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1. Introduction

Studying the mechanical behaviour of brain tissue presents interesting challenges from the
perspective of experimental and constitutive modelling [1,2]. At the macro level, brain tissue is
extremely soft and highly heterogeneous [1,2]. At the microstructural level, the tissue consists of
two distinct grey and white matter regions with different microstructures [3,4]. This heterogeneity,
coupled with the extreme softness of the tissue, provides a formidable challenge to preparing
test specimens that are truly a representative volume element of the whole tissue, as well
as minimizing artefacts such as gripping effects, friction, etc. Some studies attribute the wide
variation in the existing experimental data found in the literature to the structural heterogeneity
of the specimens in each study; see, e.g. [5,6].

Despite these challenges, many studies have attempted to characterize the mechanical
behaviour of brain tissue with the aim of establishing constitutive relationships between
mechanical stimuli and the ensuing tissue-level responses. Tissue mechanics has been shown
to play a key role in regulating the development of the brain and maintaining its homeostasis
[7], as well as influencing its pathology; e.g. an increase in the brain tissue stiffness has been
shown to enhance the migration and proliferation of tumour cells [8], see also Barnes et al. [9] and
Goriely et al. [2] for a comprehensive review. These findings underline the significance of properly
characterizing the mechanical properties and behaviour of brain tissue. However, the complexity
of the mechanics of brain tissue in normal function and pathology extends beyond what may
be achieved in a laboratory setting in vitro. Mathematical and computational models, therefore,
become essential investigatory tools in gaining insight into the complex mechanical behaviour,
properties and function of the brain.

The suitability of constitutive models is judged based on how accurately they capture
and predict the various aspects of the mechanical properties and behaviours of the tissue,
as revealed by experiments in vitro. These mathematical models then form the core for
computational modelling and in silico simulations of the physiology, function and pathology
of the brain under more complex physiological and pathological conditions. The fidelity of
the computational analyses is, therefore, highly reliant on the suitability of the choice of the
mathematical model, which in turn is informed by the mechanical behaviour observed in the
experiments [5,6].

Of the various mechanical loading experiments that may be employed to inform and calibrate
an appropriate choice of an elastic model for the mechanics of brain tissue, particular emphasis
has been placed on the shear and compression deformations. Compression is the most relevant
deformation mode for common traumatic brain injuries, and shear strains are thought to be the
main mechanical cause of diffuse axonal injuries [5]. However, tensile deformation tests have
also been carried out on brain tissue specimens, e.g. studies by Budday et al. [3,4]. Goriely et al.
[2] identify the study by Estes & McElhaney [10] as the first to perform large deformation tests,
up to 270% strain, on human and Rhesus monkey brain tissues, which revealed the nonlinear
deformation of the tissue ‘with concave upward stress—strain curves’. Recent studies have
underlined more complex aspects of the mechanical behaviour of brain tissue including its time
(rate) dependent [5,6] and biphasic nature (e.g. see [11] and also Budday et al. [1] and Goriely et al.
[2] for reviews). A concise but informative summary of the timescale of the mechanical processes
affecting brain tissue mechanics, in relation to choosing an appropriate modelling criterion,
may be found in [12]. The general consensus, however, is that while the mechanics of brain
tissue deformation in processes such as surgery may best be modelled through viscoelasticity
and/or poroelasticity, and that fast processes are rate-dependent, we may nonetheless resort to
hyperelasticity as the guiding approximation [1,3,4,12] for fixed intermediary loading rates (either
fast or slow). In this manuscript, therefore, we only concern ourselves with the hyperelastic
response, properties and modelling of brain tissue. Of course, we keep in mind the problem
of reductionism in biomechanics, remaining aware that modelling of biological organs requires
much more than hyperelasticity, since a realistic model of a tissue’s mechanical response should
encompass interactions of the extracellular matrix with physiological fluids, biochemical reactions
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characterizing the physiological and/or pathological functions of the organ itself, feedback loops,
etc.; see Rajagopal & Rajagopal [13] for a discussion on these points.

The key features of the hyperelastic behaviour of brain tissue, as observed in the experimental
results reported by Budday et al. [3,4,14] and Mihai et al. [15], may be summarized as follows:

(a) The shear response is highly nonlinear, as is the compression-tension behaviour [3,4,15].
(b) The compression—tension deformation is asymmetric [3,4].
(c¢) It may be appropriate to consider brain tissue as isotropic and incompressible [14].

We will henceforth refer, the above list as ‘Features (a)—(c)’.

To capture these mechanical features, some studies have advocated the use of the one-term
Ogden model, e.g. see [3,4], while others have also considered higher terms (from three- to eight-
term Ogden models); see, e.g. [15]. What is intriguing here is that, as we shall see, the considered
applications of the Ogden model as used in those studies all lead to problematic results such as
the non-convexity of the iso-energy plots of the characterized strain energy function and/or an
erroneous concavity of the predicted stress—strain curves, at least over a range of the deformation
domain. The former may lead to physical, material and numerical instabilities (see [16,17] for
extensive discussions) and the latter is not supported by the data.

The aim of this paper is to make the case for the use of a different family of models, based on a
recently proposed parent model [18], to the mechanics of brain tissue by way of: (i) highlighting
the aforementioned problems upon using the Ogden model; (ii) illustrating the capability of our
proposed models to capture Features (a)-(c) and (iii) demonstrating the favourable fits to the
experimental data obtained by the proposed models.

In §2, the mathematical formulation of the proposed models and a brief background to the
development of the models is presented. This is followed in §3 by the demonstration of the
suitability and capability of the proposed models in capturing Features (a)—(c) of the brain
tissue mechanics via the application of the models to extant experimental compression—tension
and simple shear datasets via simultaneous fitting. We find favourable agreements between the
modelling predictions and the data. We also present a direct comparison with the results of
the Ogden model, demonstrating that, as used in the specified studies, it leads to the issues
of non-convexity of the strain-energy and/or non-concavity of the tensile response. In §4, we
present a phenomenological generalization of the proposed parent model [18] into a functional
representation which embodies the principal stretches A; instead of the principal invariants I;.
On using the datasets of Budday et al. [3,4], we show that this model fits the brain deformation
data favourably, providing fits as good as the Ogden model while remaining convex. We provide
concluding remarks in §5, with some further thoughts on the mechanics of brain tissue and
possible experimental artefacts. We hypothesize that the problems exhibited by the Ogden model
in the analysis of the brain tissue biomechanics may be due to the specifics of the simple shear
experimental protocols chosen in studies and as such, may be resolvable. However, we stipulate,
given that the proposed models herein prove to remain impervious to the ill-posed effects
of the employed experimental protocols, their application to the biomechanics of the brain is
advantageous.

2. Modelling framework

In this section, we provide a brief background on the underlying mechanical and mathematical
motivations of the proposed family of models, and present the invariants-based models (namely,
Models I and II). A third form of the model in this family, Model III, is presented in §4.

The proposed modelling framework which we wish to explore and use in this work centres on
the parent strain energy function of the form

1 L —3N
quN[6—N(Il—3)—ln<3_3N)], 2.1)
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where p and N are model parameters and I; is the first invariant of the left Cauchy-Green
deformation tensor B, with the constraint I; <3N imposed to ensure that the log function is well
defined. The parameter u in this model is related to the infinitesimal shear modulus pg via

3-35N ] ) 2.2)

L= o [1 —N
The parameter N( > 1) is the number of (straight) links of the molecular chain, also known as the
number of Kuhn segments. See the review by Puglisi & Saccomandi [19] for a microstructural
interpretation of parameters in generalized neo-Hookean strain energy functions. We note that
in the limit N — oo, the strain energy function W of equation (2.1) reduces to the classical
neo-Hookean model.

This model is a special case of the nonaffine network model first introduced by Davidson &
Goulbourne [20]. Anssari-Benam & Bucchi [21] used this model to capture the deformation of the
elastin isotropic matrix in heart valves. The model was later applied to the finite deformation of
elastomers [18]. It belongs to the class of limiting chain extensibility models as the Gent model [22],
and results in a similar Taylor series around I1 =3, see [18,23]. However, as shown by Horgan &
Saccomandi [24], the Gent model is the simplest of the lowest order rational approximant in
I, i.e. of the order [0/1]. In comparison, the model in equation (2.1) is a higher-order rational
approximant in respect of I, of the order [1/1], and uses a Padé approximation of the [3/2]
order of the inverse Langevin function, see [25] for a detailed analysis and demonstration on
this point. In practice, these characteristics result in a more accurate fit of the proposed model to
the experimental data compared with the Gent model, as previously demonstrated in e.g. [18,26],
for various elastomer datasets.

The model in equation (2.1) is of the generalized neo-Hookean type, as it is a function of I only.
Many studies, however, through either experimental observations [27-29] or theoretical analysis
by way of deriving universal relationships [30-32], advocate the inclusion of an I, (the second
invariant of the Cauchy—-Green deformation tensors) term within the strain energy function W. See
also [33] for a review of the role of I in modelling the nonlinear elasticity of rubber-like materials.
Furthermore, as analysed at length by Destrade et al. [34], the nonlinear deformation behaviour
predicted by a strain energy function W which includes an I, term is also expediently compatible
with the predictions of the fourth-order weakly nonlinear elasticity theory. Moreover, the addition
of an I>-term will improve the modelling predictions in small-to-moderate deformation ranges;
see [33] for direct comparisons and results involving the model (2.1). In this spirit, we consider
the following W(I1, I) function based on the parent model in equation (2.1) as

1 L — 3N L
W=uN[6N(Il—3)—ln<3_3N>}+Cz( 3—1), (2.3)

where C; is a positive material parameter. This particular I, term in equation (2.3) was first
introduced by Carroll [35]. For a structural derivation of this term based on the concept of
modelling the molecular chain entanglements as a topological tube constraint, see [33,36]. Other
customary I-term adjuncts, including a Mooney-Rivlin term Cy(I> — 1) or a Gent-Thomas type
term Cp1In(I>/3) [37,38] have been considered previously [33,39] and are not pursued here. In
essence, however, we note that all the foregoing adjunct I, terms produce a broadly similar
contribution to the modelling results.

In summary, therefore, the proposed family of invariant-based models which we wish to

consider here are
1 I; —3N

1 I —3N I
W=uN|:6N(Il—3)—ln<3_3N>:|+C2(\/:—1).
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In the next section, we demonstrate how these two models compare with each other and with the
Ogden model in capturing the considered brain tissue deformation experimental datasets. For
brevity, we refer to the models in equations (2.4); and (2.4); as "Model I’ and ‘Model IT’, respectively.
In §4, we introduce a third model, namely ‘Model III’, which is expressed in terms of principal
stretches instead of principal invariants (and, like the Ogden model, cannot be written easily in
terms of I, I).

3. Application to experimental data

In this section, the suitability and capability of the proposed models to capture Features (a)-(c)
of brain tissue mechanics are examined. As the first step, we start by applying the models in
equation (2.4) to two comprehensive datasets due to Budday et al. [3,4] on compression, tension
and simple shear deformations of the human brain (cortex) tissue. The collated datasets from
those studies are presented in tables A1l and A2 of Appendix A. These studies, and several
other recent studies such as [5,6], suggest the application of the one-term Ogden model to the
brain tissue deformation. Here, we analyse the application of the Ogden model to these datasets
and demonstrate the ensuing issues, while showing that no such issues arise on the use of our
proposed models.

Starting with the preliminaries, the kinematics of the uniaxial and simple shear deformations
may be characterized by the following deformation gradients:

A 0 0 1y 0
Fami=| 0 22 0 |, Fs=|0 1 0 |, 3.1)
0 0 a2 0 0 1

where the subscripts ‘uni’ and ‘ss’ denote the uniaxial and simple shear deformations,
respectively, A is the amount of stretch and y is the amount of shear. The Cauchy stress T for
an isotropic incompressible material in finite deformation may be given in the following form:

T=—pl+2W;B —2W,B "}, (3.2)

where B (=FF') is the left Cauchy-Green deformation tensor and B~! is its inverse, p is an
arbitrary Lagrange multiplier enforcing the condition of incompressibility, I is the identity tensor
and W and W are the partial derivatives of the strain energy function W with respect to the first
and second principal invariants of B, respectively, which are defined as

Lh=tB)=23+23+23, Lh=tu(B =2 +12 +13% (3.3)

with the third invariant I3 = det(B) :A%A%A% =1 due to incompressibility. On using the models
given by equation (2.4) and the deformation gradients by equation (3.1) in equation (3.2) we obtain

w22 +2271 —9N (2 1 C 1
Tmi==5—7———)(*»—-= —— A==, 3.4
T <A2 +2171-3N i)T /3002 + 21) 2 (34)
for the uniaxial (compression—tension) deformation of Model 1I, taking C, =0 for Model 1. Note
that in this case Iy =A% 421~ ! and I = =2 + 2. Similarly, for simple shear,

w3+y>—9N Cy
Tes=| = + , 3.5
= [3 <3+y2—3N ik (3:5)
where I} =1, =3+ y2, for Model II, and taking Co =0 for Model 1.

To obtain the optimized fit, these equations (for each model) were simultaneously fitted to the
uniaxial and simple shear deformation datasets where the best fit is achieved by minimizing the

SZE0LZ0709€ 05 Sui] g eisfeuinolBioBusandizaposiedo



(@) 8
0.90 0.9 094 096 098 1

. 30
0 —o— model |
01 A 25 -0 - model Il
= 024 g 20
2 031 S 15
~ £ 10
—0.4 1 O compression data =
-0.5 4 model 1 = 5
- = =model I
0.6 ¢ 0+ . . .
0.9 092 094 096 098 1.00
A
(b)
< 0.6 - A 30 -
% 0.4 ~ 25 —a—model |
~ T S | - <& - model 11
0.2 sg 20 1
o 15 4
0.1 0.2 % 10 4
A shear data =5
model 1 0 ] 1 | |
~0.6 4= == model I 02 01 0 0.1 0.2
Y

Figure 1. Modelling results for the (a) compression and (b) simple shear deformations of human brain tissue using Models |
and // in equation (2.4). The right-hand side panels demonstrate the relative errors. Both models produce almost an identical
fit, because the optimization procedure gives a very small value for C; in Model II. Dataset for human brain cortex due to Budday
etal. [3]. (Online version in colour.)

Table 1. Model parameters for the compression and simple shear deformation datasets of human brain cortex reported in
Budday et al. [3] using the model in equation (2.4). The R? values are presented in (compression)—(simple shear) order.

u (kPa) N(—) () R? (comp.—ss)
Model | 0.022 1.02 — 0.99-0.97
Model Il 0.040 1.02 815 x 1073 0.99-0.97

. . 2
residual sum of squares (RSS) function defined as RSS=7" (Tmoclel — Texperiment / TeXPe“me“t) ,

i 1
where i is the number of data points. This method minimizes the relative error, as opposed to the

absolute error. The importance of this approach has been highlighted by Destrade et al. [34]. Here
the minimization was performed via an in-house developed code in MATLAB®.

We now proceed with presenting the fitting results provided by the proposed models,
starting with the data in [3]. First, we consider the compression and shear datasets, as
perhaps the most relevant loading modalities for brain deformation applications since they
directly relate to common injuries such as the traumatic brain and diffuse axonal injuries.
The fitting results for Models I and II, i.e. using equations (3.4) and (3.5), are presented in
figure 1. Panels in the right-hand side of the figure present the relative error (%), defined as
|(Tmodel _ Texperiment) s experiment| y 100, The values of the model parameters are summarized in
table 1. Note that here the optimization procedure yields a very small value for C, so that both
models produce almost identical fitting results with no discernible deviation. As the plots and the
R? values indicate, both models provide an excellent fit to the dataset.
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Figure 2. Modelling results for the deformation of the human brain cortex tissue in compression, tension and simple shear:
(a) using Models | and II; (b) using the one-term Ogden model and (c) the ensuing relative errors. The dataset is due to Budday
et al. [3]. The error bars have been taken as typical values from data by Budday et a/. [1] and [4], reporting on similar human
brain cortex tissue specimens. (Online version in colour.)

These results provide a first verification of the capability of Models I and II to capture Features
(a) and (c) of brain tissue mechanics proposed by studies [3,4,13,14], as listed in §1. However, to
investigate Feature (b) in more depth it is necessary to explore the performance of the proposed
models when tension data is also included. Figure 24 illustrates the application of Models I and
II to compression—tension and simple shear deformation data (again, the datasets are from [3]).
Table 2 summarizes the values of the model parameters obtained in this fit. Note that for Model II,
C, is very small, so that Models I and II produce a similar fit again.

As the R? values in table 2 indicate, the models provide a fairly favourable agreement with
the experimental data. However, compared with the case where only uniaxial compression was
considered (figure 1), the model predictions in figure 2a show a higher deviation from the
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Table 2. Model parameters for the compression—tension and simple shear deformation datasets of human brain cortex
reported in Budday et al. [3]. The B2 values are presented in the (uniaxial)—(simple shear) order.

u (kPa) N(—) () RZ (uni.—ss)
Model | 0.022 1.02 — 0.88-0.95
Model Il 0.022 1.02 357 x 1073 0.88—0.95

experimental data. This perceived deviation is somewhat reconciled if the typical error bars are
also taken into account (as reported in, e.g. [1,4]). Nevertheless, the models encounter difficulty
in capturing the full asymmetry of the compression-tension behaviour.

To this end, Budday et al. [3] advocate the application of the one-term Ogden model to this
dataset, which we use for comparison in the following. This celebrated strain-energy function is
of the form [40]

2u
Wogden = —5 (1§ +35 +35 —3), (3.6)

where p is the infinitesimal shear modulus and « is a real, non-dimensional material parameter.
The components of the corresponding Cauchy stress for uniaxial tension and simple shear
deformations are

21 _
Tuni = ;()“tf — A 0'50()/

n Y 2\ Y 2\ ] 4.7
Tes=—777—|| % 1+—1 - |-% 1+ —
ss =112 + 1+ 7 ST+ g
o 1+T
respectively.

When the relationships in equation (3.7) are simultaneously fitted to the data from [3] using
the same fitting process described earlier in this section, the best fit is obtained with u =1.04 kPa
and o = —17.33, producing R2? values of 0.95 and 0.88 for the uniaxial compression—tension and
simple shear deformation datasets, respectively. The fitting results are illustrated in figure 2b.

We observe that while the Ogden model undoubtedly better captures the asymmetry in the
compression—tension behaviour, the relative errors for the fits provided to this dataset are broadly
comparable for Models I and II and for the Ogden model—see the relative error panel in figure 2c.
However, beyond the marginal improvements that one model may provide over the other, most
of all we note the non-convexity of the iso-energy plots in the plane of the principal stretches A1
and A, produced by fitting the one-term Ogden model to the considered dataset, as presented
in figure 3a. By contrast, Models I and II in equation (2.4) are a priori convex over their defined
domain of deformation—see [18,33] for further discussion and analysis. Figure 3b illustrates the
iso-energy plots of Model I for the same dataset, as a representative example of the proposed
models. Model parameters are those given in table 2.

Applying the one-term Ogden model to the considered brain deformation dataset has an
additional undesirable effect. By inspecting the Tyn; — A plot of the Ogden model in figure 2b
it may be qualitatively observed that the provided fit does not correctly capture the concavity
of the experimental data in the tensile range (i.e. A > 1). This can be illustrated quantitatively by
computing the second derivative of Tyn; with respect to A, which on using equation (3.7); and the
characterized values of u =1.04 kPa and o = —17.33 from the fit, is

a2 A2+H(@/2) )\ —6-665

PTuni 200 — Dua3/? — (1+ (a/2))n  —38.126427259% 1+ 7.9716 (38)
Hence, we see from equation (3.8) that for the tensile range 1 <X <1.061 (first 6% of extension),
the one-term Ogden model provides a negative concavity, whereas the experimental data exhibits
a positive concavity. No such discrepancy arises from the application of the proposed models in
equation (2.4) to this dataset.
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Figure 3. The iso-energy plots in the plane of principal stretches (A;, A,) for: (a) the one-term Ogden model and (b) the
proposed Model I, for the uniaxial compression—tension and simple shear datasets of Budday et al. [3]. The non-convexity of
the Ogden model is evident, while the proposed model remains convex a priori over the domain of deformation. (Online version
in colour.)

As another example, we highlight the study of Budday et al. [4], which provides a
comprehensive set of uniaxial compression—tension and simple shear deformation datasets for
various anatomical regions of the human brain, including the cortex. The collated dataset from
that study pertaining to the deformation of the cortex is presented in table A2. Figure 4a
demonstrates the fitting results using Models I and II, and table 3 summarizes the model
parameters. Similar to the previous dataset, the proposed set of models provides fairly favourable
fits to the data; see the R? values in table 3. Again, while the models do not seem to have an
inherent shortcoming to predict the compression—tension data, it is evident that capturing the
asymmetry of the compression—tension behaviour can be improved.

In a similar fashion to [3], Budday et al. [4] also consider the one-term Ogden model as optimal
for capturing the dataset and the asymmetry in the compression—tension behaviour. By fitting
the stress—stretch relationships in equation (3.7) to the dataset in [4], the best fit provided by the
one-term Ogden model is obtained with 1 =1.46kPa and « = —19.12, resulting in R? values of
0.99 for both uniaxial compression-tension and simple shear deformation datasets (see figure 4b
for the results). By comparing the relative error plots presented in figure 4c, it is evident that the
one-term Ogden model provides an improved fit to the compression—tension data, while Models
I and II better capture the shear deformation.

However, once more, irrespective of the fitting advantages of one model over the other, the
problem of non-convexity using the one-term Ogden model manifests itself again. By plotting
the iso-energy graphs in the plane of the principal stretches A1 and A, produced by the fit that
the one-term Ogden model provides to the considered dataset, with u =1.46 kPa and o = —19.12,
we find that the ensuing strain energy function is non-convex (figure 5a). By contrast, the strain
energies of Models I and II (with the material parameters in table 3) remain convex over their
defined domain of deformation (figure 5b).

In addition, the same problem in capturing the incorrect concavity of the experimental
compression—tension data within a range of the tensile deformation domain, as per the previous
dataset [3], is present in the predictions of the one-term Ogden model for this dataset, too.
Equation (3.8) allows us to analyse this observation mathematically. With ©=1.46kPa and
a=—19.12 for this dataset we find that for the tensile range 1 <1 <1.056, the Ogden model
provides a negative concavity, whereas the experimental data exhibit a positive concavity. No
such issues arise from the application of Models I and II in equation (2.4) to this dataset.
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Figure 4. Modelling results for the deformation of the human brain cortex tissue in compression, tension and simple shear:
(a) using Models | and II; (b) using the one-term Ogden model and (c) the ensuing relative errors. The dataset is due to Budday
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Table 3. Model parameters for the uniaxial compression—tension and simple shear deformation datasets of human brain cortex
reported in Budday et al. [4]. The R% values are presented in (uniaxial)—(simple shear) deformation order.

u (kPa) N(—) (G, (Pa) R? (uni.=ss)
Model | 0.05 1.025 — 0.87-0.98
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Figure 5. The iso-energy plots in the plane of principal stretches (11, A,) for: (a) the one-term Ogden model and (b) the
proposed Model I, for the uniaxial compression—tension and simple shear datasets of Budday et al. [4]. The non-convexity of the
Ogden model is evident, while the proposed model remains convex a priori over the domain of deformation. (Online version in
colour.)

4. A generalization of the proposed models

We now note a study by Mihai et al. [41] reporting and modelling experimental data on human
brain tissue. Their paper proposed a special three-term Ogden model by the addition of a
Mooney-Rivlin term, with the following final form mutatis mutandis as

W= %()&f FAG S =)+ 03+ A3 +22 =) + st A2 A2 —3), (&)

where 11, 2 and p3 are stress-like constants, and « is a non-dimensional stiffening constant. The
motivation behind the development of this model was to achieve improved fits compared with
the one-term Ogden model while avoiding the excessive number of model parameters that may
otherwise arise due to the use of the general higher-term Ogden models [41]. As demonstrated
in [41], the model in equation (4.1) provides the sought improved fits with only four parameters
(1, n2, n3, o), whereas the equivalent Ogden model would have six material parameters (1, i2,
w3, a1, az, a3). The calibration of the model with the considered experimental dataset therein was
achieved with 1 =0.0653 kPa, uy = —0.1151 kPa, 3 = —0.9921 kPa and o = 14.3626. However, we
note that the non-convexity of the strain energy function still persists, as plotted in figure 6a.

Incidentally, when, in the spirit of Mihai et al. [41], we add the one-term Ogden model in
equation (3.6) to, say, Model I in equation (2.4)1, as follows:

21 1 I — 3N
W="0+15+21§ — N|—(;—3)—1 , 4.2
L0345 +3§ -3 +aN | oo -9 - (2220 42)

the ensuing strain energy function W provides much improved fits to the uniaxial compression—
tension and simple shear datasets compared with that originally provided by Model I only, while
remaining convex over the domain of deformation, figure 6b. The plots in figure 7 demonstrate
the fitting results for the dataset due to Budday et al. [4] with the modified Model I in equation
(4.2) as a representative example. The best fit was obtained with p1 =0.9781kPa, o = —23.4610,
o =0.3672 kPa and N = 4.4578, and R? values in excess of 0.99.
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(b) the modified Model I in equation (4.2). (Online version in colour.)

a
@ = 0.8 1 20 -
% & —&— model in eqn (4.2)
~ 04 4
S 15 4
A g
5
0.90 : ; 105 110 o 107
A 2
=
[0}
- 5 o
©  tension—compression data
model in eqn (4.2) 0 , ! »
0.90 0.95 1.0 1.05 1.10
A
b
® 0.6 20

—a&— model in eqn (4.2)

relative error (%)

& shear data

0 L L] 1
-0.2 -0.1 0 0.1 0.2
Y

-0.6 4

model in eqn (4.2)

Figure 7. The fitting results using the strain energy function in equation (4.2) for the modified Model | to the dataset of
Budday et al. [4]: (a) the compression—tension data; (b) the simple shear data. Model parameters for the obtained fits are
1 =0.9781 kPa, o = —23.4610, 1, = 0.3672 kPa and N = 4.4578. Note the significant improvement in the quality of the
fits compared with the plots in figure 4a using Model I only. (Online version in colour.)
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Treloar [42] stipulated that Rivlin’s representation of a strain energy function W in invariant
form was so considered to keep W as an even-powered function of the stretch ratios, hence
W would always be positive. By noting that the principal stretches A; are by definition
positive, Ogden removed the overly prescriptive restriction of the even-powered A; terms in his
formulation, to let the powers «; be real-valued [40]. However, while the Ogden model is an
extension to the separable functional form of the Valanis & Landel [43] representation, it is not
the most general form of W as a function of A;, since A; terms in the Ogden model are also in
a separable form. There is no mathematical or physical necessity for a strain energy function to
be a separable form of 1;, and the most general case is achieved via non-separable forms. For a
detailed discussion on this point see [42].

In this spirit, a generalization of the models in equation (2.4) may be achieved by considering
the following, non-separable, representation:

(4.3)

1 AY + A4S+ 29 —3N
W:MN[W(A‘{-%A%#—A%—@—In(l 23 )}

3—-3N

where o is real-valued. We refer to this model as Model III of the family of the proposed
models herein. Setting « =2 recovers Model I given by equation (2.1). We note that Model III is
a hybrid of structural basis and phenomenological considerations. We find from equation (4.3)
the expressions for the Cauchy stress in uniaxial and simple shear deformations as

(MY + 21705« _ 9N
6(A% 4 21—05¢ _ 3N)
T = (LY + 21705« _ 9Ny
6v/y? + 4(1% 4 22705« —3N)

()Loz _ )L—O.Soz )’

Tuni =
(4.4)

()\Ol — )\—0.50[)’

where we recall that the principal stretch A in simple shear is given in terms of the amount of
shear y as [16]

4
A== 1+ —. 4.5
2+ + 1 (4.5)

Note that on specializing equation (4.4); to the linear theory of elasticity, the infinitesimal shear
modulus ug is found as

_ uo®(1—3N)

o = m (4.6)

By simultaneously fitting the relationships in equation (4.4) with the compression-tension and
shear deformation datasets of human brain cortex tissue specimens due to Budday et al. [3,4],
most favourable fits are obtained compared with Models I and II in equation (2.4). The fitting
results are illustrated in figure 8. Table 4 summarizes the model parameters. By comparing the
plots in figure 8 with those provided by the (one-term) Ogden model to the same datasets shown
in figures 2 and 4, we observe that Model III in equation (4.3) provides improved fits to the Ogden
model, particularly in capturing the asymmetry of the deformation in compression and tension,
while remaining convex; see the insets in figure 8.
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Table 4. Model parameters for the uniaxial compression—tension and simple shear deformation datasets of human brain cortex
due to Budday et al. [3,4] using Model Ill in equation (4.3). The R? values are presented in (uniaxial)—(simple shear) deformation
order.

() N(—) o (—) R? (uni.—ss)
Budday et al. [3] data 0.02 116 —5.46 0.95-0.94
Budday et al. [4] data 0.02 5.50 —16.00 0.99-0.99

5. Summary and concluding remarks

The aim of this manuscript was to make a case for the application of our proposed family of
models, namely Models I, II and III, given by equations (2.4) and (4.3), to the mechanics of brain
tissue. To this end, the analyses presented herein demonstrate that these models are inherently
capable of capturing the key features of the mechanical behaviour of brain tissue according to
Budday et al. [3,4,14] and Mihai ef al. [15]; i.e. Features (a)—(c) listed in §1.
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Figure 9. Finite-element simulations demonstrating the effect of inhomogeneity of stress distribution on stress predictions:
(a) a cylinder of brain matter with diameter 15 mm, various heights and Ogden parameter « = —2.8 under uniaxial tension
[46]. Stretch is 30%. As the height/width ratio increases, the inhomogeneity effects become less marked; (b) simple shear [6] of
arectangle of brain matter with width 19 mm, various heights and Ogden parameter o = 4.6. Amount of shearis y =1.0and
(c) simple shear [1] of a square of brain matter with Ogden parameter e = —20. Amount of shear is y = 0.2. (Online version
in colour.)

While the proposed models do not equally provide as favourable fits to all the datasets, they
appear to perform better than most of the existing models in the literature. The only model
capable of providing an improved fit to Models I and II seems to be the one-term Ogden model;
however, the analyses presented in §§3 and 4 identify some problematic effects that arise from
the application of the Ogden model to the brain tissue deformation datasets, such as the non-
convexity of the strain energy function and the misplacement of the direction of concavity in
the stress—stretch curves over a range of the deformation domain. By contrast, the family of
models presented here proved impervious to such shortcomings. Pending further investigation,
the epilogue analysis in §4 indicates that the phenomenological extension of the proposed models
into a functional representation embodying the principal stretches A;, i.e. Model III as given by
equation (4.3), provides an optimal solution where the model appears to capture the experimental
data most favourably, while maintaining convexity.

We conclude with some comments on the first part of Feature (a): “The shear response is
highly nonlinear’. It may be worthwhile to recall that characterizing and modelling the simple
shear behaviour in nonlinear elasticity is an intricate task; see, e.g. [44,45] for an overview.
A contributing factor to this intricacy is the sample preparation, particularly when it comes to
a very soft tissue such as the brain. As noted by Budday et al. [1,12], the strong nonlinearity
observed in simple shear tests of the brain tissue could be a consequence of the testing protocol
chosen in those studies [3,4,14,15], where cubic samples have been used. With that geometry it
becomes impossible to ensure homogeneity of the shear deformation, and then the analytical
expression for T is not adequate to predict the data, as the nonlinearity is exacerbated by
inhomogeneous effects, see finite-element simulations [46] in figure 9. The high (absolute) values
of the Ogden parameter « lead to ‘unrealistic high shear stresses” [1] outside the data range.
Budday et al. [1,12] recommend an inverse finite-element analysis to model the inhomogeneous
response of a cubic sample and deduce the actual value of «. Another route is to follow
the recommendations of the standard protocols (e.g. that of the British Standards [47]), which
recommend that the width of the sample be four times its height. With that precaution, the shear
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response is almost linear [28] or slightly nonlinear [6], indicating that the value of |«| for brain
matter should be close to 2 (also confirmed by Balbi et al. [29] with torsion experiments on brain
matter, and by Budday et al. [1], who find that the surface morphology due to brain development
is most realistic in computational simulations when « = 2). With that correction, the problems of
non-convexity and wrong curvature of the tensile stress—stretch response raised in this paper for
the Ogden model will probably disappear. At any rate, our proposed models, Models I, Il and III,
remain impervious to these shortcomings.
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Appendix A. Tabulated experimental data

Table A1. Budday et al. data [3].

compression—tension simple shear
T (kPa)
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Table A2. Budday et al. data [4].

compression—tension simple shear
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