Cauchy
stress 𝜎11) is a constant, the initial bending moment 𝐦𝑖 satisfies

𝐦𝑖 = ∫𝜕
𝑥2𝐢2 × 𝐓T𝐅T𝐧d𝑎 = −𝑤∫

ℎ∕2

−ℎ∕2
𝑇11𝜆𝑥2d𝑥2𝐢3 = 𝟎. (27)

Inserting Eq. (27) into Eq. (26) yields the incremental bending moment
𝐦 = 𝐦𝑡 −𝐦𝑖 as

𝐦 = ∫𝜕
𝑥2𝐢2 × 𝐓̇T𝐅T𝐧d𝑎 = ∫𝜕

𝑥2𝐢2 × 𝐓̇T
0𝐧d𝑎 = −𝑤∫

ℎ∕2

−ℎ∕2
𝑇̇011𝑥2d𝑥2𝐢3.

(28)

It is well-accepted that the shear deformation can be ignored in the
Euler–Bernoulli beam theory, which gives

𝐻12 +𝐻21 = 𝑢1,2 + 𝑢2,1 = 0. (29)

Considering that the plate is very thin, we can assume that the de-
flection 𝑢2 keeps unchanged along the thickness direction (independent
of 𝑥2). The differentiation of Eq. (29) with respect to 𝑥1 along with a
further integration with respect to 𝑥2 leads to
5

𝐻11 = 𝑢1,1 = −𝑥2𝑢2,11 + 𝐶0, (30)
where 𝑢2,11 is assumed to be uniform along 𝑥2 and 𝐶0 is an unde-
termined constant. Substituting Eqs. (25)1 and (30) into Eq. (28), we
obtain the expression of the incremental bending moment as

𝐦 = 𝑢2,11
(

01111 + 𝑝0 −01122
)

𝐼 𝐢3 +𝑤∫

ℎ∕2

−ℎ∕2
𝑝̇0𝑥2d𝑥2𝐢3, (31)

where 𝐼 = 𝑤 ∫ ℎ∕2
−ℎ∕2 𝑥

2
2d𝑥2 = 𝑤ℎ3∕12 is the second moment of area. The

second term in Eq. (31) depends on 𝑝̇0, which is determined by the
incremental boundary condition, as follows. The soft PC plate is free of
mechanical traction at the top and bottom surfaces, and 𝑇̇022 = 0 there.

herefore, 𝑝̇0 is derived from Eq. (25)2 as

𝑝̇0 =
(

01122 −02222 − 𝑝0
)

𝐻11. (32)

By inserting Eq. (32) into Eq. (31), we obtain the relation between the
incremental bending moment 𝐦 and the deflection 𝑢2 as

𝐦 = 𝑢2,11e
0𝐼 𝐢3, (33)

where e
0 = 01111+02222+2𝑝0−201122, and the Lagrange multiplier

𝑝0 is determined by Eq. (21).
Similarly to the derivations of governing equations for transverse

waves in a pre-stressed Euler–Bernoulli beam (Graff, 1975), the balance
of linear momentum along with Eq. (33) is applied to a differential
element of the soft dielectric plate. As a result, the incremental bending
wave equation of the soft dielectric plate takes the form

−e
0𝐼𝑢2,1111 + 𝐹𝑁𝑢2,11 = 𝜌𝑎𝑢2,𝑡𝑡, (34)

where 𝑎 is the cross-sectional area of the deformed plate. For the su-
perimposed bending wave motions, the deflection 𝑢2 is only dependent
on 𝑥1 and 𝑡, and the general solution to Eq. (34) is

𝑢2 =
(

𝑊1ei𝛼𝑥1 +𝑊2e−i𝛼𝑥1 +𝑊3ei𝛽𝑥1 +𝑊4e−i𝛽𝑥1
)

e−i𝜔𝑡, (35)

where i is the imaginary unit, 𝜔 is the angular frequency, 𝑊1, 𝑊2, 𝑊3
and 𝑊4 are the arbitrary amplitude constants, and

𝛼 =

√

√

√

√

√

−𝐹𝑁 +
√

𝐹𝑁
2 + 4e

0𝐼𝜌𝑎𝜔
2

2e
0𝐼

,

𝛽 = i

√

√

√

√

√

𝐹𝑁 +
√

𝐹𝑁
2 + 4e

0𝐼𝜌𝑎𝜔
2

2e
0𝐼

.

(36)

In general, e
0, 𝐼 , 𝑎, 𝛼 and 𝛽 are step-wise constants for the soft

dielectric PC plate which depend on the external electromechanical
loads 𝑉 and 𝐹𝑁 , and they are usually not the same for different
sub-plates.

4.2. Dispersion relation of an infinite soft PC plate

Now we shed light on the derivation of the dispersion relation for
an infinite soft PC plate with step-wise cross-sections. To describe the
mechanical state at each section of the PC plate, the deflection, rotation
angle, bending moment and shear force at that section are introduced
and expressed in the following forms (the harmonic time-dependency
e−i𝜔𝑡 is assumed for all fields and is omitted for simplicity):

𝑢(𝑝)2

(

𝑥(𝑝)1

)

= 𝑊 (𝑝)
1 ei𝛼

(𝑝)𝑥(𝑝)1 +𝑊 (𝑝)
2 e−i𝛼

(𝑝)𝑥(𝑝)1 +𝑊 (𝑝)
3 ei𝛽

(𝑝)𝑥(𝑝)1 +𝑊 (𝑝)
4 e−i𝛽

(𝑝)𝑥(𝑝)1 ,

𝜑(𝑝)
(

𝑥(𝑝)1

)

= 𝑢(𝑝)2,1,

m(𝑝)
(

𝑥(𝑝)1

)

= 𝜁 (𝑝)𝑢(𝑝)2,11,

𝑄(𝑝)
(

𝑥(𝑝)1

)

= −𝜁 (𝑝)𝑢(𝑝)2,111,

(37)

respectively, where 𝜁 (𝑝) = e(𝑝)
0 𝐼 (𝑝), and 𝑥(𝑝)1 is the local coordinate of
each sub-plate.
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𝐕(𝑝) =
⎡

⎢

⎢

⎢

⎢

⎣

𝜁 (𝑝)
(

𝛼(𝑝)
)2 𝜁 (𝑝)

(

𝛼(𝑝)
)2 𝜁 (𝑝)

(

𝛽(𝑝)
)2 𝜁 (𝑝)

(

𝛽(𝑝)
)2

−i𝜁 (𝑝)
(

𝛼(𝑝)
)3 i𝜁 (𝑝)

(

𝛼(𝑝)
)3 −i𝜁 (𝑝)

(

𝛽(𝑝)
)3 i𝜁 (𝑝)

(

𝛽(𝑝)
)3

−𝜁 (𝑝)
(

𝛼(𝑝)
)2ei𝛼(𝑝)𝑙(𝑝) −𝜁 (𝑝)

(

𝛼(𝑝)
)2e−i𝛼(𝑝)𝑙(𝑝) −𝜁 (𝑝)

(

𝛽(𝑝)
)2ei𝛽(𝑝)𝑙(𝑝) −𝜁 (𝑝)

(

𝛽(𝑝)
)2e−i𝛽(𝑝)𝑙(𝑝)

i𝜁 (𝑝)
(

𝛼(𝑝)
)3ei𝛼(𝑝)𝑙(𝑝) −i𝜁 (𝑝)

(

𝛼(𝑝)
)3e−i𝛼(𝑝)𝑙(𝑝) i𝜁 (𝑝)

(

𝛽(𝑝)
)3ei𝛽(𝑝)𝑙(𝑝) −i𝜁 (𝑝)

(

𝛽(𝑝)
)3e−i𝛽(𝑝)𝑙(𝑝)

⎤

⎥

⎥

⎥

⎥

⎦

.
(41)

Box I.
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To avoid the severe numerical instabilities of the traditional Trans-
er-Matrix Method (refer to Rokhlin and Wang, 2002 and Pao et al.,
007 for more details on the rigorous analysis of numerical instabili-
ies) when studying the bending/transverse wave propagation charac-
eristics (especially the transmission spectrum) of soft PC plates, we
mploy the stable Spectral Element Method (Lee, 2009; Han et al.,
012) to derive the bending wave propagation behaviors of soft PC
lates. It is worth noting that the Spectral Element Method adopted
n this paper differs from that used by Wang et al. (2021a,b), where
hey developed the so-called Spectral Element Method with exponen-
ial convergence, by adopting interpolation nodes within the Finite
lement Method framework. Our method is also different from the
table Hybrid Compliance-Stiffness Matrix Method used by Shmuel
nd Pernas-Salomón (2016) for flexural waves in two-component soft
ielectric films.

We first introduce the nodal displacement vector 𝐪(𝑝) = [𝐪(𝑝)T𝐿 𝐪(𝑝)T𝑅 ]T

f sub-plate 𝑝 with 𝐪(𝑝)𝐿 = [𝑢(𝑝)2 (0) 𝜑(𝑝) (0)]T and 𝐪(𝑝)𝑅 = [𝑢(𝑝)2
(

𝑙(𝑝)
)

𝜑(𝑝) (𝑙(𝑝)
)

]T, where the subscript 𝐿 and 𝑅 stand for the physical quan-
tities at the left and right ends of each sub-plate, and 𝑙(𝑝) = 𝑙(𝐴)∕2 (or
𝑙(𝐵)) is associated with sub-plates A and C (or sub-plate B). According
to Eq. (37)1,2, the nodal displacement vector 𝐪(𝑝) can be written as

𝐪(𝑝) = 𝐔(𝑝)𝐜(𝑝), (38)

where the 4 × 4 matrix 𝐔(𝑝) and the coefficient vector 𝐜(𝑝) are

𝐔(𝑝) =

⎡

⎢

⎢

⎢

⎢

⎣

1 1 1 1
i𝛼(𝑝) −i𝛼(𝑝) i𝛽(𝑝) −i𝛽(𝑝)

ei𝛼(𝑝)𝑙(𝑝) e−i𝛼(𝑝)𝑙(𝑝) ei𝛽(𝑝)𝑙(𝑝) e−i𝛽(𝑝)𝑙(𝑝)

i𝛼(𝑝)ei𝛼(𝑝)𝑙(𝑝) −i𝛼(𝑝)e−i𝛼(𝑝)𝑙(𝑝) i𝛽(𝑝)ei𝛽(𝑝)𝑙(𝑝) −i𝛽(𝑝)e−i𝛽(𝑝)𝑙(𝑝)

⎤

⎥

⎥

⎥

⎥

⎦

,

𝐜(𝑝) =
[

𝑊 (𝑝)
1 𝑊 (𝑝)

2 𝑊 (𝑝)
3 𝑊 (𝑝)

4

]T
,

(39)

respectively. Similarly, the nodal force vector 𝐟 (𝑝) = [𝐟 (𝑝)T𝐿 𝐟 (𝑝)T𝑅 ]T can
be expressed as

𝐟 (𝑝) = 𝐕(𝑝)𝐜(𝑝), (40)

where 𝐟 (𝑝)𝐿 = [−m(𝑝) (0) −𝑄(𝑝) (0)]T, 𝐟 (𝑝)𝑅 = [m(𝑝) (𝑙(𝑝)
)

𝑄(𝑝) (𝑙(𝑝)
)

]T, and
(41) (see Box I). Combining Eq. (38) with Eq. (40), we obtain the
following relation:

𝐟 (𝑝) = 𝐆(𝑝)𝐪(𝑝) =
[

𝐆(𝑝)
𝐿𝐿 𝐆(𝑝)

𝐿𝑅
𝐆(𝑝)

𝑅𝐿 𝐆(𝑝)
𝑅𝑅

]

𝐪(𝑝), (42)

where 𝐆(𝑝) = 𝐕(𝑝)(𝐔(𝑝))−1 is the 4 × 4 dynamic stiffness matrix for
sub-plate 𝑝 (𝑝 = 𝐴,𝐵, 𝐶).

For each deformed unit cell, the incremental continuity conditions
at the interfaces between different sub-plates can be expressed as

𝐟 (𝐴)𝑅 = −𝐟 (𝐵)𝐿 , 𝐪(𝐴)𝑅 = 𝐪(𝐵)𝐿 ,
𝐟 (𝐵)𝑅 = −𝐟 (𝐶)

𝐿 , 𝐪(𝐵)𝑅 = 𝐪(𝐶)
𝐿 .

(43)

Substituting Eq. (43) into Eq. (42), we derive the relation between the
nodal force vector and nodal displacement vector at the left and right
ends of each unit cell, which we write in matrix form as
[

𝐟 (𝐴)𝐿
(𝐶)

]

=
[

𝐊𝐿𝐿 𝐊𝐿𝑅
]

[

𝐪(𝐴)𝐿
(𝐶)

]

, (44)
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𝐟𝑅 𝐊𝑅𝐿 𝐊𝑅𝑅 𝐪𝑅
where 𝐊 is the 4 × 4 dynamic stiffness matrix of the deformed unit cell,
with its four partitioned 2 × 2 sub-matrices 𝐊𝑖𝑗 (𝑖, 𝑗 = 𝐿,𝑅) being given
by

𝐊𝐿𝐿 = 𝐉𝐿𝐿 − 𝐉𝐿𝑅
(

𝐉𝑅𝑅 +𝐆(𝐶)
𝐿𝐿

)−1
𝐉𝑅𝐿,

𝐊𝐿𝑅 = −𝐉𝐿𝑅
(

𝐉𝑅𝑅 +𝐆(𝐶)
𝐿𝐿

)−1
𝐆(𝐶)

𝐿𝑅,

𝐊𝑅𝐿 = −𝐆(𝐶)
𝑅𝐿

(

𝐉𝑅𝑅 +𝐆(𝐶)
𝐿𝐿

)−1
𝐉𝑅𝐿,

𝐊𝑅𝑅 = −𝐆(𝐶)
𝑅𝐿

(

𝐉𝑅𝑅 +𝐆(𝐶)
𝐿𝐿

)−1
𝐆(𝐶)

𝐿𝑅 +𝐆(𝐶)
𝑅𝑅,

(45)

here

𝐉𝐿𝐿 = 𝐆(𝐴)
𝐿𝐿 −𝐆(𝐴)

𝐿𝑅

(

𝐆(𝐴)
𝑅𝑅 +𝐆(𝐵)

𝐿𝐿

)−1
𝐆(𝐴)

𝑅𝐿,

𝐉𝐿𝑅 = −𝐆(𝐴)
𝐿𝑅

(

𝐆(𝐴)
𝑅𝑅 +𝐆(𝐵)

𝐿𝐿

)−1
𝐆(𝐵)

𝐿𝑅,

𝐉𝑅𝐿 = −𝐆(𝐵)
𝑅𝐿

(

𝐆(𝐴)
𝑅𝑅 +𝐆(𝐵)

𝐿𝐿

)−1
𝐆(𝐴)

𝑅𝐿,

𝐉𝑅𝑅 = 𝐆(𝐵)
𝑅𝑅 −𝐆(𝐵)

𝑅𝐿

(

𝐆(𝐴)
𝑅𝑅 +𝐆(𝐵)

𝐿𝐿

)−1
𝐆(𝐵)

𝐿𝑅.

(46)

Next, we employ the Bloch-Floquet theorem to derive the dispersion
elation of the periodic soft PC plate. Based on the structural periodicity
nd the incremental continuity conditions at the interface between the
eighboring unit cells, the relations of physical quantities at the two
nds of each unit cell satisfy
(𝐶)
𝑅 = ei𝑘̄𝐪(𝐴)𝐿 , 𝐟 (𝐶)

𝑅 = −ei𝑘̄𝐟 (𝐴)𝐿 , (47)

here 𝑘̄ = 𝑘𝑙 is the dimensionless Bloch wave number, ranging from −𝜋
o 𝜋 in the first Brillouin zone, with 𝑘 being the Bloch wave number.
q. (44) combined with Eq. (47) leads to
2i𝑘̄𝐪(𝐴)𝐿 + ei𝑘̄𝐊−1

𝐿𝑅
(

𝐊𝐿𝐿 +𝐊𝑅𝑅
)

𝐪(𝐴)𝐿 +𝐊−1
𝐿𝑅𝐊𝑅𝐿𝐪

(𝐴)
𝐿 = 𝟎2×2. (48)

hrough some mathematical manipulations, Eq. (48) can be rewritten
s
[

𝟎2×2 𝐈2×2
−𝐊−1

𝐿𝑅𝐊𝑅𝐿 −𝐊−1
𝐿𝑅

(

𝐊𝐿𝐿 +𝐊𝑅𝑅
)

]

[

𝐪(𝐴)𝐿
ei𝑘̄𝐪(𝐴)𝐿

]

− ei𝑘̄
[

𝐪(𝐴)𝐿
ei𝑘̄𝐪(𝐴)𝐿

]

= 𝟎4×4, (49)

here 𝐈 is a second-order identity matrix.
Therefore, by solving the generalized eigenvalue Eq. (49), the dis-

ersion relation of the infinite soft PC plate can be obtained. In the case
here a frequency 𝜔 is prescribed, four complex roots of ei𝑘̄ follow

rom Eq. (49). Say the complex root ei𝑘̄ is written as 𝑝 + i𝑞 and the
imensionless Bloch wave number 𝑘̄ as 𝑐 + i𝑑, where 𝑐, 𝑑, 𝑝 and 𝑞 are
ll real numbers. Then, we can express 𝑐 and 𝑑 in terms of 𝑝 and 𝑞
s (Han et al., 2012; Zhou et al., 2019)

=

⎧

⎪

⎨

⎪

⎩

arctan (𝑞∕𝑝) , if 𝑝 > 0
𝜋 + arctan (𝑞∕𝑝) , if 𝑝 < 0 & 𝑞 > 0
−𝜋 + arctan (𝑞∕𝑝) , if 𝑝 < 0 & 𝑞 < 0

(50)

nd

= −
ln
(

𝑝2 + 𝑞2
)

2
. (51)

As a result, the dispersion relation between the frequency and the
Bloch wave number for incremental bending waves can be solved from
Eqs. (49)–(51).
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Fig. 2. Schematic of a finite soft dielectric PC plate composed of two types of different unit cells under the combination of axial force and electric voltage. The electric voltages
applied on the two PC components could be different.
4.3. Transmission coefficient of a finite soft dielectric PC plate

In this subsection, we analyze the transmission behavior of incre-
mental bending waves propagating in a finite soft dielectric PC plate
composed of 𝑁 unit cells that can be either identical or different (see
Fig. 2). In light of Eq. (44), the relation between nodal displacement
and force vectors in the 𝑛th unit cell can be rewritten as
[

𝐟 (𝐴)𝑛𝐿
𝐟 (𝐶)
𝑛𝑅

]

=
[

𝐊𝑛𝐿𝐿 𝐊𝑛𝐿𝑅
𝐊𝑛𝑅𝐿 𝐊𝑛𝑅𝑅

]

[

𝐪(𝐴)𝑛𝐿
𝐪(𝐶)
𝑛𝑅

]

. (52)

Using the incremental interfacial continuity conditions between adja-
cent unit cells, the global stiffness matrix for a finite PC plate with 𝑁
unit cells can be obtained by assembling the element dynamic stiffness
matrix from unit cell 1 to 𝑁 , which yields

𝐟𝑡𝑜𝑡 = 𝐐𝑡𝑜𝑡𝐪𝑡𝑜𝑡, (53)

where 𝐪𝑡𝑜𝑡, 𝐟𝑡𝑜𝑡 and 𝐐𝑡𝑜𝑡 are the global displacement vector, global
force vector and global stiffness matrix, respectively. The boundary
conditions at the two ends of the finite PC plate are also required for
calculating the transmission spectrum. If the incident wave is excited
at the left end and the output signal is received at the right end of
the finite PC plate, we can express the global displacement and force
vectors as

𝐪𝑡𝑜𝑡 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐪(0)
𝐪(1)
⋮

𝐪(𝑁)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, 𝐟𝑡𝑜𝑡 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐟 (0)
𝟎
⋮
𝟎

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

𝐟 (0) =
{

0
𝐹𝐼

}

, 𝐪(0) =
{

𝑢2𝐼
𝜑𝐼

}

, 𝐪(𝑁) =
{

𝑢2𝑂
𝜑𝑂

}

,

(54)

where 𝐪(𝑛) = 𝐪(𝐶)
𝑛𝑅 = 𝐪(𝐴)(𝑛+1)𝐿 and 𝐟 (𝑛) = 𝐟 (𝐶)

𝑛𝑅 + 𝐟 (𝐴)(𝑛+1)𝐿 are the nodal
displacement and external force vectors between adjacent unit cells, 𝐹𝐼
is the shear force excited at the input end, and 𝑢2𝐼 (𝜑𝐼 ) and 𝑢2𝑂 (𝜑𝑂) are
the displacement (rotation angle) signals at the input and output ends,
respectively, which are caused by the input shear force. In particular,
we have 𝐪(0) = 𝐪(𝐴)1𝐿 , 𝐟 (0) = 𝐟 (𝐴)1𝐿 , 𝐪(𝑁) = 𝐪(𝐶)

𝑁𝑅 and 𝐟 (𝑁) = 𝐟 (𝐶)
𝑁𝑅. The

elements 𝐟 (𝑛) of the global force vector 𝐟𝑡𝑜𝑡 in Eq. (54) are all equal
to zero, except for 𝐟 (0) at the incident end because of the traction-free
surfaces and input excitation of shear force. After assembly, the global
stiffness matrix is written as (55) (see Box II).

Because the global force vector 𝐟𝑡𝑜𝑡 is known when 𝐹𝐼 is fixed, the
displacements 𝑢2𝐼 and 𝑢2𝑂 at input and output ends can be solved
according to Eq. (53). The transmission coefficient can then be defined
and calculated as

𝑡𝑁 = 20 log
(

|

|

𝑢2𝑂||
)

. (56)
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|

𝑢2𝐼 ||
5. Numerical results and discussion

In this section, we present numerical results to analyze the tunable
effects of the applied axial force and electric voltage on the dispersion
relation and topological properties of incremental bending waves for
the soft PC plate described by the Gent ideal dielectric model.

In the following numerical simulations, we set the geometric pa-
rameters of the undeformed unit cell as: 𝐿(𝐴) = 𝐿 (1 + 𝛿)∕2 and 𝐻 (𝐴) =
1 cm for the length and thickness for sub-plate 𝐴; for sub-plate 𝐵,
the length is 𝐿(𝐵) = 𝐿 (1 − 𝛿)∕2 with the thickness being 𝐻 (𝐵) =
3 cm, where 𝐿 = 15 cm is the total length of unit cell and 𝛿 is a
structural parameter ranging from −1 to 1. For the commercial product
Fluorosilicone 730 (Pelrine et al., 2000), the initial density, shear
modulus and relative permittivity of soft dielectric PC plate are 𝜌 =
1400 kg∕ m3, 𝜇 = 167.67 kPa and 𝜀𝑟 = 7.11, respectively. We define
the dimensionless axial force and voltage as 𝐹𝑁 = 𝐹𝑁∕(𝜇𝑤𝐻 (𝐵)) and
𝑉

(𝑝)
= 𝑉 (𝑝)

√

𝜀∕𝜇∕𝐻 (𝐵), respectively. The ordinary frequency 𝑓 , which
is measured in Hz, is related to the circular frequency by 𝑓 = 𝜔∕(2𝜋).
Moreover, the width 𝑤 can be eliminated in the process of parameter
nondimensionalization and thus its specific value is not needed here.

5.1. Nonlinear static response of soft dielectric PC plate

When subjected to the axial force and voltage, the finite static
deformation of the incompressible dielectric PC plate is considered first.

In the absence of the axial force 𝐹𝑁 = 0, Fig. 3(a) presents the
stretch ratios 𝜆(𝐴) and 𝜆(𝐵) as functions of the dimensionless voltage
𝑉 for the ideal dielectric Gent (𝐽𝑚 = 10) and neo-Hookean (𝐽𝑚 → ∞)
models. For the dielectric neo-Hookean PC plate when 𝐹𝑁 = 0, Eq. (22)
can be simplified as

𝑉
(𝑝)

=
√

[

1 −
(

𝜆(𝑝)
)−4

]

𝐻
(𝑝)
, (57)

where 𝐻
(𝑝)

= 𝐻 (𝑝)∕𝐻 (𝐵). Note from Eq. (57) that the adjusting range
of the applied voltage 𝑉

(𝑝)
is confined and smaller than the limit value

𝐻
(𝑝)

, which is in agreement with the result shown in Fig. 3(a). As
the applied voltage increases to 𝐻

(𝑝)
, the axial stretch ratio increases

rapidly, and the electromechanical instability or pull-in instability may
emerge for the soft dielectric PC plate described by the neo-Hookean
model. Clearly, the axial deformation of the thinner plate (component
𝐴) is larger than that of the thicker plate (component 𝐵) when sub-
jected to the same electric load. For the Gent PC plate, the stretch ratio
keeps increasing with the voltage and then reaches a plateau at the
lock-up stretch. Note that when the applied axial force increases (such
as when 𝐹𝑁 = 0.5 and 1 in Figs. 3(b) and (c)), a larger initial stretch at
𝑉 = 0 can be obtained, and the deformation of the Gent phase is smaller
than that of the neo-Hookean phase at the same level of electric voltage.
For the neo-Hookean plate, the difference in the stretch ratios of sub-
plates 𝐴 and 𝐵 becomes much larger than that for the Gent case when
increasing the axial force. Due to the limited range for adjusting the
electric voltage in the neo-Hookean PC, we focus on the soft dielectric
PC plate described by the Gent model (𝐽 = 10) in the following section.
𝑚
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⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.
(55)

Box II.
Fig. 3. Nonlinear response of stretch ratios 𝜆(𝐴) and 𝜆(𝐵) to the normalized voltage 𝑉 in the soft dielectric PC plate subjected to various axial forces: (a) 𝐹𝑁 = 0; (b) 𝐹𝑁 = 0.5;
c) 𝐹𝑁 = 1 for the Gent model (𝐽𝑚 = 10) and neo-Hookean model.
d
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.2. Tunable effect of the electric voltage on bending waves

Based on the nonlinear deformation generated by the external loads,
e now discuss the band structure and tunable topological interface

tates of the superimposed bending waves in the dielectric PC plate.
For the bending waves, the band structures of the dielectric Gent

C plate in the absence of axial force (𝐹𝑁 = 0) are shown in Fig. 4
for different initial structural parameters 𝛿 and electric voltages 𝑉 .
Figs. 4(a)–(c) illustrate the band inversion process for 𝑉

(𝐴)
= 𝑉

(𝐵)
= 0,

nd the corresponding results for 𝑉
(𝐴)

= 0.2 and 𝑉
(𝐵)

= 0.4 are
displayed in Figs. 4(d)–(f). Here, the soft dielectric PC plates with
different 𝛿 stand for distinct unit-cell configurations with identical
initial unit-cell length.

We observe from Figs. 4(a)–(c) that with the decrease of 𝛿 from −0.3
to −0.659, the second BG for 𝑉

(𝐴)
= 𝑉

(𝐵)
= 0 closes at the center of

the Brillouin zone, where a linear crossover, termed as the Dirac cone,
occurs and marks a topological transition point. We can see that the
occurrence of BG degeneracy at 𝛿 = −0.659 corresponds to a case where
sub-plates 𝐴 and 𝐵 are not equally divided in the unit cell, a notable
difference from the corresponding result for longitudinal waves (Chen
et al., 2021). The second BG may reopen when decreasing 𝛿 further
rom −0.659 to −0.8. Hence, varying the geometrical parameter 𝛿 can
esult in the evolution process that the second BG opens, closes and
eopens. This band inversion process is related to the exchange of
opological phase, and will be explained later in details. In Figs. 4(d)–
f), a similar topological transition process for 𝑉

(𝐴)
= 0.2 and 𝑉

(𝐵)
=

0.4 can be also observed. Compared with the results corresponding to
𝑉

(𝐴)
= 𝑉

(𝐵)
= 0, the topological transition point is located at a different

𝛿 = −0.685 with its frequency lowered, which is due to the increasing
deformation induced by the electric load.

To describe the topological properties, we invoke the Zak phase,
a concept which originates from electronic systems science and is a
special type of Berry phase for the 1D case (Xiao et al., 2015; Yin et al.,
2018). By summing the Zak phases of all bulk bands below one BG,
we arrive at the topological property of this BG. It is known that the
8

value of Zak phase also depends on the choice of a unit cell: if the unit
cell is arbitrary without mirror symmetry, then the Zak phase can take
any value (Feng et al., 2019); if mirror symmetry of the unit cell (see
Fig. 1(a) and (b)) is ensured, then the Zak phase can only be calculated
as 0 or 𝜋. For the soft dielectric PC plate subjected to external loads,
this conclusion is still valid. Here, we denote the two PC configurations
with 𝛿 = −0.3 and −0.8 as the S1 and S2 configurations for simplicity.

To obtain the Zak phase of a bulk band of the 1D PC system, we
examine the symmetry properties (Kohn, 1959; Xiao et al., 2014; Chen
et al., 2021) of edge states at the center and border of the Brillouin
zone. The absolute values of deflection 𝑢2 of six band-edge states 𝐴1, 𝐵1,
𝐶1, 𝐴2, 𝐵2, 𝐶2, which correspond to the cross marks shown in Figs. 4(d)
and (f), are calculated. For the deformed Gent unit cell subjected to
𝑉

(𝐴)
= 0.2 and 𝑉

(𝐵)
= 0.4, the spatial distributions of |

|

𝑢2|| as a function
of the normalized coordinate 𝑥∗1 = 𝑥1∕𝑙 are displayed in Fig. 5 for
ifferent band-edge states. If the band-edge states at two symmetry
oints (center and border) of the Brillouin zone for the same bulk
and have different symmetries, then the Zak phase of this band is 𝜋.
therwise, the Zak phase is 0.

Based on the symmetric property, the unit-cell displacement field
an be divided into even and odd eigenmodes. For the even eigenmode
see Fig. 5(a)), the displacement amplitude at the center of unit cell
s nonzero; for the odd eigenmode (see Fig. 5(b)), the amplitude of 𝑢2

at the unit-cell center is zero. As we can see, edge states 𝐴1 and 𝐵1
possess opposite symmetric properties with respect to the unit cell in
Configuration S1, and the related Zak phase of the second band is 𝜋.
When the geometrical parameter is changed, band-edge states 𝐴2 and
𝐵2 in the S2 Configuration have the same symmetry (even modes), and
consequently the Zak phase is 0. Therefore, the Zak phase of the second
band is altered after the band crossing, which indicates the topological
phase transition.

The Zak phase of isolated passbands is marked in magenta in Fig. 4.
According to Figs. 4(d) and (f), we can see that for Configurations S1
and S2, the Zak phase of the first band is 0; that S1 and S2 have an
overlap part in the second BG frequency range; and that when the soft
dielectric PC plate turns from S1 to S2, the Zak phase of the second

passband transitions from 𝜋 to 0.
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Fig. 4. Band structures of bending waves in the dielectric Gent (𝐽𝑚 = 10) PC plate without axial force (𝐹𝑁 = 0) for different electric voltages and initial geometrical parameter 𝛿:
a)–(c) Topological transition process in the absence of electric voltage (𝑉

(𝐴)
= 𝑉

(𝐵)
= 0) for three different values of 𝛿 = −0.3, −0.659 and −0.8, respectively; (d)–(f) Topological

ransition process for 𝑉
(𝐴)

= 0.2 and 𝑉
(𝐵)

= 0.4 with three different values of 𝛿 = −0.3, −0.685 and −0.8. The Zak phases of the first three bands are marked by magenta font. The
tripes in green and yellow indicate the second BG signs with 𝜍 < 0 and 𝜍 > 0, respectively.
Fig. 5. The absolute value of deflection 𝑢2 of six band-edge states as a function of the normalized axial position 𝑥∗1 = 𝑥1∕𝑙 in the deformed Gent unit cell (𝐽𝑚 = 10) for 𝑉
(𝐴)

= 0.2

and 𝑉
(𝐵)

= 0.4. Band-edge states 𝐴1, 𝐵1, 𝐶1, 𝐴2, 𝐵2, 𝐶2 correspond to the cross symbols in Figs. 4(d) and (f), and are illustrated in Figs. 5(a)–(f), respectively.
In passing, we recall that the Zak phase of the 𝑗th band can also
be calculated by the following expression (Xiao et al., 2015; Yin et al.,
2018),

𝜃Zak
𝑗 = ∫

𝜋∕𝑙

−𝜋∕𝑙

[

i∫unit cell

1
2𝜌𝑐2

d𝑥1𝜉∗𝑗,𝑘
(

𝑥1
)

𝜕𝑘𝜉𝑗,𝑘
(

𝑥1
)

]

d𝑘, (58)

here 1∕2𝜌𝑐2 is the weight function of this system with 𝜌 and 𝑐
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eing mass density and bending wave velocity in the current deformed
configuration, respectively; 𝜉𝑗,𝑘
(

𝑥1
)

= 𝑢2𝑗,𝑘
(

𝑥1
)

e−i𝑘𝑥1 is the normalized
cell-periodic Bloch displacement eigenfunction for the 𝑗th isolated
band and Bloch wave number 𝑘. After obtaining the Zak phase, the
topological property of any BG can be determined by the BG sign 𝜍,
which is expressed as (Xiao et al., 2014)

sgn
[

𝜍(𝑗)
]

= (−1)𝑗 (−1)𝑟exp

(

i
𝑗
∑

𝜃Zak
𝛽

)

, (59)

𝛽=1
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Fig. 6. Topological phase diagram of an ideal dielectric Gent PC plate (𝐽𝑚 = 10) in the
absence of axial force. Three groups of solid, dashed and densely dashed curves stand
for the frequency limits of the second BG as a function of the structural parameter 𝛿
under the electric voltages 𝑉

(𝐴)
= 0.2, 𝑉

(𝐵)
= 0; 𝑉

(𝐴)
= 0.2, 𝑉

(𝐵)
= 0.4; and 𝑉

(𝐴)
= 0.2,

𝑉
(𝐵)

= 0.8. The frequencies of topological transition points for these three groups of
curves are 39.5, 36.8 and 27.4 Hz, respectively. The dash-dotted line is the topological
phase curve when the electric voltage 𝑉

(𝐴)
is fixed and 𝑉

(𝐵)
varies from 0 to 1, where

the topological transition points are located. The yellow and green filled regions are
delimited by the topological phase line, and indicate the second BGs with 𝜍 > 0 and
𝜍 < 0, respectively.

where 𝑟 is an integer indicating the number of band crossing points
beneath the 𝑗th BG. Based on Eq. (59), the second BG signs with 𝜍 < 0
and 𝜍 > 0 are marked in Fig. 4 by the green and yellow stripes,
respectively, to demonstrate different BG topological properties.

Moreover, the transition of the BG topological property can also
be verified by the eigenmode exchange of the BG edge states (see
Figs. 5(b), (c), (e) and (f)). To be specific, edge states 𝐵1 and 𝐶2
in Figs. 5(b) and (f) indicate the same antisymmetric distribution of
displacement fields with respect to the center of unit cell, while the
same symmetric edge states 𝐵2 and 𝐶1 are shown in Figs. 5(c) and (e).
Therefore, the second BG of Configuration S1 is topologically different
from that of Configuration S2. It is well known that a topological state
exists at the interface of a mixed PC waveguide made of two PC ele-
ments possessing overlapped BGs with different topological properties.
Hence, the topological interface state is feasible in a finite soft dielectric
PC waveguide consisting of S1 and S2 unit cells, as we display next.

Now we discuss the effect of the electric voltage on the band
structure, especially the frequency limits of the second BG. Fig. 6 shows
a topological phase diagram, which illustrates the topological transition
process (i.e. the variation of frequency limits of the second BG as a
function of 𝛿) for the ideal dielectric Gent PC plate (𝐽𝑚 = 10) at different
electric voltages with 𝐹𝑁 = 0. We see from Fig. 3 that the thinner PC
sub-plate 𝐴 is more sensitive than the thicker sub-plate 𝐵 to the electric
voltage. For a broad tunable range of electric voltage applied to sub-
plate 𝐵, the electric voltage value applied to sub-plate 𝐴 is set to be
a fixed value as 𝑉

(𝐴)
= 0.2 such that the overlap in the second BG for

different configurations can be reserved. Meanwhile, with the increase
of the electric voltage applied to sub-plate 𝐵 from 0 to 0.8, Fig. 6
shows that the position of the topological transition point is shifted
down, and that the value of 𝛿 where the BG closes becomes larger.
For example, for 𝑉

(𝐵)
= 0, 0.4 and 0.8, the corresponding topological

transition points are located at 𝛿 = −0.701, −0.685, and −0.604, with
their frequencies being 39.5, 36.8 and 27.4 Hz, respectively. The dash-
dotted line in Fig. 6 is the topological phase curve, which is connected
by the topological transition points for different electric voltages 𝑉

(𝐵)
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varying from 0 to 1 with a fixed 𝑉
(𝐴)

= 0.2. The topological phase
diagram is delimited by this topological phase curve, and the divided
two regions with different topological properties can be obtained.
Moreover, referring to the topological phase diagram, we can design
finite PC waveguide composed of elements with distinct topological
properties, and acquire the topological interface states with tunable
working frequency.

Now, Eq. (56) is employed to calculate the transmission behaviors
(propagation from the left end to the right end) of a mixed finite
PC plate waveguide in order to examine the existence and tunability
of the topological interface state by the electric voltage. Accordingly,
a mixed finite PC plate waveguide is designed here, which consists
of five S1 unit cells (𝛿 = −0.3) connecting five S2 unit cells (𝛿 =
−0.8). Fig. 7 displays the theoretical results for the mixed PC plate
waveguide subjected to different electric voltages. Note that although
𝛿 has different values, the electric voltages applied to S1 and S2 unit
cells are the same. The frequency limits of the overlapped second BG
for the two PC elements with different topological properties, and the
frequencies of topological interface states (marked by the purple dash-
dotted line) of the mixed finite PC plate are labeled at the bottom
and top of the corresponding sub-figures, respectively. We can observe
that the transmission peaks occur in the overlapped BG range (marked
in blue) in Figs. 7(a)–(d). Compared with the result for the natural
undeformed configuration (see Fig. 7(a)), the overlapped frequency
range in the second BG is kept and the topological interface state can be
tuned to a lower frequency with the application of electric voltage. For
instance, the overlapped BG varies from (38.8 Hz, 45.6 Hz) for 𝑉

(𝐴)
= 0

and 𝑉
(𝐵)

= 0 to (25.5 Hz, 31.1 Hz) for 𝑉
(𝐴)

= 0.2 and 𝑉
(𝐵)

= 0.8 with the
frequency of topological interface state tuned from 39.9 Hz to 27 Hz.

Furthermore, we plot in Fig. 8 the displacement distribution of the
mixed finite Gent PC plate waveguide at the frequencies of transmission
peaks for the unloaded and loaded cases (𝑉

(𝐴)
= 0.2, 𝑉

(𝐵)
= 0.8).

Figs. 8(a) and (b) display the amplitude of displacement |𝑢2| at the
transmission peak frequencies 39.9 Hz (𝑉

(𝐴)
= 0, 𝑉

(𝐵)
= 0) and 27 Hz

(𝑉
(𝐴)

= 0.2, 𝑉
(𝐵)

= 0.8) as a function of the normalized axial coordinate
𝑥∗1 = 𝑥1∕𝑙, where 𝑙 is the length of the deformed unit cell for S1 Con-
figuration. For the peak frequencies of topological interface states, the
displacement amplitudes at the interfaces delimiting different unit cells
of the mixed PC plate waveguide are illustrated in Fig. 8. We observe
that the displacement mode concentrates at the interface between two
PC plate elements and decays rapidly to the two ends, which is an
obvious sign of topological interface state. Specifically, the amplifica-
tion of the displacement amplitude at the interface is over 10 times
larger than the input signal. Different from other transmission peaks
ascribed to the resonance of finite structure (Chen et al., 2019b), the
peaks corresponding to the topological interface state are not affected
by the excitation location and boundary conditions (Yin et al., 2018;
Chen et al., 2021). This is a result of the robust mechanism based on
the conflict of topological property.

The results shown above are limited to applying the same electric
loads on two different PC elements of the mixed finite PC waveguide. As
we can see from Fig. 7, the overlapped BG may become narrower when
the electric voltage varies, which is not beneficial for the existence and
tunability of the topological interface state. We can see from Fig. 6 that
the second BG for different PC elements (at two sides of the topolog-
ical phase curve) may have a broader overlapped part with opposite
topological properties when applying different electric loads on the
two PC elements of the mixed finite PC waveguide. Fig. 9(a) shows
the transmission spectrum of the mixed finite PC plate waveguide with
𝑉

(𝐴)
= 0.2, 𝑉

(𝐵)
= 0 applied to S1 and 𝑉

(𝐴)
= 0.2, 𝑉

(𝐵)
= 0.8 applied to

S2, respectively. Compared with the case of applying the same electric
voltages on two different PC elements, the overlapped BG obtained
in Fig. 9 is much wider. The topological interface state denoted by
the transmission peak in the overlapped BG is still observed and its
displacement distribution at the peak frequency 28.9 Hz is plotted in
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Fig. 7. Transmission spectra of a mixed finite Gent (𝐽𝑚 = 10) dielectric PC plate waveguide composed of five S1 unit cells (𝛿 = −0.3) and five S2 unit cells (𝛿 = −0.8) for different
electric voltages: (a) 𝑉

(𝐴)
= 0, 𝑉

(𝐵)
= 0; (b) 𝑉

(𝐴)
= 0.2, 𝑉

(𝐵)
= 0; (c) 𝑉

(𝐴)
= 0.2, 𝑉

(𝐵)
= 0.4; (d) 𝑉

(𝐴)
= 0.2, 𝑉

(𝐵)
= 0.8. The electric voltages applied to S1 and S2 unit cells are the

same. The frequency limits of the overlapped second BG and the frequencies of topological interface states are indicated in the figure.
Fig. 8. The amplitude of displacement |𝑢2| of the mixed finite Gent PC plate waveguide as a function of the dimensionless axial coordinate 𝑥∗1 = 𝑥1∕𝑙 (𝑙 is the length of the

deformed unit cell for S1 configuration) at peak frequencies 39.9 Hz (𝑉
(𝐴)

= 0, 𝑉
(𝐵)

= 0) (a) and 27 Hz (𝑉
(𝐴)

= 0.2, 𝑉
(𝐵)

= 0.8) (b) in absence of the axial force (𝐹𝑁 = 0).
Fig. 9(b). We can see that the displacement at the interface is over 8
times larger than the input signal and attenuates rapidly to the ends of
the mixed PC plate waveguide.

Hence, with flexible application of voltage and proper geometri-
cal design of mixed PC waveguides, we can tune the frequency of
topological interface state in a wide range.

5.3. Tunable effect of the axial force on bending waves

In addition to changing the electric voltage, the axial force can also
be applied to steer the topological interface state in the soft dielectric
PC plate waveguide. For different axial forces 𝐹 = 0, 0.05, 0.1 and
11

𝑁

0.2, we highlight in Figs. 10(a) and (b) the variation of the frequency
limits of the second BG with the structural parameter 𝛿 for the dielectric
Gent PC plate (𝐽𝑚 = 10) with 𝑉

(𝐴)
= 0, 𝑉

(𝐵)
= 0 and 𝑉

(𝐴)
= 0.2,

𝑉
(𝐵)

= 0.4, respectively.
For 𝑉

(𝐴)
= 0 and 𝑉

(𝐵)
= 0, four groups of band inversion curves in

Fig. 10(a) reveal that the axial force affects the topological transition
in a different way from the electric voltage. Hence, an increase in axial
force may result in an increase in frequency and a decrease of structural
parameter 𝛿 corresponding to the topological transition point, which
is in contrast to the case by increasing the voltage (see Fig. 6). The
underlying mechanism can be explained as follows. For the dielectric
PC plate subjected to the electric load only, the resultant deformation
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Fig. 9. (a) Transmission spectrum of a mixed finite Gent (𝐽𝑚 = 10) dielectric PC plate waveguide composed of five S1 unit cells and five S2 unit cells when 𝐹𝑁 = 0. The electric
voltages applied to the two PC elements are different: 𝑉

(𝐴)
= 0.2, 𝑉

(𝐵)
= 0 for Configuration S1; 𝑉

(𝐴)
= 0.2, 𝑉

(𝐵)
= 0.8 for Configuration S2. (b) The amplitude of displacement |𝑢2|

of the mixed finite Gent PC plate waveguide as a function of the dimensionless axial coordinate 𝑥∗1 = 𝑥1∕𝑙 (𝑙 is the length of the deformed unit cell for S1) at the peak frequency
28.9 Hz.
Fig. 10. Frequency limits of the second BG as a function of the structural parameter 𝛿 in the soft dielectric Gent PC plate (𝐽𝑚 = 10) under the action of different axial forces
𝐹𝑁 = 0, 0.05, 0.1 and 0.2, with (a) 𝑉

(𝐴)
= 0, 𝑉

(𝐵)
= 0 and (b) 𝑉

(𝐴)
= 0.2, 𝑉

(𝐵)
= 0.4.
in Fig. 6 has not reached the strain-stiffening stage. In this case, the
change in effective modulus e

0 cannot cancel the influence of the
increase of geometric size on the frequency. Consequently, the increase
of electric voltage yields the decrease in the frequency of topological
interface state.

For the PC plate subjected to a varying axial force with fixed electric
voltage, the axial force not only increases the effective modulus e

0, but
also contributes to the bending moment of the plate (see Eq. (34)), and
their influence on the BG of PC plate is a more dominant factor than
the change in geometry. Hence, with the increase of axial force, the
working frequency of bending waves is moved upwards. For example,
for the undeformed PC plate (𝐹𝑁 = 0), the frequency of topological
transition point is 𝑓 = 40.7 Hz, with 𝛿 = −0.66, whereas for 𝐹𝑁 = 0.1,
the values are 𝑓 = 45.6 Hz and 𝛿 = −0.7. When the PC plate is subjected
to the voltages 𝑉

(𝐴)
= 0.2 and 𝑉

(𝐵)
= 0.4, similar observations can be

made from Fig. 10(b) through adjusting the axial force.
Next, we present the transmission behaviors of the mixed finite PC

plate waveguide for a prescribed electric load and different values of
the axial force. In the case 𝑉

(𝐴)
= 𝑉

(𝐵)
= 0, Fig. 11 displays the

transmission spectra of the mixed finite waveguide (composed of five
S1-type unit cells and five S2-type unit cells) subjected to different axial
forces 𝐹𝑁 = 0.05, 0.1 and 0.2 (see Fig. 7(a) for 𝐹𝑁 = 0). We see that
the transmission peak standing for the topological interface state exists
in the second overlapped BG for different values of axial force. Besides,
with the increase in the axial force, the position of the peak frequency
is moved upwards, although the width of the overlapped BG narrows.
For example, for 𝐹 = 0.05, the common frequency range of the second
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𝑁

BG is (41.4 Hz, 49.1 Hz) with the peak frequency being 42.6 Hz, while
for 𝐹𝑁 = 0.2, the corresponding overlapped BG and peak frequencies
become (48.6 Hz, 51 Hz) and 49.1 Hz, respectively.

It is also worth noting from Fig. 10(b) that for 𝐹𝑁 = 0.2, the
topological transition point is located at 𝛿 = −0.79 and 𝑓 = 46.3 Hz,
which is in the vicinity of 𝛿 = −0.8. With an appropriate structural
design, the existence of a topological interface state can be controlled
by adjusting the axial force. Here, we name the configuration with
𝛿 = −0.78 as Configuration S3. Similar to Fig. 11, Fig. 12 illustrates
the corresponding transmission curves for the mixed finite PC plate
composed of five S1 unit cells and five S3 unit cells for the fixed
voltage 𝑉

(𝐴)
= 0.2, 𝑉

(𝐵)
= 0.4 and different axial forces 0.05, 0.1 and

0.2. Analogous observations for the tunability of the overlapped BG
frequency and peak frequency under the axial force to those in Fig. 11
can be made.

Recall that the existence of topological interface state requires an
overlapped BG with different topological properties. When the axial
force increases from 0 to 0.2, the topological properties of Configura-
tions S1 and S3 change from being different to being the same (see
Fig. 10(b)). Under this circumstance, there is no topological interface
state in the second BG in Fig. 12(c) for 𝐹𝑁 = 0.2. Note that other trans-
mission peaks can be observed in Fig. 12(c), but they are resonance
peaks relying on excitation and boundary conditions.

6. Conclusions

In this work, we investigated incremental bending wave motions
superimposed on finite static deformations in 1D incompressible di-
electric PC plates under the combined action of axial force and electric
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Fig. 11. Transmission spectra of a mixed finite Gent (𝐽𝑚 = 10) PC plate waveguide composed of five S1 unit cells (𝛿 = −0.3) and five S2 unit cells (𝛿 = −0.8) for 𝑉
(𝐴)

= 𝑉
(𝐵)

= 0
and different axial forces: (a) 𝐹𝑁 = 0.05; (b) 𝐹𝑁 = 0.1; (c) 𝐹𝑁 = 0.2.
Fig. 12. Transmission spectra of a mixed finite Gent (𝐽𝑚 = 10) PC plate waveguide composed of five S1 unit cells (𝛿 = −0.3) and five S3 unit cells (𝛿 = −0.78) for 𝑉
(𝐴)

= 0.2,
𝑉

(𝐵)
= 0.4 and different axial forces: (a) 𝐹𝑁 = 0.05; (b) 𝐹𝑁 = 0.1; (c) 𝐹𝑁 = 0.2.
voltage. Specifically, we discussed the topological interface state and its
tunability via the mechanical and electric loads in the finite PC plate
waveguide consisting of two types of PC elements with overlapped BG
and different topological properties.

First, we employed the theoretical framework of nonlinear elec-
troelasticity to determine the nonlinear deformation of the dielectric
PC plate with step-wise cross-sections. Furthermore, we employed a
counterpart of the pre-stressed Euler–Bernoulli beam model to describe
the incremental bending wave motions in the soft dielectric PC plate.
We used the Spectral Element Method to derive the dispersion relation
of the infinite PC plate and transmission coefficient of the finite PC
plate waveguide. Finally, we presented numerical results in detail
to demonstrate the effects of axial force and electric voltage on the
position (i.e. structural parameter) of the topological transition point
and on the frequency of the topological interface state. Several useful
conclusions based on the numerical results are listed as follows:

(1) The topological transition process can be observed when the
initial structural parameter varies, and we can apply exter-
nal mechanical and electric loads to tune the position of the
transition point.

(2) For the finite PC plate waveguide under a prescribed axial force,
the frequency of the topological interface state decreases with an
increase in electric voltage.

(3) For the finite PC plate waveguide under a fixed electric voltage,
increasing the axial force raises the frequency of the topological
interface state. When the axial force reaches a large value, the
topological interface state may disappear because the require-
ment of two PC elements with overlapped and topologically
different BGs is not satisfied any more.

(4) Based on the topological phase diagram, the topological inter-
face state can be adjusted in a wide range by applying dif-
ferent electric voltages separately on two PC elements in a
well-designed PC waveguide system.
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The numerical results indicate that the axial force and electric volt-
age are effective methods to actively control the topological interface
state in the 1D soft dielectric PC plate waveguide operating at a low
working frequency. Our study lays down a solid theoretical foundation
for the design of soft dielectric topological PC devices in order to
cater to real-world applications such as low-pass filters, high-sensitivity
biomedical detectors, and tunable energy harvesters.
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