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Abstract
Soft materials such as rubbers, silicones, gels and biological tissues have a nonlinear re-
sponse to large deformations, a phenomenon which in principle can be captured by hy-
perelastic models. The suitability of a candidate hyperelastic strain energy function is then
determined by comparing its predicted response to the data gleaned from tests and adjusting
the material parameters to get a good fit, an exercise which can be deceptive because of non-
linearity. Here we propose to generalise the approach of Rivlin and Saunders (Philos. Trans.
R. Soc. A, Math. Phys. Eng. Sci. 243:251–288, 1951) who, instead of reporting the data as
stress against stretch, manipulated these measures to create the ‘Mooney plot’, where the
Mooney-Rivlin model is expected to produce a linear fit. We show that extending this idea
to other models and modes of deformation (tension, shear, torsion, etc.) is advantageous, not
only (a) for the fitting procedure, but also to (b) delineate trends in the deformation which
are not obvious from the raw data (and may be interpreted in terms of micro-, meso-, and
macro-structures) and (c) obtain a bounded condition number κ over the whole range of
deformation, a robustness which is lacking in other plots and spaces.
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1 Introduction

A great variety of models are available in the literature to describe the nonlinear behaviour
of rubber-like materials in large deformations. Once an appropriate strain energy function
W is selected for a given specimen, the important next step is to fit the model’s predictions
to the acquired experimental data. In a good case scenario, the outcomes of an accurate
fitting produce low relative errors (e.g., [9]), ideally provide a single set of model parameter
values that can capture various deformation modes of the specimen (e.g., [1, 2]), and ulti-
mately result in a model that remains stable beyond the collected range of experimental data
(e.g., [24]). Therefore, in view of the “Hauptproblem” of nonlinear elasticity [21], the fitting
process is of utmost importance.

To address these issues, Ogden et al. [17] systematically studied the fitting of hyperelas-
tic models to experimental data, with a particular focus on the problem of the uniqueness,
or lack thereof, of the optimal fit. In the wake of that seminal paper, studies such as those by
Anssari-Benam and Bucchi [1] or Anssari-Benam et al. [2] sought to obtain the optimal re-
sult by fitting the models to various deformation datasets of each specimen simultaneously,
as opposed to using data from a single deformation mode only, which is commonly practiced
in the literature. In the same spirit, Yan et al. [22] proposed that, when modelling the simple
shear of elastomeric foams, the stress components along the inclined surface should also be
considered, and that the model should simultaneously be fitted to all those stress compo-
nents. Appendix B of Anssari-Benam et al. [3] also provides further comparisons between
various fitting strategies.

As reviewed recently by Destrade et al. [9], however, an illuminating alternative approach
to the identification of the model parameters is the use of the so-called Mooney space for
data fitting. This approach was first introduced by Rivlin and Saunders [19] for applica-
tion to the data obtained from uniaxial tension tests on rubbers in conjunction with the
Mooney-Rivlin model. Instead of using the traditional Cauchy or engineering spaces (where
the stress is reported against the stretch), Rivlin and Saunders [19] transformed their data
into the Mooney space, where the Mooney-Rivlin model predicts that the data points should
be along a straight line. Modelling the uniaxial data in the Mooney space highlights some
nuanced aspects of the deformation and modelling trends which are hidden in the Cauchy
or engineering spaces. These include the magnification of the model performance in small
to medium deformation ranges, as noted by Pucci and Saccomandi [18], or the identifica-
tion of different deformation regimes which are each associated with different mesoscopic
phenomena and can be clearly delineated in the Mooney space as demonstrated by Destrade
et al. [9]. Importantly, the transformation of the uniaxial data and model formulation into the
Mooney space allowed Rivlin and Saunders [19] to reduce the fitting procedure to a linear
regression problem. This advantageous aspect can be demonstrated as follows.

The well-known representation formula of the Cauchy stress for incompressible isotropic
materials reads:

T = −pI + 2W1B − 2W2B−1, (1)

where p is the arbitrary Lagrange multiplier enforcing the condition of incompressibility,
I is the identity tensor, B is the left Cauchy-Green deformation tensor, and W1 and W2

are the partial derivatives of the strain energy function W with respect to I1 = trB and
I2 = trB−1, the first and second principal invariants of B, respectively, with I3 = det B = 1
due to incompressibility. For uniaxial deformations, B = diag

(
λ2, λ−1, λ−1

)
, where λ is the
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uniaxial stretch. By setting T22 = T33 = 0 as the boundary conditions to establish p, the
relationship between the uniaxial Cauchy stress T11 and the stretch λ is obtained as:

T11 = 2

(

λ2 − 1

λ

)(

W1 + 1

λ
W2

)

. (2)

Equation (2) is then re-written in terms of the engineering stress P = T11λ
−1 as:

P = 2

(

λ − 1

λ2

)(

W1 + 1

λ
W2

)

. (3)

Instead of reporting the Cauchy plot (T11 against λ) or the engineering plot (P against λ),
Rivlin and Saunders created the Mooney plot by transforming Equation (3) into:

M = W1 + ζW2 , where ζ = 1

λ
, M = P

2

(

λ − 1

λ2

), (4)

and reported the data as M against ζ . Then, on using the Mooney-Rivlin model,

WMR = 1
2 C1(I1 − 3) + 1

2C2(I2 − 3), (5)

where C1 and C2 are constants, it becomes clear from Equation (4) that:

MMR = C1 + C2ζ, (6)

so that fitting the Mooney-Rivlin model to uniaxial data becomes a matter of straightforward
linear regression in the Mooney space, a clear advantage given the computational power
available at the time.

Interestingly, Rivlin and Saunders [19] did not provide an explicit rationale for presenting
the uniaxial deformation data in the Mooney space. Whatever the initial motivation, how-
ever, the concept of the Mooney plot has since been used frequently as an analytical tool
to study the mechanical behaviour of rubbers. Some notable examples of the direct use of
the Mooney plot include the work of Gent and Thomas [12] to develop their logarithmic I2

model, Fukahori and Seki [10] to experimentally evaluate the values of W1 and W2, and Han
et al. [13] to analyse and model the mechanical behaviour of swollen rubbers.

However, in using the classical Mooney plot of Equation (4), due care must be exercised
for strain energy functions W with functional forms other than that of the Mooney-Rivlin
model. In general, there is no guarantee that the functional form of M for different models
in the classical Mooney space will be conducive to a standard linear regression analysis.
Indeed, it can be demonstrated that for some W functions, a direct linear regression link
in the Mooney space cannot be established. Although they did not explicitly expand on
this point, it appears that Gent and Thomas [12] were the first to recognise this fact by
adopting a new domain for ζ and M instead of that in Equation (4) originally used by Rivlin
and Saunders [19]; see their Fig. 1. The same trait may also be found in the later works
of McKenna and co-workers, who defined various Mooney domains for different models
of swollen rubbers; see, e.g., Han et al. [13] and McKenna [14]. Hence, it is clear that
the classical Mooney space does not provide the generality of framework for the adoption
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and application of many of the existing models in the literature. In addition, the domain of
application of the Mooney space has thus far been limited to the uniaxial deformation.

Accordingly, in this paper we present a systematic approach to define a generalised
Mooney space in which a linear regression is achieved for various strain energy functions
W by devising appropriate corresponding measures of M and ζ . It is therefore our aim to
recast the classical Mooney plot into a canonical form, namely the generalised Mooney plot,
which allows the transformation of the fitting process into a standard linear regression prob-
lem for several strain energy functions W . We demonstrate that for some W functions the
classical Mooney plot is not always the ideal means to represent the modelling results versus
the experimental data. Depending on the particular form of W , we show in §2 that alterna-
tive functional forms of M may be formulated within the generalised Mooney space which
result in a proper linear regression for the demonstration of the model fittings to the data.
We use the simple extension deformation as our point of departure. Then in §3 we extend
the idea of the generalised Mooney spaces and plots to other standard deformation modes
(e.g., equi-biaxial tension, pure shear, simple shear and simple torsion). Finally, we provide
concluding remarks in §4.

2 Generalised Mooney Spaces and Generalised Mooney Plots

To showcase the mathematical concept of the generalised Mooney space, or GMS for
short, here we take the archetypal example of simple tension deformation as our start-
ing point. The kinematics of this deformation is described by the deformation gradient
F = diag(λ,1/

√
λ,1/

√
λ), and thus by the single variable λ, the principal stretch in the

direction of tension. Then, in uniaxial deformation tests, ordered pairs {λi,Pi} are measured
and collected, where P is the engineering stress.

We define the GMS as a space where, for a given model with material parameters Cj , two
data sets M and ζ can be constructed from the ordered pairs {λi,Pi} to yield a relationship
in the form:

M =
∑

j∈A

Cjζ
j , (7)

(where A is a finite subset of Q), so that the Cj ’s are determined by a linear curve-fitting
exercise.

We show below that this representation is highly illuminating from the perspective of
highlighting deformation regimes and trends that are not apparent in other spaces. More
crucially, however, it can be demonstrated using the condition numbers associated with the
stress quantities P , T , M that curve fitting in the GMS is more advantageous than in the
classical Cauchy or engineering spaces. Recall that the condition number κ of a one-variable
function f = f (x) is κ = |xf ′/f |. The condition number is in effect a measure of how
sensitive a regression is to perturbations in the data points [5]. In the context of applying
mathematical models to the experimental data, the condition number κ may be interpreted
as how robust the obtained fit is, given the degree of experimental errors and uncertainties
inherently present in the deformation datasets of soft solids. By definition, the lower the
value of κ , the less sensitive the regression is to perturbations and hence the more robust the
fitting result is. It can be shown on a case-by-case basis that the κ number obtained by fitting
a model to the experimental data in the GMS is a priori lower than that obtained using the
same model in either Cauchy or engineering spaces.
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Let us take the Mooney-Rivlin model as an example. We find from Equations (2) and (3)
that:

κT = C1λ(2λ3 + 1) + C2(λ
3 + 2)

(λ3 − 1)(C1λ + C2)
, κP = C1λ(λ3 + 2) + 3C2

(λ3 − 1)(C1λ + C2)
, (8)

showing that in the Cauchy and engineering spaces the data is presented in such a way that

the condition number cannot be smaller than 1
(

lim
λ→∞κT , κP = 1

)
and becomes extremely

large at small stretches

(
lim
λ→1

κT , κP = ∞
)

. In contrast, in the GMS the condition number

κ is found from Equation (6) as:

κM = C2ζ

C1 + C2ζ
, so that 0 < κM ≤ 1. (9)

Hence the condition number κ obtained by fitting the Mooney-Rivlin model to the experi-
mental data in the GMS is never greater than 1 (for small stretches, as ζ → 1). Therefore,
the GMS facilitates obtaining more robust fits to the data compared with the Cauchy or
engineering spaces.

We now present examples of the transformation of various models and the data into the
GMS and obtain the ensuing generalised Mooney plots (GMPs) in this space, contrasting
them with the plots in the classical Mooney space. Note that the term ‘model’ in this work
is used exclusively in reference to the strain energy function W . The modelling tool is the
GMS defined by M and ζ via Equation (7). The list of model examples in this section
is of course not exhaustive. The M function defined in Equation (7) may be tailored to a
variety of strain energy functions W , where the concept of GMS is well defined. However,
we also note that there exist strain energy functions W that are not amenable to a linear
regression transformation within the GMS framework. Such strain energy functions include,
for example, the Ogden [16] model:

WO =
N∑

i=1

μi

αi

(λ
αi

1 + λ
αi

2 + λ
αi

3 − 3), (10)

(where the λs are the principal stretches), the model proposed recently by Anssari-Benam
and Bucchi [1]:

WABB = μN

[
1

6N
(I1 − 3) − ln

(
I1 − 3N

3 − 3N

)]

, (11)

or the Gent+Gent model proposed by Pucci and Saccomandi [18]:

WGG = −μJm

2
ln

(

1 − I1 − 3

Jm

)

+ C2ln

(
I2

3

)

, (12)

where μi , αi , μ, N , C2 and Jm are material parameters.
The GMPs presented henceforth have been obtained by minimising the relative error. We

emphasise that it is crucial in curve fitting exercises to minimise the relative error, and not
the absolute error (as is often done by default in the literature). The absolute error changes
from one stress measure to another, and thus a curve fitting exercise based on absolute errors
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would predict different optimal material constants for the same test depending on whether
the experimentalist chose to report, for example, the Cauchy or the engineering stresses.
Accordingly, here we conduct the linear optimisation procedure based on minimising the
relative error, because it yields the same optimal set of material constants independently of
the stress measure [9]. This is easily achieved by any software optimisation code, simply
by using a classical weighted Least-Square procedure to minimise the relative residual sum

defined here as:
∑

i

[
(Mmodel

i −M
experiment
i )/M

experiment
i

]2
.

2.1 Yeoh and Polynomial Neo-Hookean Models

Consider first the cubic Yeoh model [23], often used to model the deformation of rubbers:

WY = C1 (I1 − 3) + C2 (I1 − 3)2 + C3 (I1 − 3)3 . (13)

From Equation (3) it follows that:

P = 2(λ − λ−2)
[
C1 + 2C2 (I1 − 3) + 3C3 (I1 − 3)2

]
. (14)

Because in uniaxial tension I1 = λ2 + 2λ−1, the function M for the Yeoh model is thus:

MY = C1 + 2C2ζ + 3C3ζ
2, where ζ := λ2 + 2λ−1 − 3. (15)

A generalisation of this model is the polynomial neo-Hookean model (pnH) as:

WpnH(I1) =
n∑

i=1

Ci(I1 − 3)i . (16)

This model recovers the Yeoh model and also the Taylor series approximation of the many
existing generalised neo-Hookean strain energy functions in the literature; see, e.g., Boyce
[6] for a review. In a similar manner as to the Yeoh model here we find that:

P = 2(λ − λ−2)

n∑

i=1

i Ci(λ
2 + 2λ−1 − 3)i−1, (17)

which leads to the following M function in the GMS:

MpnH =
n∑

i=1

i Ci ζ
i−1, where ζ := λ2 + 2λ−1 − 3. (18)

On using the uniaxial data due to Treloar [20], Fig. 1 presents the data plots in both
the GMS and classical Mooney space for the Yeoh model. Compared with the classical
Mooney space, it is observed that the GMS provides a more versatile tool to inspect the
suitability of the model in describing the experimental data. The trend of the data points in
this space is first a decrease in MY, then a minimum and finally an increase with ζ . The
transformation into the GMS therefore makes it clear that the parabolic form of the Yeoh
model in Equation (15) cannot account for the asymmetric distribution of data near ζ = 0,
i.e., at small deformations. However, this parabolic shape is clearly more effective for larger
ζ , say ζ ≥ 6.7, which is equivalent to λ ≥ 3. This degree of resolution for delineating various
trends in the dataset and the modelling results is not provided by the classical Mooney space,
see Fig. 1(b).
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Fig. 1 The Yeoh model in the GMS (left panel) and the classical Mooney space (right panel). The former
provides a better resolution for inspecting the suitability of the model in describing the data than the latter. The
results in the GMS indicate that the Yeoh model is not suitable for capturing the deformation at all stretches,
because the data there cannot be captured by a quadratic variation as expected. The model is suitable to
describe the deformation at higher stretches, say ζ ≥ 6.7 (λ ≥ 3). Experimental data is from the uniaxial
deformation due to Treloar [20]

2.2 Gent-Thomas Model

Now we consider the classic Gent-Thomas model [12]:

WGT = C1 (I1 − 3) + C2 ln

(
I2

3

)

. (19)

For this model we have:

P = 2

(

λ − 1

λ2

)(

C1 + C2

2λ2 + λ−1

)

, (20)

noting that in uniaxial deformation I2 = λ−2 + 2λ. It is straightforward to see that we can
form a linear regression problem as:

MGT = C1 + C2ζ , where ζ := 1

2λ2 + λ−1
. (21)

Figure 2 illustrates the transformation of this model in the GMS using Equation (21) and
its correlation with the uniaxial experimental data of Treloar [20]. For this model, MGT in the
GMS coincides with that of the classical Mooney space. However, note that by definition,
ζ varies in the range 0 < ζ < 1 in the classical Mooney space, whereas the domain of ζ

defined in the GMS via Equation (21) for this dataset is 0 < ζ < 1/3. Therefore, compared
with the classical Mooney space, the GMS provides a better magnification of the data trends
and the performance of the model.

It is evident from Equation (21) and the GMP in Fig. 2 that the Gent-Thomas model
is best suited for application to the linear regions of the data, and not to the entire stretch
range. Using the GMS it is possible to identify two regions within which the data trend may
be considered as linear: (i) a region where ζ varies between 0.1 < ζ < 1/3 (corresponding
to 1 < λ < 2.18); and (ii) a region where ζ < 0.01 (corresponding to λ > 6.85). By focus-
ing the modelling effort in these two linear regions, the model is then capable of providing
a suitable description of the data, as shown by the lines in Fig. 2. However, we also note
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Fig. 2 The Gent-Thomas model in the GMS, where it is expected to give a linear equation. Clearly, here,
there is no single line trend that can cover the entire range of stretches in the experimental data. However,
with the help of the GMS it is possible to identify the linear region(s) within the data and direct the focus of
the modelling campaign only on these regions when using the Gent-Thomas model. The lines represent the
fitting results for the two identifiable linear regions. Experimental data is from the uniaxial deformation due
to Treloar [20]

that the provided linear fit by the Gent-Thomas model for 0.01 > ζ is obtained only when
C2 < 0 (as the slope is clearly negative there), which may not be physically valid and may
lead to the loss of ellipticity. Therefore, for a physically valid result, the GMS suggests that
the application of the Gent-Thomas model should be limited to a certain range of defor-
mation, in this case to when 0.1 < ζ < 1/3 (or 1 < λ < 2.18). These trends are not easily
distinguishable in the Cauchy or engineering spaces.

2.3 Gent Model

Next, we consider the Gent model [11]:

WG = −μJm

2
ln

(

1 − I1 − 3

Jm

)

, (22)

where μ is the infinitesimal shear modulus and Jm is the stiffening parameter. On using
Equation (3) we find:

P

λ − λ−2
= μ

1 − (1/Jm)
(
λ2 + 2λ−1 − 3

) . (23)

It then follows that:

P

λ − λ−2
− P

λ − λ−2

λ2 + 2λ−1 − 3

Jm

= μ, (24)

so that we arrive at the linear regression problem:

MG = μ + 1

Jm

ζ , (25)

where:

MG := P

λ − λ−2
, ζ := P

(
λ2 + 2λ−1 − 3

)

λ − λ−2
. (26)
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Fig. 3 The performance of the Gent model in the GMS (left panel) and the classical Mooney space (right
panel). It is possible to identify a V-shape trend in the experimental data in the GMS. In either branches of
this V-shaped pattern, then, the Gent model is able to provide a linear fit, but clearly not to the whole range of
the data. The blue lines show the provided best lines of fit to the data in each branch of this V. Experimental
data is from the uniaxial deformation due to Treloar [20]

Here, MG and ζ are a mixed set of stretch and engineering stress measures. Clearly, in
this case it is not straightforward to ascribe a direct physical interpretation to the GMS.
However, the GMS is still useful for investigating the goodness of the fit provided by the
Gent model. If the data is linear in ζ within this space, we find directly the value of Jm

as the inverse slope of the line and of μ as its intercept. Moreover, the fitting exercise has
been transformed from a nonlinear procedure, see Equation (23), to a much more straight-
forward linear one. Figure 3 shows Treloar’s data in the GMS associated with the Gent
model.

Interestingly, the transformation of the data into the GMS reveals a V-shaped pattern
in the experimental data. It is clear that the model cannot capture this V-shaped pattern,
as Equation (25) is the equation of a single line. Instead, however, the GMS allows us to
perform a good linear fit on either branches of the V-shaped data, depending on whether
we wish to model the early or later regimes of extension. The apex of this V-shaped pattern
is located at ζ 	 0.8, corresponding to λ 	 2.18. In either sides of this apex, the data in
the GMS indicate a linear trend, which then the Gent model in Equation (25) is able to
provide a good fit to, see the lines in the GMP of Fig. 3(a). However, note that for ζ < 0.8,
or equivalently λ < 2.18, the slope of the fitted line is negative, which in turn indicates that
the value of the parameter Jm must be negative too. From a meso-structural perspective, a
negative Jm is not physically realistic, and thus the Gent model may not be suitably used
in this context for modelling the deformation within the small stretch regime. These trends,
and analyses, are not lucid in the classical Mooney space, as shown in Fig. 3(b), and will be
even less so in the Cauchy and engineering spaces.

2.4 Fung Model

Another example of a widely used strain energy function W in the literature, particularly
pertaining to the biomechanics of soft tissues, is provided by the exponential Fung-Demiray
model [4]:

WFD = μ

2b

[
eb(I1−3) − 1

]
, (27)
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Fig. 4 The transformation of the Fung-Demiray model in the GMS (left panel) and the classical Mooney
space (right panel). A V-shaped pattern in the experimental data is again observed within the GMS, while the
classical Mooney space does not delineate this trend. The Fung-Demiray model is able to provide a linear
fit to either branches of this V-shaped trend, but clearly not to the whole range of the data. The blue lines
show the provided best lines of fit to the data in each branch of this V. Experimental data is from the uniaxial
deformation of a healthy porcine aorta

where μ is the infinitesimal shear modulus and b is the stiffening parameter. On transforming
this model into the GMS we also find a linear formula as:

MFD = lnμ + bζ , (28)

where:

MFD := ln

(
P

λ − λ−2

)

, ζ := λ2 + 2λ−1 − 3 . (29)

The plots in Fig. 4 present the fitting results of this model to the experimental data ob-
tained from healthy porcine aorta under uniaxial deformation, within both the GMS and the
classical Mooney spaces (data recorded by Michel Destrade at University College Dublin as
part of a separate prior study, also used in the paper by Destrade et al. [8]).

Similar to the trend observed for the modelling results pertaining to the Gent model, a
V-shaped pattern in the experimental data is highlighted again in the GMS. As Equation
(28) demonstrates, the Fung-Demiray model can only capture the whole data as a single
line. However, the GMS allows the identification of the V-shaped pattern in the data, and
so enables the fitting of the model to either branches separately as a straight line. The apex
of the V is located at ζ 	 0.06, corresponding to λ 	 1.15. See the blue lines in Fig. 4(a).
However, note that the gradient of the model line for ζ ≤ 0.06 is negative, requiring the
stiffening parameter b to be also negative if the Fung-Demiray model is to provide a suitable
fit to the data at the smaller range of deformation. A negative stiffening parameter b may not
be deemed physically realistic, and therefore caution must be exercised on using the Fung-
Demiray strain energy function to model the deformation of isotropic soft tissues. Again,
note that this behaviour is not captured in the classical Mooney space, see Fig. 4(b).

3 Other Classes of Deformation

In the previous sections we presented the concept of the GMS by appealing to the sim-
ple tension deformation as a descriptive example. However, the application of the GMS is
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not restricted to uniaxial, nor to homogeneous, deformations. As a general rule, when the
deformation depends only on one kinematic variable we may find a M function for linear
regression in a similar manner to that devised for the uniaxial deformation case.

Here, accordingly, we extend the application of the GMS to other classes of deformation:
equi-biaxial tension, pure shear, simple shear and torsion. The derivations of the M and
ζ domains for the archetypical strain energy functions considered in this study under the
foregoing deformations are similar to those presented in §2. For brevity, here we only present
the final results, see Table 1. Note that ζGT, ζG and ζFD in Table 1 for simple torsion are
defined as:

ζGT = 1

R2
oφ

2

[

1 − 3

R2
oφ

2
ln

(
R2

oφ
2 + 3

3

)]

, (30)

ζG = N

R4
oφ

2
Jm

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 + 2R4
oφ

4

π

[

ln

(
R2

oφ
2 − Jm

Jm

)

+ R2
oφ

2

Jm

]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (31)

ζFD = N

R4
oφ

2

{

1 + 2b2R4
oφ

4

πexp(−1)
[(

bR2
oφ

2 − 1
)

exp(bR2
oφ

2) + 1
]

}

. (32)

Similarly, our analysis of the condition number κ (not reproduced here) shows that, as in
the case of simple extension, the fits obtained in the GMS for these deformations are also a
priori more robust than those achieved in the Cauchy or engineering spaces, since the values
of κM for all the foregoing deformation modes are bounded to far lower values than those
of κT and κP .

4 Concluding Remarks

Our aim in this paper was to put forward a systematic view of the mathematics and me-
chanics at play in the Mooney plot. Our analysis highlights that in the arena of modelling
the finite deformation of rubber-like materials, there is not a single Mooney plot, but many
Mooney plots, depending on the model chosen to fit the data and on the mode of deforma-
tion. These Mooney plots, however, may all be constructed under a canonical concept which
we have coined in this paper as the generalised Mooney space (GMS).

To the best of our knowledge, a clear and explicit rationalisation of the underlying rea-
son(s) that prompted Rivlin and Saunders [19] to introduce and use the classical Mooney
plot has not been articulated in the literature. While the Mooney plot was not used in the
seminal work of Mooney [15] itself, we can nonetheless argue that it was a helpful tool from
a computational point of view to facilitate a linear regression problem with much simpler
calculations. Since its inception, the Mooney plot has been used by several researchers to
provide an ad primum aspectum of the goodness of a fit, which often remains hidden in the
Cauchy or engineering spaces. A typical example is provided by the neo-Hookean model,
which in the engineering space seems to provide a satisfactory fit to the finite but moder-
ate deformation ranges of rubbers, only then to demonstrate significant shortcomings in the
Mooney plot, coupled with a poor performance in respect of minimising the relative errors
(see, e.g., [9]).
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The usefulness of the GMS reveals itself first as an improvement on the fitting process.
Although computational power has increased dramatically since the early days of research
on rubber, nonlinear curve fitting exercises are fraught with potential pitfalls, as uniqueness
of an optimal set of parameters is not guaranteed [9, 17]. In the examples presented here, we
saw that the GMS turns a nonlinear fitting exercise into a linear one for a variety of models
including the Gent and the Fung-Demiray models. Another clear advantage of the GMS lies
in its ability to identify the limitations of a given model. This feature arises as a result of
the bounded condition numbers κ pertaining to the functional forms of M for the models
transformed into the GMS. As exemplified by the archetypical Mooney-Rivlin model in
§2, for many models, if not all, one can notice the presence of kinematical factors in the
stress-strain relationships within the Cauchy or engineering spaces that cause the condition
number κ to approach infinity at ranges close to the unstrained state. This phenomenon
hides the descriptive ability of the model in the small to moderate ranges of the deformation
within the Cauchy or engineering spaces. The GMS, by contrast, solves this problem by
providing M functions that have a bounded condition number κM over the whole range of
deformation. In other words, the GMS appears to ‘clean’ the kinematical sensitivities present
within the classical Cauchy or engineering spaces (note that this outlook has a similar aim to
the approach of Criscione et al. [7], who used a new domain of invariant space). As a result,
the performance of a model and its limitations can be observed with a better magnification,
and with more robustness.

In view of the foregoing, and of the analyses and results presented in this work, we
conclude that the GMS allows for the possibility of gaining meticulous insights into the
performance of different models in ways that are not easily accessible in the current clas-
sical spaces. For this reason we believe that the GMPs are a new class of tools that enable
a clearer and more quantitative assessment of the performance of many models of the non-
linear elasticity theory. Given that the variety of the proposed models continually increases
in the literature, this new tool may provide a fundamental assistance to understand the focal
points in solving the Hauptproblem.
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