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Hadamard matrices are an important item of study in combinatorial design theory. In

this thesis, we explore the theory of cocyclic development of Hadamard matrices in

terms of regular group actions on the expanded design. To this end a general theory of

both group development and cocyclic development is formulated. This theory is used

to classify all regular actions on the expanded designs of Hadamard matrices of order

less then 32 that contain a special central involution. We show that such a regular

action exists if and only if the matrix is cocyclic. In addition the cocyclic development

properties of several Hadamard matrix constructions are reviewed. Some relevant results

from the literature are presented, and some non-existence results are given for certain

small orders. This work settles some research problems posed by K.J. Horadam in a

recent book on Hadamard matrices.
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Chapter 1

Introduction

The goal of this thesis is to develop the theory of group actions on square arrays. The

first part of the thesis will develop a broad theory; the second part will apply this to the

problem of the classification of Hadamard matrices, with certain regular group actions.

The first chapter begins with a brief introduction to combinatorial design theory as

a background to Hadamard matrices. Group development of square matrices is also

discussed, as a motivation for cocyclic development. We finish the chapter with an

overview of the relationship between cocyclic Hadamard matrices and relative difference

sets. The second chapter develops the cohomology of central extensions of groups. The

third chapter then develops the theory of group actions on square arrays in an abstract

fashion. The fourth chapter applies the theory developed thus far to the specific case

of Hadamard matrices. The remaining chapters of the thesis apply this machinery to

various open problems in the area of Hadamard matrices. Chapter 5 gives a classifi-

cation of all cocyclic Hadamard matrices of order at most 28. Chapter 6 is a survey

of the literature on cocyclic Hadamard matrix constructions. We show that a cocyclic

Hadamard matrix exists at every possible order up to 188. In Chapter 7 we survey

some constructions that are suspected not to be cocyclic. We give non-existence results

at some small orders, providing partial answers to questions posed by Horadam in [1].

The thesis concludes with two short appendices that give, verbatim, some of the more

important programs that we wrote for use with the Magma computer algebra system,

[2].

The Magma database of Hadamard matrices and a paper by Kotsireas, Koukouvinos and

Seberry, [3], dating from 2006 both agree on the number of known equivalence classes

of Hadamard matrices of small order. As a by-product of some of our computations,

several hundred equivalence classes of Hadamard matrices not found in these sources

have been discovered.

1



Chapter 1. Introduction 2

1.1 Combinatorial designs

We begin with a brief introduction to combinatorial design theory, which is concerned

primarily with the study of incidence structures. Designs are simply incidence structures

to which additional constraints are added. Thus any results we give about incidence

structures apply also to designs.

Definition 1.1. An incidence structure is a triple of sets S = (P,B, I) with I ⊆ P ×B.

We will often present the information contained in I in the form of a (0, 1)-matrix, with

rows labelled by elements of P, called points, and columns labelled by elements of B,

called blocks. The entry in row p, column b will be 1 if (p, b) ∈ I, and 0 otherwise. We

generally refer to p as being on b if (p, b) ∈ I.

Incidence structures alone are too basic to be of any great theoretical interest. It is only

when additional conditions are imposed on I that substantial results may be obtained.

The family of incidence structures that has received the most attention in recent years

is that of t-structures. By definition these structures contain blocks of fixed size k.

Definition 1.2. S is a t-structure if for any integer n such that 0 ≤ n ≤ t, there exists

λn ≥ 0 such that any set of points of size n occurs on exactly λn different blocks.

Note that S is a 1-structure only if λ1 = |b| is fixed for all b ∈ B. It is traditional to refer

to λ1 as k and |P| as v. When t 6= 1 we refer to λt simply as λ. We will be interested in

structures that are at least 1-structures. In this case we will refer to them as t− (v, k, λ)

structures.

Standard combinatorial results show that t-structures exist only for suitable choices of

v, k and λ. Two of the most important tools in this area are the following equalities, the

first of which holds for any 1-structure, and the second for any 2-structure:

|B| k = vλ (1.1)

λ1 (k − 1) = λ2 (v − 1) (1.2)

Derivations of these formulae may be found in Chapter 1 of [4]. In any case, they follow

from simple counting arguments on the numbers of points and blocks. Finally, we give

the formal definition for a design.

Definition 1.3. A design is a structure with no repeated blocks.

Equivalently, we require that the incidence matrix have no repeated columns. This

restriction on the blocks of a design turns out to be very strong. For example, no

non-trivial designs at all are known with t ≥ 7. [4] In comparison, it is a relatively

straightforward exercise to construct a non-trivial incidence structure for any value of t.
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1.2 Symmetric designs and 2-designs

If S is a design with parameters 2-(v, k, λ), then any pair of distinct points will occur

on exactly λ blocks. Since every 2-design is also a 1-design, every point will occur on

exactly |B|kv blocks, by (1.1), and there will be λv(v−1)
k(k−1) blocks in total, by (1.2).

We will be interested in particular in symmetric designs, which have |B| = |P| = v.

Given this restriction, we observe that the number of blocks on a given point must be

equal to k, the number of points on a block. This is the origin of the name symmetric:

the transpose of such a design is also a symmetric design. This family of designs is

one of the central objects of study in modern combinatorial design theory. It is a well

established result that all symmetric designs with t ≥ 3 are trivial, see Theorem 1.27 of

[4] hence only symmetric 2-designs are suitable objects of study. Of particular interest

are symmetric designs for extremal values of λ: if λ = 1, then the design is a projective

plane, while if λ is maximal we obtain a Hadamard 2-design. In this thesis we will be

mostly concerned with Hadamard 2-designs, which have parameters (4λ+ 3, 2λ+ 1, λ)

for λ ∈ N. These Hadamard 2-designs, as well as the related Hadamard 3-designs, are so

called because of their close relationship with Hadamard matrices. Most of our results

will be given in terms of Hadamard matrices, but many can be reformulated as results

on the existence or non-existence of Hadamard designs with certain properties, or at

certain orders.

1.3 Hadamard matrices

In this section we give two alternative descriptions of Hadamard matrices. We observe

that a Hadamard matrix may be obtained from a Hadamard 2-design by appending a row

and column consisting entirely of +1 entries to the incidence matrix, and replacing all

0 entries with −1, see Theorem 3.26 of [4]. Alternatively, we may consider a Hadamard

matrix to be a square {±1}-matrix of order n with determinant nn/2.

Definition 1.4. The order of a square matrix is the number of rows, equivalently columns,

that it contains.

Hadamard matrices were first investigated by Sylvester in 1867. He observed that on

a chessboard, the patterns of colours in any pair of rows agreed either everywhere or

nowhere. His investigation of the problem of constructing anallagmatic pavements, or

arrays in which any two rows had exactly half of their entries in common, led to the

discovery of a construction method for what would become known as Sylvester Hadamard

matrices of order 2n. Jacques Hadamard later investigated such matrices as solutions

to the problem of finding the maximum determinant of a matrix of order n with entries

from the complex unit disk. He was the first to construct such matrices of orders 12
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and 20. He also conjectured that there exists a Hadamard matrix of order 4n for all

n ∈ N. This problem, almost as simple in its statement as Fermat’s Last Theorem or

the Goldbach conjecture, remains unsolved.

Definition 1.5. A Hadamard matrix is an n × n matrix H containing entries from the

set {±1}, with the property that:

HH> = nIn (1.3)

This implies that all distinct rows are linearly independent, i.e. have an inner product

of 0. An example of a 4× 4 Hadamard matrix is given below:
1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 (1.4)

1.3.1 The Hadamard Conjecture

The discovery of Hadamard matrices and the birth of the Hadamard conjecture are

closely related to Hadamard’s work on the determinants of complex valued matrices.

Hadamard’s Determinant Bound: Let M be a matrix of order n over C, with

|mi,j | ≤ 1, for all entries mi,j of M . Then the determinant M is bounded above:

|detM | ≤ nn/2 (1.5)

Equality holds in (1.5) for a real valued matrix M if and only if M is Hadamard.

Lemma 1.6. Equality in (1.5) and (1.3) are equivalent.

Proof. Let H be a Hadamard matrix. One direction of the proof is immediate:

HH> = nIn ⇒ det (H) = nn/2

since the determinant of H> is necessarily equal to that of H, and for any two square

matrices, A and B, we have that det (AB) = det (A)× det (B). Conversely, we observe

that if det (H) = nn/2 then HH> is a symmetric matrix with entries n along the main

diagonal and determinant nn. We show that all other entries are forced to be zero.

Let the entry in position (i, j), and by symmetry the entry at (j, i), be k. It is a basic

result in linear algebra that adding or subtracting rows of a matrix has no effect on the

determinant. Thus we subtract k/n times row i from row j, and k/n times column i

from column j. We obtain a matrix with entries 0 at (i, j) and (j, i) and n along the
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main diagonal, except at position j, j, which contains n2 − k2/n. Now for any k 6= 0,

the determinant of HH> will be strictly less then nn. This argument generalises to any

number of off-diagonal entries. So if H is a {±1} matrix with determinant nn/2, then

HH> = nIn.

Hadamard proved that if M , a matrix with real entries, has the Hadamard property,

then its order is 1, 2 or a multiple of 4. The Hadamard conjecture states that this

condition on the order of M is sufficient. We note that complex Hadamard matrices,

with entries in {±1,±i} can exist at even orders that are not divisible by 4.

The Hadamard Conjecture: There exists a Hadamard matrix of order 4n for all

n ∈ N.

This conjecture remains open. A positive solution to this conjecture would obviously

solve several open problems in combinatorial design theory. Several infinite families of

Hadamard matrices are known, but they are found only at certain orders. Sylvester’s

construction, for example, proves the existence of Hadamard matrices of order 2n.

Paley’s theorem is a much stronger result; it guarantees the existence of a Hadamard

matrix for all m = 2e (qn + 1) where q is either 0 or prime, and 2e is suitably chosen so

that m ≡ 0 mod 4. Details of the Paley construction are given in (6.3). There exists a

Paley Hadamard matrix of order 4n for all n ≤ 25 with the exceptions of the orders 44,

52, 60, 76, 84, 88, 92 and 100. As the power of computers increases, it becomes possible

to search exhaustively for larger and larger Hadamard matrices: existence of Hadamard

matrices at all of the above orders was proved by the 1970s. It should be noted however

that finding a Hadamard matrix of order n immediately yields a family of Hadamard

matrices of orders 2en, by the Sylvester construction. Orders of the form 4p where p is

prime are the main consideration at present as several construction methods are known

to generate a Hadamard matrix of order kn from one of order n, for many values of k. A

Hadamard matrix of order 428 was discovered in 2004 [5]. Currently, the smallest order

for which no Hadamard matrix is known to exist is 668 [1].

1.4 Group development

In this section we introduce some of the purely algebraic topics of the thesis. In particular

we give the definition and some examples of group development for square matrices.

We stress in particular the importance of regular actions. We also show that group

development of Hadamard matrices is possible only if the order of the Hadamard matrix

is square. We mention cocyclic development as a generalisation of group development,

but postpone its description until Chapter 3, when we have developed some preliminary

concepts.
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Definition 1.7. A matrix, M , with entries in a set A, is group developed over a group G,

if and only if there exists a function φ : G→ A such that M = [φ (gh)]g,h∈G.

Our notation [ai,j ]i,j∈G is intended to mimic the standard notation, in which i and j

range over the set {1 . . . n}, where n is the order of the matrix. We will iterate over the

elements of G in some arbitrary order. We observe that the different orderings of the

elements of G, with φ fixed, will generate matrices permutation equivalent to M . In

general we are interested in properties of matrices that are invariant under permutation

of columns and rows. As such, we will often abuse the notation and equate M with

its equivalence class under permutation of columns and rows, or briefly, its permutation

equivalence class. When we wish to discuss a specific matrix, we will specify an ordering

of the elements of G which will uniquely define M .

We will show in Chapter 3 that a matrix, M , of order n may be group developed over

a group, G, if and only if there there exists a permutation representation of degree n

of G as a subgroup of the automorphism group of M . In other words, there exists a

regular permutation action of G on the rows and columns of M . Since the multiplication

table of any group G is a Latin square, unique up to permutation of rows and columns,

every row and column in M will be a permutation of the first row. Hadamard matrices

with this property have constant row and column sums and are called regular in the

literature. This conflicts with our use of the term to describe certain group actions, but

we do not wish to introduce an unfamiliar term, so we can do little but bring it to the

attention of the reader.

1.5 Group developed Hadamard matrices

Restricting our attention to {±1} Hadamard matrices, we can prove some surprisingly

strong results. We define an s-regular Hadamard matrix to be one in which every row

and every column sum is equal to s. We provide a small example of group development.

Consider the cyclic group of order 4, with presentation < c | c4 = 1 >, and the set map

φ : C4 → {±1} given by φ (1) = φ (c) = φ
(
c3
)

= 1 and φ
(
c2
)

= −1.

1 c c2 c3

1 1 c c2 c3

c c c2 c3 1

c2 c2 c3 1 c

c3 c3 1 c c2

φ→


1 1 −1 1

1 −1 1 1

−1 1 1 1

1 1 1 −1


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The reader is invited to verify that this matrix is in fact Hadamard. We observe that

n = s2, where n is the order of the Hadamard matrix in the above example. In fact

this is true in general: we give two elementary proofs below. Hence group developed

Hadamard matrices occur only at square orders.

Lemma 1.8. Let H be an s-regular Hadamard matrix of order n. Then n = s2.

Proof. Let H be an s-regular Hadamard matrix of order n. Let ri be the ith row of H.

Then
n∑
i=1

(r1 · ri) = n

by orthogonality. But since r1 is a constant term in the summation, we have that

r1 ·

(
n∑
i=1

ri

)
= r1 · (s, s, . . . , s) = s2

since all columns sums are s. Thus, n = s2, as required. It follows that the order of a

group developed matrix must be square.

In an s-regular Hadamard matrix of order n there are precisely n
2 + s

2 positive entries in

each row and column, as well as n
2 −

s
2 negative entries. We give also an alternate proof,

due to Warwick de Launey, in which the above constraint on the number of positive

entries in any row of the matrix is derived:

Proof. Let H be an s-regular Hadamard matrix of order n as defined above. Recall that

by definition, HH> = nIn. Let J be the matrix consisting entirely of +1 entries. Then:

JH = JH> = sJ

nJ = JHH>

= sJH>

= s2J

n = s2

The restrictions on the order of a regular Hadamard matrix given above follow immedi-

ately.

We observe that either of these arguments are essentially the same as proving that

regular Hadamard matrices correspond exactly to square
(
4t2, 2t2 ± t, t2 ± t

)
-designs.

The converse is not true: that a Hadamard matrix has square order does not imply

that it may be group developed. The smallest counterexamples occur at order 16. It

is conjectured however, that a regular Hadamard matrix occurs at every even square
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order. Crnkovic has proved that there exists a regular Hadamard matrix of order 4p2,

for any prime p [6].

We call a Hadamard matrix normalised if its first row and column contain only positive

entries. Every Hadamard matrix is Hadamard equivalent to a normalized matrix - see

Section 4.2 for the relevant definitions. But obviously a normalised Hadamard matrix is

not regular. Thus group development is restricted to square orders, and is not respected

by the Hadamard equivalence relation. These shortcomings encourage us to look at

generalisations of this technique. Thus we consider cocyclic development, on which no

order restrictions are known. Our generalisation will also allow us to determine when a

normalised Hadamard matrix is equivalent to a group developed one.

1.6 Cocyclic Hadamard matrices

In the case of group development, we began with the multiplication table of a group,

and applied a function φ : G → A to it. We observed that this method was quite

restrictive with respect to the orders of Hadamard matrices that could be generated. As

a generalisation of this technique, we consider functions of the form ψ : G × G → A,

that satisfy the so-called cocycle identity:

ψ (g, h)ψ (gh, k) = ψ (h, k)ψ (g, hk)

Cocyclic developed Hadamard matrices are not limited to square orders. As an example,

the reader is invited to consider the sample calculation given in Section 4.4.1. We shall

see in Chapter 4, that a Hadamard matrix, H, is cocyclic over a group, G, only if there

exists a regular action of a special central extension of C2 by G on the expanded matrix

associated with H. We call the matrix cocyclic developed because, analogously to the

case of group development, we have that H ≡H [φ (g, h)]g,h∈G, where φ : G×G→ {±1}
is a 2-cocycle and ≡H is Hadamard equivalence. We will define all of these terms and

symbols later in the thesis, but we stress now that a regular action in our definition

must be regular on both the rows and the columns of the matrix. The cocycle appearing

in the above equation suggests a link with group cohomology, which will be the topic

of Chapter 2. The theory of regular actions comprises most of Chapter 3. Thus in

Chapter 4 we will be in a position to give a full description of cocyclic development.

Now however, we turn our attention again to combinatorial design theory, in particular

to the topic of difference sets. Our goal is to highlight an important link between these

two seemingly unconnected areas.
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1.7 Relative difference sets

Definition 1.9. Let G be a group of order v, and D a subset of G of order k. We say

that D is a difference set with parameters (v, k, λ) if every non-identity element of G

can be expressed as d1d
−1
2 in exactly λ different ways, where d1, d2 ∈ D.

Difference sets may be thought of as a class of designs in which the elements of the

point set form a group. They respect the conditions given on the parameters of designs

given at (1.1). Difference sets are relatively well studied, particularly in Abelian groups.

Relative difference sets are a generalisation of difference sets, but have received rather

less attention, particularly when they occur in non-Abelian groups.

Definition 1.10. Let E be a group of order mn with a normal subgroup N of order n. A

subset R of E of size k such that the multiset of quotients r1r−1
2 , ri ∈ R, r1 6= r2 contains

each element of E\N exactly λ times and no element of N is called a (m,n, k, λ)-RDS

in E with forbidden subgroup N .

When N is central, we say that R is an (n,m, k, λ)-CRDS. We note that groups of order

8t containing relative difference sets have been studied extensively by Ito, who refers

to them as Hadamard groups [7]. Flannery later proved the equivalence of cocyclic

Hadamard matrices and Hadamard groups [8]. The following result of de Launey outlines

the relationship between cocyclic Hadamard matrices and central relative (4t, 2, 4t, 2t)

difference sets.

Theorem 1.11. The following statements are equivalent.

• There is a cocyclic Hadamard matrix over G.

• There is a normal relative (4t, 2, 4t, 2t) difference set in a central extension of 〈−1〉
by G, relative to 〈−1〉.

• There is a divisible (4t, 2, 4t, 2t) design, class regular with respect to 〈−1〉, and with

a central extension of 〈−1〉 by G as a regular group of automorphisms.

Proof. We provide a proof of the equivalence of the first two items in Section 4.6. For

the other parts of the proof, see [9], Theorem 2.4

As a result, our classification of cocyclic Hadamard matrices of orders ≤ 28 provides

also a complete classification of relative (4t, 2, 4t, 2t) difference sets for t ≤ 7.



Chapter 2

Group Cohomology

While Sylvester and Hadamard investigated Hadamard matrices from the perspectives

of linear algebra and complex analysis respectively, much current research focuses on

the relation between Hadamard matrices and the theory of finite groups. In fact this

approach has proved to be the most successful at finding Hadamard matrices of large or-

der. The purpose of this chapter is to give a brief introduction to group 2-cohomology as

a method of determining the central extensions of an Abelian group C, by a finite group

G. There is a general cohomology theory for other dimensions as well as for non-central

extensions, but it will not be discussed here. Our goal is to describe a correspondence

between the second cohomology group, H2 (G,N) and the central extensions of N by

G. This will be made more precise later. All of the material covered here is standard,

see Chapter 11 of [10] for example. We say that a group E is an extension of a group

N , if E contains a normal subgroup isomorphic to N ; when no confusion can arise we

will refer to this isomorphic copy also as N . The quotient group, E/N , which we will

normally denote by G, must be a finite group. In this case we refer to E as an extension

of N by G. If N ≤ Z (E) we say that E is a central extension of N .

2.1 Short exact sequences

Definition 2.1. An exact sequence is a sequence of group or module homomorphisms,

each of which has the property that the image of the incoming map is the kernel of the

outgoing map.

A short exact sequence is an exact sequence of the following form:

1→ N
ι→ E

π→ G→ 1 (2.1)

10
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where ι and π are group homomorphisms. In the following lemma, we show that a

short exact sequence describes a group extension, and that any group extension may be

described by a short exact sequence.

Lemma 2.2. Short exact sequences and group extensions are equivalent.

Proof. Let E be an extension of a group N by a finite group G, and define ι : N → E

to be inclusion. Recall that by the definition of an extension, ι (N) is normal in E.

Furthermore, let π : E → E/N be the canonical projection homomorphism with kernel

N . Then Im(ι) =Ker(π). Thus the following sequence is exact:

1→ N
ι→ E

π→ G→ 1

Conversely: assume that (2.1) is exact. We observe that ι is necessarily a monomorphism,

since Ker(ι) = 1, by exactness at N . Similarly, the kernel of the trivial map G → 1 is

Im(π) by exactness, hence π is an epimorphism. Furthermore, Im(ι) is a normal subgroup

of E, since it is precisely the kernel of the homomorphism π. Thus we have that E

contains a normal subgroup, ι (N), isomorphic to N , and that E/ι (N) ∼= G, by the

First Isomorphism Theorem. These are precisely the conditions that we require for E

to be an extension of N by G.

We observe that in central extensions, (2.1), the group N is necessarily Abelian since

ι (N) ≤ Z (E). In the next section, we will see that 2-cocycles may also be used to

describe central extensions.

2.2 Cocycles

Definition 2.3. Let G be a finite group, and C a finitely generated Abelian group. A

2-cocycle is a map, ψ : G×G→ C, such that:

ψ (g, h)ψ (gh, k) = ψ (h, k)ψ (g, hk) ∀g, h, k ∈ G. (2.2)

Throughout the remainder of this chapter we will understand cocycle to mean 2-cocycle.

The following lemma, which will be used in later sections, shows that the 2-cocycles form

a group under pointwise multiplication. This result may be generalised to n-cocycles

with minor modifications.

Lemma 2.4. The set of all cocycles ψ : G × G → C forms an Abelian group, denoted

Z2 (G,C), under the operation

ψ1ψ2 (x, y) = ψ1 (x, y)ψ2 (x, y) .
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Proof. Closure: Let ψ1 and ψ2 be cocycles. We show that their product is itself a cocycle.

ψ1ψ2 (a, b)ψ1ψ2 (ab, c) = ψ1ψ2 (a, bc)ψ1ψ2 (b, c)

⇔ ψ1 (a, b)ψ2 (a, b)ψ1 (ab, c)ψ2 (ab, c) = ψ1 (a, bc)ψ2 (a, bc)ψ1 (b, c)ψ2 (b, c)

⇔ [ψ1 (a, b)ψ1 (ab, c)]ψ2 (a, b)ψ2 (ab, c) = [ψ1 (a, bc)ψ1 (b, c)]ψ2 (a, bc)ψ2 (b, c)

Both sides are equal since ψ1 and ψ2 both satisfy (2.2). Associativity follows from the

definition of the multiplication and associativity in C:

ψ1ψ2 (x, y)ψ3 (x, y) = ψ1 (x, y)ψ2 (x, y)ψ3 (x, y)

= ψ1 (x, y)ψ2ψ3 (x, y) .

The identity is the cocycle ψe (x, y) = 1,∀x, y ∈ G. Finally we define the inverse for a

given cocycle, ψ: ψ−1 (x, y) = (ψ (x, y))−1 for all x, y ∈ G. We observe that ψ−1 satisfies

the cocycle identity if ψ does, and that hence every element of Z2 (G,C) has an inverse.

Thus Z2 (G,C) satisfies the axioms of a group.

As previously stated, the primary goal of this chapter is to prove a bijection between

the second cohomology group, which is a quotient group of Z2 (G,C), and the set of

equivalence classes of central extensions of C by G. Thus, we begin by showing that

cocycles may be used to describe extension groups. Then we turn our attention to the

problem of extracting a cocycle from a given group extension.

Definition 2.5. We call a cocycle normalised if ψ (1, g) = ψ (g, 1) = 1 for all g ∈ G.

For a given cocycle, ψ ∈ Z2 (G,C), let

E (ψ) = {(x, a) |x ∈ G, a ∈ C} .

We define the following binary operation on E (ψ), which we show in the next theorem

satisfies all the axioms of a group multiplication.

(x, a) (y, b) = (xy, ab ψ (x, y)) (2.3)

Theorem 2.6. E (ψ), with multiplication defined by (2.3), is a group if and only if ψ is

a normalised cocycle.

Proof. • E (ψ) inherits closure from G and C, both of which are closed by definition,

and ψ maps into C.
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• Associativity: (2.3) defines an associative operation if and only if ψ satisfies (2.2).

Since C is an Abelian group, we have that:

[(x, a) (y, b)] (z, c) = (x, a) [(y, b) (z, c)]

⇔ (xy, ab ψ (x, y)) (z, c) = (x, a) (yz, bc ψ (y, z))

⇔ (xyz, ab ψ (x, y) c ψ (xy, z)) = (xyz, abc ψ (y, z)ψ (x, yz))

⇔ (xyz, abc ψ (x, y)ψ (xy, z)) = (xyz, abc ψ (y, z)ψ (x, yz))

⇔ ψ (x, y)ψ (xy, z) = ψ (x, yz)ψ (y, z)

Thus, multiplication in E (ψ) is associative precisely when ψ is a cocycle.

• The identity element is e = (1G, 1C). For any (x, a) in E, we show that e is the

right identity, the proof that it is also the left identity is identical.

(x, a) (1, 1) = (x, a ψ (x, 1)) = (x, a) .

Note that we require ψ to be normalised in the above equation.

• For any (x, a) ∈ E (ψ), the inverse is
(
x−1,

[
ψ
(
x, x−1

)
a
]−1
)

, as may be checked

using (2.3) and the definition of the identity given above.

Now, when both G and C are finite it follows that |E (ψ)| = |G| |C|. We stress however

that the group formed may not be isomorphic to the direct product G × C, as the

multiplication depends also on the cocycle, ψ.

We show in the next section that E (ψ) is a group extension of C by G. We call E (ψ)

the canonical extension of C by G generated by ψ.

2.2.1 The canonical short exact sequence of a cocycle

Let E (ψ) and ψ be as described above. Then E (ψ) contains a subgroup isomorphic to

C. Define ιψ : C → E (ψ) by

ιψ (c) = (1G, c) (2.4)

Then ιψ is an embedding of C into E (ψ). It should be noted that this embedding is

not unique; there will in general be automorphisms of both C and E (ψ) that alter ιψ.

However in the interest of clarity, we will restrict our attention to the canonical case.

Since C is Abelian, ιψ (C) is central in E (ψ): for any (x, d) ∈ E (ψ), by equation (2.3)

we have that

(x, d) (1, c) = (x, dc) = (x, cd) = (1, c) (x, d)
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because ψ is normalised. We now define πψ : E (ψ)→ G by

πψ (x, a) = x.

This is clearly a surjective homomorphism, with kernel ιψ (C). Thus E (ψ) is a central

extension of C by G. By Lemma 2.2, we can consider this as a short exact sequence,

1→ C
ιψ→ E (ψ)

πψ→ G→ 1

where ιψ and πψ are the inclusion and projection maps described above.

2.3 Extracting a cocycle from a short exact sequence

We have already described a process that generates a unique central extension from

a given cocycle. We now consider the converse problem of extracting a cocycle from

a central extension, as presented in a short exact sequence, (2.1). We stress that the

cocycle thus generated will not be unique. All cocycles generated from a given short exact

sequence will however be cohomologically equivalent. We will return to the question of

equivalence later.

Definition 2.7. A transversal, T , of a group K with respect to a subgroup H is a complete

and irredundant set of representatives for the cosets of H in K. We have

⋃
t∈T

tH = K

where the union is disjoint. That is, any element of K has a unique expression th, for

suitable t ∈ T , h ∈ H. Note that in general T is not itself a group, and since there

are |H| choices for each element of T , there are many different transversals. When the

group K is finite, we have that |T | = |K : U |.

Now, let 1 → C
ι→ E

π→ G → 1 be a central extension. We define a map τ : G → E,

such that

πτ = idG. (2.5)

That is, for each g ∈ G, we choose eg ∈ E such that π (eg) = g. This is possible because

π is a surjective function. We then define τ (g) = eg. Note that τ is not unique, as

there are |C| choices for each g ∈ G. In fact τ (G) is a complete and irredundant set of

representatives of the elements of the quotient group E/ι (C), i.e. a transversal of ι (C)

in E. To see this, suppose that τ (g) ι (C) = τ (h) ι (C). Then for some c ∈ C,

τ (g) = τ (h) ι (c)⇔ πτ (g) = πτ (h)πι (c)⇔ g = h · 1
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This implies that τ is injective. Assuming that E is finite, we observe that |G| =

|E/ι (C)| and then irredundancy implies completeness. We call τ a transversal map; it

maps elements of G onto a transversal of the cosets of ι (C) in E. Note that there are

|C||G| possible choices of τ .

Now let ψτ : G×G→ C be defined as follows:

ψτ (g, h) = ι−1
(
τ (g) τ (h) τ (gh)−1

)
. (2.6)

Lemma 2.8. ψτ is a cocycle.

Proof. We begin by showing that ψτ maps into C, that is:

τ (g) τ (h) τ (gh)−1 ∈ ι (C) ∀g, h ∈ G. (2.7)

This is an easy consequence of (2.5), as we now show. We have that πτ (x) = x, for all

x ∈ G. It follows that

π
(
τ (g) τ (h) τ (gh)−1

)
= πτ (g)πτ (h)πτ (gh)−1

= gh (gh)−1

= 1G

Thus τ (g) τ (h) τ (gh)−1 ∈ Ker (π) = ι (C).

We now show that ψτ satisfies the cocycle identity. Note that since ι is an embedding,

ι−1 is a homomorphism, ι−1 : ι (C)→ C.

ψτ (g, h)ψτ (gh, k) = ι−1
(
τ (g) τ (h) τ (gh)−1

)
ι−1
(
τ (gh) τ (k) τ (ghk)−1

)
= ι−1

(
τ (g) τ (h) τ (k) τ (ghk)−1

)
= ι−1

(
τ (g)

[
τ (h) τ (k) τ (hk)−1

]
τ (hk) τ (ghk)−1

)
= ι−1

(
τ (h) τ (k) τ (hk)−1

)
ι−1
(
τ (g) τ (hk) τ (ghk)−1

)
= ψτ (h, k)ψτ (g, hk)

Proceeding from the third to the fourth line, we use that τ (h) τ (k) τ (hk)−1 is central

in E. Thus ψτ : G×G→ C is a cocycle.

The above construction generates a cocycle from a central extension. As we have noted,

this cocycle is not canonical. But as we also stated previously, all cocycles generated

from a given central extension are equivalent in a cohomologous sense. To explain this

concept, we introduce coboundaries in the next section.
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2.4 Coboundaries

Throughout this section we let G be a finite group, and let C be an Abelian group.

Definition 2.9. Fun(G,C) is the set of all mappings ϕ : G→ C.

Fun(G,C) is in fact a monoid under pointwise composition of maps. Hom(G,C), the

set of homomorphisms G → C is of course a submonoid of Fun(G,C). Now for each

ϕ ∈Fun(G,C). We define the coboundary ∂ϕ, by

∂ϕ (x, y) = ϕ (x)ϕ (y)ϕ (xy)−1 . (2.8)

Lemma 2.10. Every coboundary is a cocycle.

Proof. We simply show that a coboundary satisfies the cocycle equation, (2.2).

∂ϕ (x, y) ∂ϕ (xy, z) = ϕ (x)ϕ (y)ϕ (xy)−1 ϕ (xy)ϕ (z)ϕ (xyz)−1

= ϕ (x)ϕ (y)ϕ (z)ϕ (xyz)−1

= ϕ (x)ϕ (y)ϕ (z)ϕ (xyz)−1 ϕ (yz)ϕ (yz)−1

= ϕ (x)ϕ (yz)ϕ (xyz)−1 ϕ (y)ϕ (z)ϕ (yz)−1

= ∂ϕ (xy, z) ∂ϕ (y, z) .

Recall that we have a particular interest in normalised cocycles, as they may be used to

construct extension groups. We observe that a coboundary, ∂ϕ, is normalised if and only

if ϕ (1) = 1. Most of these our results in this section can be restated for n-cohomology

with only minor adjustments; we restrict our attention to the case of 2-cohomology,

however.

Lemma 2.11. The set of 2-coboundaries, B2 (G,C) is closed under pointwise composition.

Proof.

∂ϕ1∂ϕ2 (x, y) = ∂ϕ1 (x, y) ∂ϕ2 (x, y)

= ϕ1 (x)ϕ1 (y)ϕ1 (xy)−1 ϕ2 (x)ϕ2 (y)ϕ2 (xy)−1

= ϕ1 (x)ϕ2 (x)ϕ1 (y)ϕ2 (y)ϕ1 (xy)−1 ϕ2 (xy)−1

This satisfies (2.8), as we do not place any restrictions on the map ϕ : G→ C.

The preceding two lemmas suffice to show that B2 (G,C), the set of 2-coboundaries, is

a subgroup of Z2 (G,C), the group of 2-cocycles under pointwise multiplication. In the

remainder of this section we prove B2 (G,C) is a quotient group of Fun(G,C). This

result gives some insight into the structure of B2 (G,C).
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Lemma 2.12. ∂: Fun(G,C)→ B2 (G,C), is an epimorphism with kernel Hom(G,C).

Proof. We show that ∂: Fun(G,C) → B2 (G,C) is a homomorphism. Let ϕ1 and

ϕ2 ∈Hom(G,C).

∂ϕ1 (x, y) ∂ϕ2 (x, y) = ϕ1 (x)ϕ1 (y)ϕ1 (xy)−1 ϕ2 (x)ϕ2 (y)ϕ2 (xy)−1

= ϕ1 (x)ϕ2 (x)ϕ1 (y)ϕ2 (y)ϕ1 (xy)−1 ϕ2 (xy)−1

= ϕ1ϕ2 (x)ϕ1ϕ2 (y)ϕ1ϕ2 (xy)−1

= ∂ϕ1ϕ2 (x, y)

If ϕ ∈ Hom(G,C), then by definition, ϕ (x)ϕ (y) = ϕ (xy). It follows immediately that

∂ϕ = 1B2(G,C). Thus Ker(∂) ⊆Hom(G,C). Conversely, assume that ϕ ∈ Ker(∂). Then

ϕ (x)ϕ (y)ϕ (xy)−1 = 1∀x, y ∈ G. Hence ϕ is a homomorphism.

Now, having defined both coboundaries and cocycles, we are in a position to define the

second cohomology group, H2 (G,C).

2.5 The Second Cohomology Group

The second cohomology group of G, with trivial coefficients in C, is defined to be

H2 (G,C) = Z2 (G,C) /B2 (G,C) (2.9)

where, as defined previously, Z2 (G,C) is the group of all cocycles, G × G → C, and

B2 (G,C) is the subgroup of all coboundaries. The elements of H2 (G,C) are cohomology

classes of cocycles, [f ], where f ∈ Z2 (G,C). More precisely, each element of H2 (G,C)

is a coset of B2 (G,C) in Z2 (G,C). It follows that the elements of a single cohomology

class differ from one another only by coboundaries; we call such elements cohomologous.

In fact, this is the equivalence operation uniting all cocycles generated from a single

central extension, as described earlier. Before expanding on this theme, we provide a

lemma which describes the structure of H2 (G,C).

Lemma 2.13. If C is finite, then the exponent of H2 (G,C) divides the exponent of C.

Proof. Let ψ ∈ Z2 (G,C), and let n be the exponent of C. Then ψ (x, y) ∈ C for all

x, y ∈ G. So ψ (x, y)n = 1 for all x, y ∈ G. This result holds for all cocycles in Z2. Hence

the exponent of Z2 (G,C) divides n. As a factor group of Z2 (G,C), the exponent of

H2 (G,C) must also divide n.
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When working with Hadamard matrices, we often make use of groups of the form

H2 (G,C2). By the above lemma, these are elementary Abelian 2-groups, which are

in some sense easy to work with.

2.6 Equivalence of short exact sequences

We begin by introducing a standard lemma from homological algebra, the five lemma.

Its proof is given by means of diagram chasing. We have already defined exact sequences.

We say that a square in a diagram commutes if any two paths with identical origins and

endpoints are equal as composite maps.

Lemma 2.14. Consider the following diagram of group homomorphisms, in which both

rows are exact, and all squares are commutative. If γ2 is a monomorphism and both γ−1

V−2
α−2→ V−1

α−1→ V0
α0→ V1

α1→ V2

↓ γ−2 ↓ γ−1 ↓ γ0 ↓ γ1 ↓ γ2

W−2
β−2→ W−1

β−1→ W0
β0→ W1

β1→ W2

and γ1 are epimorphisms, then γ0 is an epimorphism. If γ−2 is an epimorphism, and

both γ−1 and γ1 are monomorphisms, then γ0 is a monomorphism.

Proof. The proof of the first part is given on page 46 of [11]. The proof of the second

part follows.

Let v0 ∈ V0 such that γ0 (v0) = 1. By commutativity, γ1α0 (v0) = β0γ0 (v0) = 1. Since

γ1 is a monomorphism, we have that α0 (v0) = 1. By exactness, there exists v−1 ∈
V−1 such that α−1 (v−1) = v0. Again by commutativity, we have that β−1γ−1 (v−1) =

γ0α−1 (v0) = 1. And again by exactness, we have that there exists w−2 ∈W−2 such that

β−2 (w−2) = γ−1 (v−1). Now we use the the assumption that γ−2 is an epimorphism;

hence there exists v−2 ∈ V−2 such that β−2γ−2 (v−2) = γ−1α−2 (v−2) = β−2 (w−2).

But γ−1 is a monomorphism, so α−2 (v−2) = v−1. Finally by exactness, we have that

α−1 (v−1) = v0 = 1. Hence, γ0 is an monomorphism.

We make use of this lemma to partition the set of central extensions of C by G into

equivalence classes. Consider the following diagram, which illustrates a series of homo-

morphisms between two short exact sequences. We define γ−1 and γ1 to be identity

maps.

Definition 2.15. Two short exact sequences are equivalent if and only if the above di-

agram commutes. We observe that this is a true equivalence relation on the set of

central extensions of C by G.
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1 → C
ι1→ E1

π1→ G → 1
↓ γ−1 ↓ γ0 ↓ γ1

1 → C
ι2→ E2

π2→ G → 1

Lemma 2.16. If the above diagram commutes, then γ0 is an isomorphism.

Proof. Assume the diagram commutes. We make use of the five lemma, 2.14. We begin

by observing that any mapping from the trivial group, 1, to itself, is necessarily both

an epimorphism and a monomorphism. It is then easy to see that γ0 satisfies all the

requirements of the five lemma to be both an epimorphism and a monomorphism. Thus

it is in fact an isomorphism, as required.

Thus, if two central extensions or short exact sequences are equivalent, then the extension

groups are isomorphic. However if the extension groups are isomorphic the central

extensions are not necessarily equivalent. The next section describes a correspondence

between the elements of H2 (G,C) and the central extensions of G by C. Assuming this,

a simple counter example is given by H2
(
C2

2 , C2

)
. This cohomology group has order 8,

yet there are only five isomorphism classes of groups of order 8.

2.7 Equivalence of short exact sequences and cohomologi-

cal equivalence

In Section 2.5 we established an equivalence relation on the set of cocycles, Z2 (G,C),

and in Section 2.6 we established one on the set of central extensions of C by G. Recall

that we also demonstrated methods of extracting cocycles from central extensions, and

of generating central extensions from cocycles. In this section we establish a one-to-one

correspondence between cohomology classes of cocycles and equivalence classes of central

extensions.

Theorem 2.17. The set of equivalence classes of central extensions of C by G is in one-

to-one correspondence with H2 (G,C).

Proof. Let S denote the set of equivalence classes of central extensions of C by G.

We define a map, α : H2 (G,C) → S by α ([ψ]) =
[
1→ C

ι0→ E (ψ) π0→ G→ 1
]
, where

ι0 (c) = (1, c) and π0 (x, a) = x. Recall that any cocycle cohomologous to ψ has the form

ψ∂ϕ, where ∂ϕ ∈ B2 (G,C). We show that E (ψ) and E (ψ∂ϕ) are equivalent in the

sense of Definition 2.15, and hence that the map α is well defined. We define the map
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γ0 : E (ψ)→ E (ψ∂ϕ) given by γ (τ (g) ι (c)) = (g, c). Then:

γ0 (τ (g) ι (c) τ (h) ι (d)) = γ0 (τ (g) τ (h)) ι (cd)

= γ0 (τ (gh) ι (fτ (g, h)) ι (cd))

= (gh, fτ (g, h) cd)

= (g, c) (h, d)

= γ0 (τ (g) ι (c)) γ0 (τ (h) ι (d)) .

Thus γ0 is a group homomorphism. Now, to show that the extensions are equivalent, we

show that the following diagram commutes, where γ−1 and γ1 are again identity maps:

Observe that γ0ι (c) = (1, c) = ι′ (c) = ι′γ−1 (c) for all c ∈ C. Similarly, π (τ (g) ι (c)) =

1 → C
ι→ E (ψ) π→ G → 1

↓ γ−1 ↓ γ0 ↓ γ1

1 → C
ι′→ E (ψ∂ϕ) π′→ G → 1

γ1π (τ (g) ι (c)) = g = π′ (g, c) = γ0π
′ (τ (g) , ι (c)). Hence the above diagram commutes,

and the short exact sequences are equivalent.

We now prove the converse, that cocycles generated from a given central short exact

sequence are cohomologous. We define a map, β : S → [ψτ ], where τ is a transversal for

ι (C) in E. We show that the map β is well defined in the sense that for a given central

extension, any choice of transversal generates a cohomologous cocycle.

Let E (ψ) be a central extension of C by G. Let τ be a transversal of ι (C) in E. We

show that a cocycle, ψ′ formed from some other transversal, τ ′ is cohomologous. Firstly,

we note that τ ′ (x) = τ (x)φ (x), for some φ : G→ ι (C). Note that by the definition of

a short exact sequence, πφ = 1G.

ψ′ (x, y) = ι−1
(
τ (x)φ (x) τ (y)φ (y) τ (xy)−1 φ (xy)−1

)
= ι−1

(
τ (x) τ (y) τ (xy)−1 φ (x)φ (y)φ (xy)−1

)
= ι−1

(
τ (x) τ (y) τ (xy)−1

)
ι−1
(
φ (x)φ (y)φ (xy)−1

)
= ψ (x, y) ∂φ (x, y)

Now we come to a subtle point. Let E (ψ) be the central extensions generated by ψ.

We show that a cocycle generated from E (ψ) lies in the same cohomology class as

ψ. We have shown that all cocycles generated from a central short exact sequence are

cohomologous, thus it suffices to prove that any single cocycle generated from E (ψ) is

cohomologous to ψ. In particular, we show that we can generate ψ from E (ψ). We

define the transversal map τ ′ : G → E (ψ) by τ ′ (g) = (g, 1). Let ψ′ be the cocycle
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generated from τ ′. We show that it is cohomologous to ψ. Now by (2.6),

ψ′ (g, h) = ι−1
(

(g, 1) (h, 1) (gh, 1)−1
)

= ι−1
(
gh, ψ (g, h)

(
h−1g−1, ψ

(
gh, h−1g−1

)))
= ι−1 (1, ψ (g, h))

= ψ (g, h)

Thus we have that ψ′ = ψ. We have established already that changing transversal does

not affect the cohomology class, hence [ψ] = [ψ′] for any choice of transversal map,

G→ E (ψ).

Finally, we observe that αβ = βα = Id. Consider s ∈ S. By our definition of β, any

two cocycles derived from S are cohomologous. But we proved in the first section of

the proof that cohomologous cocycles generate equivalent extensions. Hence βα (s) = s.

In the other direction, consider h ∈ H2 (G,C). Then αβ (h) = h. This establishes a

bijection between equivalence classes of central extensions and the elements of H2 (G,C)

as required.

We point out that this theorem provides an answer to the central extension problem in

finite group theory. Given an Abelian group, C and a finite group G, we can compute all

extensions of C by G by computing the second cohomology group, H2 (G,C), choosing

a representative cocycle from each cohomology class, and generating the corresponding

central extensions. This theorem will also be central to our classification of cocyclic

Hadamard matrices.



Chapter 3

Group actions on square arrays

Like the previous chapter, this one is purely algebraic. We discuss the theory of group

actions on square arrays. Throughout this chapter, G will denote a finite group of order

n. Additionally, M will be an n × n array with entries from a finite Abelian group A.

We denote by Λ the set of all such M . We define φ : G→ A to be an arbitrary function.

Later in the chapter we will encounter cocycles, ψ : G × G → A. These will obey the

cocycle identity, (2.2). The results in this chapter will be directly applicable to many

types of combinatorial design. In the following chapter we will relate them to Hadamard

matrices. This will give us the necessary machinery to classify all cocyclic Hadamard

matrices of order ≤ 28 in terms of the groups over which they are cocyclic developed.

Many of the concepts introduced in this chapter were known to Warwick de Launey

by the early 1990’s, though to the knowledge of the author, they have not as of yet

appeared in print. They will be covered comprehensively in Algebraic Design Theory, a

monograph by de Launey and Flannery which is currently nearing completion.

3.1 The automorphism group of a square array

It is standard practice to define Hadamard equivalence in terms of row and column

permutations and negations. We generalise this concept to matrices with entries from

an Abelian group A.

Definition 3.1. Let M be a matrix with entries in A. We say that M ′ is A-equivalent to

M if and only if M ′ may be obtained from M by a finite sequence of row and column

permutations, and multiplication of rows or columns by a ∈ A.

We will define and discuss the the action of a certain matrix group on M . The point

stabiliser of a given matrix under this action will then be its automorphism group. We

begin with a brief discussion of permutation matrices.

22
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3.1.1 Permutation matrices

Definition 3.2. A square matrix with entries from {0, 1} and with exactly one nonzero

entry in each row and column is called a permutation matrix.

We introduce Kronecker δ notation, which we shall use extensively in the remainder of

this chapter. It was originally a shorthand for the identity matrix,

[
δij
]
1≤i,j≤n =

{
1 if i = j

0 otherwise
(3.1)

There is a natural way to apply this to elements of the symmetric group. For α ∈ Sym(n),

we form the matrix Pα =
[
δiα(j)

]
1≤i,j≤n

.

Lemma 3.3. The map α 7→ Pα defines an isomorphism of Sym(n) onto Perm(n).

Proof. First of all we note that
[
δiα(j)

]
i,j

= In only if i = α (i) ∀1 ≤ i ≤ n. Thus the

map is injective. We now prove that it is a homomorphism.

PαPβ =
[
δiα(k)

]
i,k

[
δkβ(j)

]
k,j

=

[∑
k

δiα(k)δ
k
β(j)

]
i,j

=
[
δ
α−1(k)
β(j)

]
=

[
δiαβ(j)

]
= Pαβ

Finally, both Sym(n) and Perm(n) have precisely the same size, n!. Hence α 7→ Pα is an

isomorphism.

We observe that the group Perm(n) acts on a square matrix, M , of order n, by left

or right multiplication. In fact the orbit of M under the action PMQ> where P,Q ∈
Perm(n) is the set of all matrices permutation equivalent to M . Our definition of A-

equivalence extends beyond this however. We may also multiply a row or column by

some a ∈ A. Thus, we consider monomial matrices.

3.1.2 Monomial matrices

Monomial matrices are a generalisation of permutation matrices. As with permutation

matrices, monomial matrices contain one nonzero entry in each row and column, but this

entry is drawn from an Abelian group, A. We denote by Diag(n,A) the set of diagonal
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matrices of order n with entries from A along the main diagonal and zero elsewhere.

Diag(n,A) is a group, isomorphic to the direct product of n copies of A. The group of

monomial matrices with entries in A is defined as a semidirect product of Diag(n,A)

and Perm(n).

Mon (n,A) = {Pa|a ∈ Diag (n,A) , P ∈ Perm (n)} = Diag (n,A) o Perm (n)

Note that Perm(n) is not normal for n 6= 1, and as such Mon(n,A) is not the direct

product of these two groups. The order of this group is n! |A|n.

Lemma 3.4. Let (P,Q) ∈ Mon (n,A)× Mon(n,A), M ∈ Λ. Then (P,Q) •M = PMQ>

is a group action of Mon(n,A)× Mon(n,A) on Λ.

Proof. We begin by observing that Λ is closed under the action of Mon(n,A)× Mon(n,A).

We observe that the identity in Mon(n,A)× Mon(n,A) is (In, In) and that for any M ∈ Λ,

(In, In) •M = InMI>n = InMIn = M.

Secondly, we let (P,Q) , (R,A) ∈ Mon(n,A)× Mon(n,A), then

((P,Q) (R,S)) •M = (PR,QS) •M

= PRM (QS)>

= PRMS>Q>

= (P,Q) •RMS>

= (P,Q) • ((R,S) •M)

Thus Mon(n,A)× Mon(n,A) acts on Λ.

Definition 3.5. Let M be a square matrix of order n, with entries in an abelian group

A. The A-orbit of M is
{
PMQ>|P,Q ∈ Mon (n,A)

}
.

These orbits are equivalence classes, thus they partition the set of square A-matrices

of order n into disjoint classes. We refer to two matrices as being A-equivalent if and

only if they fall into the same A-orbit. The operation is clearly reflexive, symmetric and

transitive. Unfortunately, finding suitable representatives for equivalence classes and

testing for equivalence are computationally expensive problems in general.
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3.1.3 Definition of the automorphism group

Definition 3.6. The automorphism group of M is defined to be its pointwise stabiliser

under the action of Mon(n,A)× Mon(n,A). That is, (P,Q) ∈ Aut(M) if and only if

(P,Q) •M = PMQ> = M

As the stabiliser of a point, this group is well defined. As previously stated, regular

subgroups of these automorphism groups provide us with information about the group

development properties of the square array.

An important subgroup of Aut(M) is PermAut(M) = Aut(M)∩ Perm(n).

Lemma 3.7. Let M be an A-matrix in which all rows and columns are pairwise linearly

independant. Then Aut(M) is isomorphic to a subgroup of Mon(n,A).

Proof. For any element (P,Q) of Aut(M) we have that PM = MQ. By pairwise linear

independance of rows and columns, Q is uniquely determined by P and vice versa. Thus

Aut(M) ∼= {P |P ∈ (P,Q)}. Hence Aut(M) is isomorphic to a subgroup of Mon(n,A).

Similarly, PermAut(M) is isomorphic to a subgroup of Perm(n,A), in the case where M

is invertible. We observe that this condition that M be invertible is in fact necessary.

We consider for example the following matrix, with entries in C3:

M3 =


1 1 1

c c c

c2 c2 c2


We content ourselves with calculation of PermAut(M3). There is clearly no non-trivial

permutation on the rows, while all of Perm(3) acts on the columns. Thus, for an arbitrary

(0, A)-matrix, Lemma 3.7 does not hold. Considering both M3 and its transpose, we see

that in general, a homomorphism from the left acting part of the automorphism group

to the right acting part need not be either a monomorphism or an epimorphism.

3.1.4 The regular action of a group on a finite set

We introduce some basic definitions and results about regular actions in this section.

Definition 3.8. The action of a group, G on a set, X is regular if it is both transitive

and semiregular. Transitivity requires that for all x, y in X, there is some g ∈ G such

that gx = y. Semiregularity requires that the stabilisers of all points be trivial.

Obviously, if G acts regularly on X then |G| = |X|. In the context of square arrays,
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we call a subgroup of Aut(M) regular if and only if its action on both the rows and

columns of M is regular. We stress that this means that the action of a subgroup, R

of Aut(M) on M is regular if and only if the left components of R act regularly on the

rows of M and the right components of R act regularly on the rows of M .

Recall that Kronecker δ notation may be used to uniquely assign a permutation matrix

of order n to a permutation. We now abuse notation slightly and iterate over the

elements of a finite group, G. The concept is still the same however, the matrix [δab ]a,b∈G
contains a 1 if a = b and a 0 otherwise. Now we define the left-regular and right-regular

permutation representations of a finite group G.

Sx = [δaxb]a,b∈G Tx = [δaxb ]a,b∈G (3.2)

Such matrices will contain a non-zero entry in position (a, b) precisely when a = xb in

the first case, and when ax = b in the second. The existence and uniqueness of this

element in each row and column follows directly from the group laws.

Lemma 3.9. There is a unique faithful regular action of a finite group G, on a set, X,

up to permutation equivalence.

Proof. Recall that by Cayley’s theorem, any finite group G may be embedded into

Sym({G}), the symmetric group on the elements of G. Furthermore, by the group laws

the action of G, considered as a permutation group on its own elements is regular. Now

suppose that G acts regularly on another set, Ω. We choose an arbitrary ω0 ∈ Ω. Now

by regularity of the action, there is a unique element of G such that gω0 = ω for all

ω ∈ Ω. So we can define a bijection, f : Ω → {G} given by f (gω) = g. We then

have f (hω) = hf (ω) for any h ∈ G. Hence up to permutation equivalence, the faithful

regular action of G is unique.

Lemma 3.10. 1. SxSy = Sxy and TxTy = Txy for all x, y ∈ G.

2. Let Xn denote the set of n × 1 column vectors αy =
[
δxy
]
x∈G. Then Sxαy = αxy

and Txαy = αyx−1.

3. The assignments x 7→ Sx and x 7→ Tx define faithful regular permutation represen-

tations of G in Sym(Xn).

Proof. 1. We have

SxSy =

[∑
c

δaxcδ
c
yb

]
a,b∈G

=
[
δaxyb

]
a,b∈G = Sxy

The proof for Tx is similar.
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2. Post-multiplying a matrix M by αy picks out the column of M labelled by y. The

+1 entry in column y occurs in row xy, that is the column of Sx labelled by y is

αxy. The argument for Tx is similar.

3. Firstly, x 7→ Sx defines a homomorphism G 7→ Sym(Xn), by the first two parts of

the lemma. The image of this homomorphism acts regularly. For, it is transitive:

given x, y ∈ G, by part 2 we have that Sxy−1αy = αx. Also, it is semiregular since

Sxαy = αy if and only if x = 1, by part 2. Again, the proof for Tx is similar.

3.2 Group development

In this section we give a practical and efficient method of determining the group devel-

opment properties of a square matrix based on regular subgroups of its automorphism

group.

Let M , as usual, be a square matrix of order n with entries in a set A. Let G be a group

of order n. The elements of G may be used as an indexing set for the rows and columns

of the matrix. Then we can trivially develop M over G with a function µ : G×G→ A,

defined by the entries of M . In this section we provide necessary and sufficient conditions

for the existence of a single variable map, φ : G → A, over which a square matrix M

may be developed. This is the definition that we use of group development:

Definition 3.11. Let M be an n × n matrix, with entries in some set A. M is group

developed over G if there exists a function φ : G → A and a matrix, M ′, permutation

equivalent to M such that M ′ = [φ (gh)]g,h∈G

Note that group development is a property of permutation equivalence classes of ma-

trices. We will see later that cocyclic development, which is a generalisation of group

development, is a property of A-equivalence classes of matrices.

Lemma 3.12. M is developed over G if and only if TxMSx = M for all x ∈ G.



Chapter 3. Group actions on square arrays 28

Proof. We write M = [µ (g, h)]g,h∈G. Then

TxMS>x = [δgxa ]g,a∈G [µ (a, b)]a,b∈G
[
δxbh

]
b,h∈G

=

[∑
a∈G

δgxa µ (a, b)

]
b,g∈G

[
δxbh

]
b,h∈G

= [µ (gx, b)]g,b∈G
[
δxbh

]
b,h∈G

=

[∑
b∈G

µ (gx, b) δxbh

]
g,h∈G

=
[
µ
(
gx, x−1h

)]
g,h∈G

We set φ (x) = µ (x, 1). It then follows that

TxMS>x = M, ∀x ∈ G⇐⇒ µ
(
gx, x−1h

)
= µ (g, h)∀x, g, h ∈ G

= µ (g, h) = µ
(
gh, h−1h

)
= φ (gh)∀g, h ∈ G

as required.

The final lemma in this section puts this result in context, and provides us with a simple

computational test that determines whether or not a given matrix is group developed.

Lemma 3.13. An n× n matrix, M , with entries in a set A is developed over a group G,

of order n, if and only if there exists a regular subgroup of PermAut(M) isomorphic to

G.

Proof. If M is G-developed, then by Lemma 3.12, (Tx, Sx) ∈ PermAut(M) for all x.

Then the map κ : x 7→ (Tx, Sx) is an isomorphism from G into PermAut(M). We observe

that κ (G) is a regular subgroup of PermAut(M), as its induced actions on the row set

and column set of M are both regular by Lemma 3.10. This completes one direction of

the proof. In the other direction, we assume that PermAut(M) has a regular subgroup

isomorphic to G. We denote the isomorphism κ (x) = (Px, Qx). Now by definition the

action of G on the row set of M is regular. By Lemma 3.9, there is, up to permutation

isomorphism, only a single faithful regular action of G on this set. Thus there exists

some permutation matrix U such that UPxU> = Tx ∀x ∈ G. Similarly there exists

a permutation matrix V such that V QxV > = Sx ∀x ∈ G. Then by Lemma 3.12, the

matrix UMV > is group developed over G. The ordering of the rows and columns of M

being irrelevant, we conclude that M itself is also group developed over G.
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3.3 The expanded matrix

In our definition of group development, we restricted our attention to PermAut(M), the

group of permutation automorphisms of M . In the next section we describe a method

for finding special transitive subgroups of the full automorphism group, Aut(M), over

which M may be cocyclic developed. First, we must describe the expanded matrix of

M : that is the purpose of this section. In particular we prove that Aut(M) embeds into

PermAut(EM ). We then use this fact, the method already developed and the cohomology

of Chapter 2 to describe the cocyclic development of a square matrix. We will see that

the expanded matrix is group developed over a group extension of G, and thus the

development function will have the form of a 2-cocycle over G.

Unlike group development, the cocyclic development properties of M are inextricably

linked to the set from which M draws its entries. In fact, we require that A be an Abelian

group, written multiplicatively with identity 1, in the remainder of this chapter, as we

only made a study of central extensions in Chapter 2. When appropriate, we consider

(0, A)-matrices, in which all non-zero entries are drawn from A. With appropriate mod-

ifications, this theory may be applied to non-central extensions and even to extensions

of non-Abelian groups. Given an n×n (0, A)-matrix M , we define the expanded matrix

of M , EM , to be the following |A|n× |A|n Kronecker product.

EM =


a1Ma1 a1Ma2 . . . a1Man

a2Ma1 a2Ma2 . . . a2Msn
...

...
. . .

...

anMa1 anMa2 . . . anMan

 = [aiaj ]⊗M

We will assume, without loss of generality, that the order of the blocks in the first row

and first column are identical. Note that multiplication of row x of M by a ∈ A has a

natural interpretation as a permutation of the rows of EM . We simply apply the map

i 7→ ai to the row x of M wherever it occurs in EM . This action is regular because A is

a group. The action on the columns is the corresponding right regular action. We note

that E1 is simply a multiplication table for the group A.

For a given (0, A)-matrix, M of order n, there exist a set of uniquely defined {0, 1}-
matrices, αa (M) such that

M =
∑
a∈A

aαa (M) . (3.3)

Note that αa (M) =
[
δami,j

]
1≤i,j≤n

where mi,j is the (i, j)th entry of M .
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Now we define

θ (M) =
[
αa−1

i aj
(M)

]
i,j∈A

(3.4)

where i and j run over A. Note that we use the same ordering of S here as in the

expanded matrix.

Lemma 3.14. θ is an injective map from the set of all n×n (0, A)-matrices into the set

of all n |A| × n |A| {0, 1}-matrices.

Proof. Let M and N be n× n {0, A}-matrices, such that θ (M) = θ (N). Then the first

columns of θ (M) and θ (N) are the same. Thus αa (M) = αa (N) for all a ∈ A. Hence

M = N by (3.3).

We observe that all of the results in this chapter, with minor modifications, hold for

matrices over the integral group ring of an abelian group, ZA. This is beyond the scope

of the current project however. We note that the product of a monomial (0, A)-matrix

with an arbitrary (0, A)-matrix is again a (0, A)-matrix. Since this is the only case that

we will require in the remainder of this thesis, we restrict our attention to it.

Lemma 3.15. θ is a homomorphism.

Proof. Now by (3.3),

MN =
∑
a,b∈A

abαa (M)αb (N) =
∑
ab∈S

abαab (MN) .

But this implies that

αa−1b (MN) =
∑
c∈S

αa−1c (M)αc−1b (N) .

By the definition of θ, the right hand side of this expression is the product of the ith

row block of M with the jth row column of N . The left hand side is simply the block in

position (i, j) of θ (MN). Hence θ (MN) = θ (M) θ (N).

Lemma 3.16. If M ∈ Mon(n,A), then θ (M) ∈ Perm(n |A|).

Proof. Since M is monomial,
∑

a∈A αa (M) is a permutation matrix. In particular it

contains exactly one non-zero entry in each row. Hence [αa1 (M) |αa2 (M) | . . . |αan (M)]

contains exactly one non zero entry on each row. The argument for columns is identical.

Theorem 3.17. θ : Mon(n,A)→ Perm(n |A|) is an embedding.
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Proof. The proof follows immediately from the previous three lemmas. Lemma 3.16

shows that the the image of Mon(n,A) lies in Perm(n |A|). Lemmas 3.14 and 3.15 together

show that the mapping is a monomorphism.

Let (P,Q) ∈ Aut(M). We define

Θ (P,Q) = (θ (P ) , θ (Q)) .

By Theorem 3.17, Θ : Aut(M)→ Perm(n |A|)× Perm(n |A|) is an embedding.

Lemma 3.18. Let M be a (0, A)-matrix. (P,Q) ∈ Aut(M)⇒ Θ (P,Q) ∈ PermAut(EM ).

Proof. We show that the automorphism group of M forms a subgroup of PermAut(EM ).

Firstly, we observe that for any (0, A)-matrix, P =
∑

k∈A a
−1
i akαa−1

i ak
(P ). But ai is a

constant in this sum, so,

aiP =
∑
k∈A

akαa−1
i ak

(P )

Now, we show that every block of EM is fixed by Θ (P,Q) if (P,Q) is an automorphism

of M . All summations are carried out over A, with a fixed ordering of elements.

θ (P )EMθ
(
Q>
)

=

[∑
k

αa−1
i ak

(P ) akMaj

]
i,j

θ
(
Q>
)

= [aiPMaj ]i,j θ
(
Q>
)

=

[∑
l

aiPMa−1
l αaja−1

l

(
Q>
)]

i,j

=

[
aiPM

∑
l

a−1
l αaja−1

l

(
Q>
)]

i,j

=
[
aiPMajQ

>
]
i,j

=
[
aiPMQ>aj

]
i,j

= [aiMaj ]i,j

= EM

Note that we use the fact α (Q)> = α
(
Q>
)

implicitly in our argument.

We stress that in general, Im(Θ) 6= PermAut(EM ). Since all of our calculations are

carried out inside of Im(Θ) we have not investigated this problem in any depth. We will

show in Chapter 4, that for any invertible matrix Im(Θ) ∼= PermAut(EM ). We note that
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it would be an interesting exercise to fully determine the relationship between Im(Θ),

PermAut(EM ) and Aut(EM ), for an arbitrary (0, A)-matrix M . Unfortunately this too

falls outside of the scope of this thesis. In the case of central extensions, we observe

that Im(Θ) contains a special central subgroup, which is the last tool that we need to

characterise cocyclic development.

Lemma 3.19. The centre of Im(Θ) contains a subgroup isomorphic to A, Υ (A).

Proof. The set of scalar matrix pairs,
(
aIn, a

−1In
)

forms a central subgroup of Aut(M),

isomorphic to S. Thus its image under Θ, Υ (A) is a central subgroup of Im(Θ).

3.4 Cocyclic development

Again, since the primary objects of study in this thesis are Hadamard matrices, which

contain no zero entries, we define cocyclic development only for A-matrices. We exper-

imented with various other definitions to expand this to (A, 0) matrices, but most led

to contradictions. In any case, the theory of this section is more than sufficient for the

problems considered in the remainder of this thesis. We suspect a reformulation the

theory of this chapter for matrices with entries in the group ring ZA would solve this

problem. Unfortunately, this falls beyond the scope of the project. In any case, we now

introduce our abstract definition of cocyclic development.

Definition 3.20. We say that an n × n A-matrix, M , is cocyclic if there exists a group

G, of order n, a cocycle ψ ∈ Z2 (G,A) and a set map: φ : G → A such that M ≡A
[ψ (a, b)φ (ab)]a,b∈A, where ≡A simply denotes A equivalence.

When we wish to be more specific, we will say that ψ is a cocycle of M if M ≡A
[ψ (a, b)φ (ab)]a,b∈A where φ : G → A is some set map. These definitions are quite

abstract in that we rarely relate a specific cocycle to a given matrix or vice versa, but

they lead to somewhat simpler statements in various proofs throughout this chapter.

Note that A-equivalence is a finer equivalence relation than cohomological equivalence

in this definition. Given M ≡A [ψ (a, b)φ (ab)]a,b∈A by no means does it follow that

M ≡A [ψ′ (a, b)φ′ (ab)]a,b∈A. This is one of the central problems in the theory of cocyclic

designs. For example, in the case of Hadamard matrices, cohomology classes do not

preserve orthogonality of the matrices generated from them. Conversely, however, if

M ≡A M ′ for some cocyclic developed matrix M , then M ′ is cocyclic developed, and its

cocycle is cohomologous to that of M .

The goal of this section is to relate cocyclic development to group development via group

cohomology. This result will characterise cocyclic development of a matrix in terms of a
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special type of regular action on the expanded matrix. The point is that the existence of

such an action is equivalent to cocyclic development. We will make extensive use of our

results on group development given in Section 3.2 and the group cohomology developed

in Chapter 2.

Lemma 3.21. Let M and M ′ be square {0, A}-matrices. If M ≡A M ′, then PermAut(EM )

is conjugate to PermAut(EM ′) in Mon(n,A)×Mon(n,A).

Proof. Let M = PM ′Q> where P,Q ∈ Mon(n,A). Now let (U, V ) ∈ PermAut(EM ).

Consider the mapping

(U, V ) 7→
(
θ (P )Uθ (P )−1 , θ (Q)V θ (Q)−1

)
which takes an automorphism of EM to one of EM ′ . That they are conjugate in

Mon(n,A)×Mon(n,A) is clear from the definition of the map.

Note additionally that the map of Lemma 3.21 fixes Υ (S) elementwise. We also observe

that regular actions are preserved by conjugation. This will be crucial to the following

Lemma.

Lemma 3.22. Let M be an n×n A-matrix, and let K be a group of order n |A| containing

a central subgroup, A, isomorphic to A. Suppose that M ≡A [ψ (g, h)φ (gh)]g,h∈G for

some cocycle ψ ∈ Z2 (G,A) of the central extension

1→ A
ι→ K

π→ K/A→ 1

where ι is the composite of the inclusion A → K and an isomorphism A → A. Then

there is an isomorphism of K onto a regular subgroup of PermAut(EM ), mapping A onto

Υ (A).

Proof. Our definition of cocyclic development is only up to A-equivalence. In particular,

we can multiply a row or column by a ∈ A and remain in the same equivalence class.

By Lemma 3.21, we may consider

M ≡A [ψ (g, h)ϕ (gh)]g,h∈G

≡A
[
ψ (g, h)ϕ−1 (g)ϕ−1 (h)ϕ (gh)

]
g,h∈G

≡A
[
ψ (g, h) ∂ϕ−1 (gh)

]
g,h∈G

≡A
[
ψ′ (g, h)

]
g,h∈G

Results for this matrix translate directly into statements about M . We begin by fixing

total orders on the elements of G, {gi|1 ≤ i ≤ n} and of A, {aj |1 ≤ j ≤ |A|}. We then
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label the rows and columns of EM with elements of E (ψ′) ordered as follows:

(g1, a1) ≤ (g2, a1) ≤ . . . ≤ (gn, a1) ,≤ (g1, a2) ≤ . . . ≤
(
gn, a|A|

)
We stress that the ordering of the labels of the rows is the same as that of the columns,

and depends only on our arbitrary orderings of the Abelian group, A, and the quotient

group, G.

It is now easy to see that the map $ : E (ψ′)→ A by $ (x, a) = a is the required group

development function for EM . Consider the (i, j)th block of EM , which by definition is:

aiajM =
[
aiajψ

′ (g, h)
]
g,h∈G

=
[
φ
(
gh, aiajψ

′ (g, h)
)]
g,h∈G

= [φ ((g, ai) (h, aj))]g,h∈G .

Thus the entry in position ((g, ai) (h, aj)) of the E (ψ′) indexed matrix EM is given by

φ ((g, ai) , (h, aj)).

Thus we have that the expanded design, EM is group developed over the canonical

extension of A by G defined by ψ′. We now show that this implies that M is cocyclic

developed over G. First we use Lemma 3.9. This gives us an isomorphism from E (ψ′)

onto a regular subgroup of PermAut(EM ) given by

(g, a) ∈ E
(
ψ′
)
7→
(
T(g,a), S(g,a)

)
.

Note in particular that this isomorphism maps the subgroup {(1, a) |a ∈ A} onto Υ (A).

Recall that an element of Υ (A) is given by
(
θ (aIn) , θ

(
a−1In

))
and that the (i, j)th

block of θ (aIn) =
[
αai−1aj (aIn)

]
i,j

is In if a−1
i aj = a and is the zero matrix otherwise.

We compare this with the (i, j)th block of T1,a =
[
δ
(x,ai)(1,a)
(y,aj)

]
(x,ai)(y,aj)

, which is the

matrix

δ
(x,aia)
(y,aj)

=

{ [
δxy
]
x,y∈G if aia = aj

0n otherwise

Hence, T(1,a) = θ (aIn) and similarly S(1,a) = θ
(
a−1In

)
. Thus the inclusion, ι, given in

the statement of the lemma maps (1, a) to Υ (a), as claimed.

Now, we have verified that E (ψ′) is isomorphic to a regular subgroup of PermAut(EM ′),

by an isomorphism mapping of (1, S) onto Υ (S). Now obviously ψ′ is a cocycle of the

canonical central extension,

1→ A→ E
(
ψ′
)
→ G→ 1.
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But it is also a cocycle of the short exact sequence given in the statement of this lemma,

and by Theorem 2.17, these extensions are equivalent. This means that there is an

isomorphism of K onto E (ψ) mapping S to (1, S) ≤ E (ψ). This is the required regular

subgroup of PermAut(EM ). This completes the proof.

We now prove a converse of of Lemma 3.22.

Lemma 3.23. Let M be an n × n A-matrix. Suppose that PermAut(EM ) has a regular

subgroup K containing Υ (A) as a central subgroup. Then up to A-equivalence,

M = [ψ (g, h)]g,h∈G

for some ψ ∈ Z2 (G,A) where G = K/Υ (A).

Proof. We begin by defining the embedding ι : A→ K by

ι (a) =
(
θ (aIn) , θ

(
a−1In

))
∈ Υ (A) ⊂ K

Let ψ be a cocycle of the central extension

1→ A
ι→ K

π→ G→ 1.

Then by Theorem 2.17, this exact sequence is equivalent to the canonical central exten-

sion

1→ A
ι0→ E (ψ) π0→ G→ 1.

So there exists an isomorphism α : E (ψ)→ K such that α ((1, a)) = ι (a) for all a ∈ A.

Hence by Lemma 3.10, we have that

EM = [φ ((g, a) (h, b))](g,a),(h,b)∈E(ψ)

for some set map φ : E (ψ) → A, and some fixed indexing of the rows and columns of

EM by the elements of E (ψ), where the indexings need not coincide.

Now EM is defined according to a fixed ordering of the the elements of A, and the induced

action of the ι (a) on the rows of EM is to multiply them entrywise by a. Similarly,

ι (a) multiplies the columns entrywise by a−1. According to the representation given in

Lemma 3.23 of EM , the induced row action of (1, a) ∈ E (ψ) on EM moves (g, b) to row

(1, a)−1 (g, b), i.e. row (g, b) becomes row (1, a) (g, b) = row (g, ab). Now these actions

coincide via α, so we have

φ ((g, b) (1, a)) = sφ ((g, b)) , ∀a, b ∈ A, g ∈ G.
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In particular, φ (g, a) = aφ (g, 1) ∀s ∈ S, g ∈ G. It follows that the entry in row (g, a)

and column (h, b) is, by Lemma 3.23, equal to

φ (gh, stψ (g, h)) = stψ (g, h)φ (gh, 1) .

Now, we focus our attention on the block B in position (1, 1) of EM , that is, M itself.

All arguments made for rows apply with suitable modifications also to columns. We

wish to show that the rows of B are labelled by a transversal of G in E (ψ), under the

row indexing used in Lemma 3.23. Assume that (g, a) labels a row in B. Then (g, b)

cannot label a row in this block for any a 6= b. For if it did, then the induced action

of
(
1, a−1b

)
6= (1, 1) moves distinct rows within M to each other. But, as we discussed

earlier, the non trivial elements of ι (A) permute the block-rows of EM transitively under

the induced row action. Thus the rows of B are labelled by the elements (g, ag), where G

ranges completely and irredundantly over G. The argument for the columns is identical.

Now, we multiply each row, (g, t) of B by t and each column (g, t) by t also. By Lemma

3.23, this yields that

M ≡A [ψ (g, h)φ (gh, 1)]g,h∈G

where the indexing of rows and columns of M is by elements of G is a remnant of the

indexing in Lemma 3.23. Now multiplication of the above matrix by φ (g, 1)−1 and each

column h by φ (h, 1)−1 finally proves the result:

M ≡A
[
ψ′ (g, h)

]
g,h∈G

where ψ′ ∈ [ψ]

Now the above pair of Lemmas prove the following theorem, which was the main goal of

this chapter. We have produced an algebraic characterisation of the property of cocyclic

development for a square matrix with entries in an Abelian group, A.

Theorem 3.24. An n×n A-matrix, M , is cocyclic with cocycle ψ ∈ Z2 (G,A) if and only

if PermAut(EM ) has a regular subgroup isomorphic to E (ψ), which contains Υ (0, A) as

a central subgroup.

Proof. Immediate from Lemmas 3.22 and 3.23.

Since we define cocyclic development in terms of group development, it seems fitting

to close this chapter with a characterisation of group developed matrices in terms of

development over a coboundary. Note that this discussion applies only to A-matrices,

not to (0, A)-matrices as the first characterisation of group development did.
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Lemma 3.25. A square A-matrix, M is group developed over G if and only if it is

developed over a coboundary, ∂φ : G×G→ A

Proof. Assume that M is group developed. Then M = [φ (gh)]g,h∈G. But then M is

A-equivalent to the matrix M ′ =
[
φ (g)−1 φ (h)−1 φ (gh)

]
g,h∈G

. Thus M is developed

over a coboundary.

Conversely, assume that M is developed over a coboundary. Then

M = [∂φ (g, h)]g,h∈G

=
[
φ (g)φ (h)φ−1 (gh)

]
g,h∈G

≡A
[
φ−1 (gh)

]
g,h∈G

Thus development over a coboundary is equivalent to group development for A-matrices.

It follows from this lemma that if M is an A-matrix group developed over G, then it is

cocyclic developed by a coboundary. This implies that the extension of A by G is split.

In other words, the existence of a split extension group acting regularly on EM implies

that M is group developed over G.



Chapter 4

Group actions on Hadamard

matrices

We begin this chapter with a review of some of the basic properties of Hadamard matri-

ces, in particular with respect to their equivalence operations and automorphism groups.

The remainder of this chapter will consist of a concrete application of the theory of the

previous chapters to Hadamard matrices of small order. In particular, we explicitly

calculate the expanded matrix, referred to here as the expanded design, of a Hadamard

matrix. We prove that the permutation automorphism group of the expanded matrix

is isomorphic to the automorphism group of an invertible matrix in this case. From

this we derive necessary and sufficient conditions for a Hadamard matrix to be group

developed or cocyclic developed. Throughout we use observations on the structure and

combinatorial properties of Hadamard matrices to simplify our calculations. The most

important of these properties is of course row-orthogonality, which we used in Chapter

1 to prove that group developed Hadamard matrices exist only at square orders. Note

that this condition implies that there are no repeated rows or columns in the matrix.

Also, it is a result of Hadamard that these matrices contain only {±1} entries, there will

be no zeros in the matrices. All of this extra information on the structure of Hadamard

matrices will allow us both to simplify the general theory of the previous chapter and to

prove stronger results.

Recall that a Hadamard matrix is simply an orthogonal square array with an alphabet

of size 2, normally denoted {1,−1}. As noted in Chapter 1, it is closely related to the

incidence matrix of a 2-(4λ− 1, 2λ− 1, λ− 1) design. Throughout this Chapter, H will

usually refer to a Hadamard matrix of order n, and G will denote a group of order n.

Also, ψ : G × G → 〈−1〉 will be a cocycle. Finally, E (ψ) will be the central canonical

extension of C2 by G corresponding to the cocycle ψ.

38
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4.1 Row-Orthogonality

Definition 4.1. A matrix M is row-orthogonal if for any two rows, ri, rj , we have ri•rj =

0.

All Hadamard matrices are row-orthogonal. Since the transpose of a Hadamard matrix

is again Hadamard, we have also that Hadamard matrices are column orthogonal also.

This is not a property that is preserved by cohomology classes in general. Thus given a

cocyclic Hadamard matrix, [φ (x, y)]x,y∈G, we cannot in general predict whether or not

a cohomologous cocycle, φ′ will generate a Hadamard matrix. The best that we can do

at present is to demonstrate a computationally cheap test that determines whether or

not a cocyclic matrix is Hadamard. Recall that a matrix, M is cocyclic if and only if

there exists a subgroup of Aut(M) which acts regularly on EM and contains the special

central subgroup, 〈ζ〉, which is defined to be

{(
aI, a−1I

)
| a ∈ A

}
where A is the alphabet over which M is defined. In the case of Hadamard matrices,

〈ζ〉 = {(I, I) , (−I,−I)}. Note that our lemma is slightly more general then this. It does

not actually require the existence of a regular action: transitivity is sufficient.

Lemma 4.2. Let M be a square {±1}-matrix. Suppose that PermAut(EM ) is transitive.

Then M is Hadamard if and only if the ith row of M is orthogonal to the jth row of M ,

for all j 6= i and some fixed i.

Proof. Denote by ri the ith row of EM . By hypothesis there exist permutation matrices

such that PEMQ> = EM , and the first row of PEM = EMQ is ri. At the same time

for j 6= i, 1 ≤ j ≤ v, rjQ> = rl for some l. We cannot have l = 1 since this would imply

rj = r1Q = ri. Neither can we have l = v + 1: if this were true, then rj = −r1Q = −ri,
which contradicts that j ≤ v. Therefore if the first row of M is orthogonal to every

initial row, we have that

rir
>
j = r1Qr

>
j = r1

(
rjQ

>
)>

= r1r
>
l = 0

by the structure of EM . It follows, again by the structure of EM that the ith row of M

is orthogonal to the jth row.
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4.2 Hadamard equivalence

Recall that two n×n matrices M and M ′ are A-equivalent if their entries lie in (0, A), and

there exist monomial A matrices, P and Q such that PMQ> = M ′. Hadamard matrices

have entries in 〈−1〉 ∼= C2. Furthermore, the action of Mon(n, 〈−1〉)× Mon(n, 〈−1〉) on

the set of all (±1)-matrices of order n restricts to an action on the possibly empty set of

Hadamard matrices of order n. Thus we call two Hadamard matrices equivalent if there

exists a finite sequence of row and column permutations and negations transforming one

into the other. Clearly this is a true equivalence relation, which partitions the set of

all Hadamard matrices of order n into disjoint classes. We observe in particular that

this equivalence relation preserves the Hadamard property. For a Hadamard matrix, the

monomial matrices P and Q are simply signed permutation matrices. Thus they have

determinant in {±1}. Recall that the determinant of a product of matrices is the prod-

uct of the determinants. Thus if |Det (H)| = nn/2, it follows that
∣∣Det (PHQ>)∣∣ = nn/2.

Thus predictably, the Hadamard property is preserved by Hadamard equivalence. Note

that some authors include transposition as an equivalence relation: we do not. Matri-

ces that are transposes of one another have isomorphic automorphism groups, however.

Thus any computational or theoretical results for one equivalence class hold also for

the other. Recall that group development is a property of individual matrices up to

permutation equivalence, which is a finer equivalence relation then Hadamard equiv-

alence. Thus a permutation equivalence class of group developed Hadamard matrices

is contained entirely within a Hadamard equivalence class of Hadamard matrices. On

the other hand, cohomological equivalence, in the sense of being cocyclic developed over

cohomologous cocycles, is a coarser equivalence relation then Hadamard equivalence.

Hadamard equivalence classes lie entirely within cohomological equivalence classes, but

given H ≡H [ψ (g, h)φ (gh)]g,h∈G, and ψ′ cohomologous to ψ it does not follow that

H ≡H [ψ′ (g, h)φ (gh)]g,h∈G.

Computationally, it is necessary to consider equivalence classes of Hadamard matrices as

the number of Hadamard matrices equivalent to a given one increases exponentially. By

the Orbit-Stabiliser theorem, the number of Hadamard matrices equivalent to a given

matrix of order n is 22nn!2/k, where k is the order of Aut(H). To illustrate the vast

number of matrices involved, we observe that there are exactly 25528!2 = 6.7 × 1075

matrices in each of 137 equivalence classes at order 28.

Additionally, the number of equivalence classes of Hadamard matrices is considerable

even for relatively small n. At the time of writing, there were known to be more than

3.578 million equivalence classes of Hadamard matrices of order 32, and more then 18.29

million of order 36 [12]. Alternative definitions of equivalence abound; however we will
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not consider these other definitions in the thesis. Our primary goal is classification at

the orders where all Hadamard matrices are completely known.

We have already described the action of the group Mon(n,A)×Mon(n,A) on a square

(0, A)-matrix, M , of order n. Recall that the pointwise stabiliser of M is the auto-

morphism group of M , Aut(M). We now give an explicit definition of this group for

Hadamard matrices.

Definition 4.3. The automorphism group of a Hadamard matrix, H, of order n, is the

stabiliser of H in Mon(n, 〈−1〉)× Mon(n, 〈−1〉). We denote this group by Aut(H).

This is the group of all pairs of monomial matrices, (P,Q) with the property that

PHQ> = H. As we noted earlier, the Hadamard property requires that matrices have

non-zero determinant, hence Lemma 3.7 holds. Thus if (P,Q1) and (P,Q2) ∈ Aut(H),

it follows that Q1 = Q2.

4.3 The expanded design of a Hadamard matrix

The small size of the alphabet for Hadamard matrices means that the expanded design

is easily described:

EH =

(
H −H
−H H

)
. (4.1)

Recall that Theorem 3.17 states that Aut(H) embeds into PermAut(EH). In this section

we show that for invertible matrices, and thus Hadamard matrices, these groups are in

fact isomorphic. Recall from Chapter 3 our definition of the map θ, (3.4). Note that

it associates with a signed permutation matrix, P , of order n, a permutation matrix of

order 2n, given by the following bijection:

θ (P ) =

(
α1 (P ) α−1 (P )

α−1 (P ) α1 (P )

)

where α1 (P ) and α−1 (P ) are uniquely defined (0, 1)-matrices as defined in (3.3). Note

in particular that they are related to P by the equality P = α1 (P )−α−1 (P ). We define

Θ (P,Q) = (θ (P ) , θ (Q)) as usual. In the next theorem we will make use of the following

lemma.

Lemma 4.4. Suppose that A = [aij ], B = [bij ], C = [cij ], D = [dij ] are n × n (0, 1)-

matrices such that A−B = D − C. Further suppose that

P =

[
A B

C D

]
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is a permutation matrix. Then A = D and B = C.

Proof. We write the hypothesis A−B = D − C as an entrywise equality:

aij − bij = dij − cij ∀ 1 ≤ i, j ≤ n. (4.2)

Fix i and j. Now, suppose that aij = 1. Since P is a permutation matrix (so has just

one non-zero entry in each row and column), it follows that bij = 0 and cij = 0. Then

(4.2) implies that dij = 1. So aij = dij in this case.

Suppose that aij = 0. If bij = 1 then because P is a permutation matrix, dij = 0;

in particular aij = dij . If bij = 0 then (4.2) implies that dij = cij ; further, since

dij , cij ∈ {0, 1} and P is a permutation matrix, we must have dij = cij = 0.

Thus aij = dij for all i and j. That is, A = D. Hence C = D +B −A = B.

Theorem 4.5. Let M be an invertible {±1}-matrix. Then the homomorphism given by

Θ : Aut(M) 7→ PermAut(EM ) is an isomorphism.

Proof. The proof that Θ is an injective homomorphism proceeds from the general result

in Chapter 3, Theorem 3.17. Lemma 3.18 shows that it does map into PermAut(EH).

To show that Θ is an isomorphism, it suffices to prove that Θ is surjective. We now

show that every element of PermAut(EM ) may be decomposed into a 2× 2 block matrix

such that the upper left and the lower right quadrants are equal, and the remaining two

quadrants are likewise equal. We write the equality PEM = EMQ as a block matrix

equation: (
Pκ Pβ

Pγ Pδ

)(
M −M
−M M

)
=

(
M −M
−M M

)(
Qκ Qβ

Qγ Qδ

)
.

We show now that Pκ = Pδ, that Pβ = Pγ , and likewise for Q. Multiplying these

matrices in the standard fashion gives the following identity:(
(Pκ − Pβ)M (Pβ − Pκ)M

(Pγ − Pδ)M (Pδ − Pγ)M

)
=

(
M (Qκ −Qγ) M (Qβ −Qδ)
M (Qγ −Qκ) M (Qδ −Qβ)

)

From this, and the fact that M is invertible, it follows that:

(Pκ − Pβ)M = M (Qκ −Qγ) = −M (Qγ −Qκ) = − (Pγ − Pδ)M

(Pκ − Pβ)MM−1 = − (Pγ − Pδ)MM−1

Pκ − Pβ = Pδ − Pγ .
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Thus by Lemma 4.4:

Pκ = Pδ Pβ = Pγ .

The argument for Q is exactly analogous. Thus every (P,Q) ∈ PermAut(EM ) has the

form ((
Pκ Pβ

Pβ Pκ

)
,

(
Qκ Qβ

Qβ Qκ

))

Now we show that (P ′, Q′) = ((Pκ − Pβ) , (Qκ −Qβ)) ∈ Aut(M).

(
M −M
−M M

)
=

(
Pκ Pβ

Pβ Pκ

)(
M −M
−M M

)(
Qκ Qβ

Qβ Qκ

)>

=

(
(Pκ − Pβ)M − (Pκ − Pβ)M

− (Pκ − Pβ)M (Pκ − Pβ)M

)(
Qκ Qβ

Qβ Qκ

)>

=

(
P ′M −P ′M
−P ′M P ′M

)(
Qκ Qβ

Qβ Qκ

)>

=

(
P ′MQ′> −P ′MQ′>

−P ′MQ′> P ′MQ′>

)
.

Hence P ′MQ′> = M , i.e. (P ′, Q′) ∈ Aut(M) as claimed. Thus Θ is a surjection, and

hence also an isomorphism.

We consider now the image of (−I,−I) ∈ Aut(M) under Θ.

ζ =

([
0n In

In 0n

]
,

[
0n In

In 0n

])

Since Θ is an isomorphism, it follows that ζ is an involution of PermAut(EM ). In

fact it is also central by Lemma 3.19, so for any (P,Q) ∈ PermAut(EM ), we have

ζ (P,Q) ζ = (P,Q). Note that this implies that negation of row i in M corresponds

to the transposition of rows i and i+ n in EM .

In the course of our research, we generated the automorphism groups of several hundreds

of Hadamard matrices. We noticed that all had the following property:

〈ζ〉 = Z (Aut (H)) (4.3)

This leads us to the following conjecture.

Conjecture: Let H be a cocyclic Hadamard matrix. Then Z (H) = 〈ζ〉.
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4.4 Cocyclic Hadamard matrices

In this section, we give necessary and sufficient conditions for a Hadamard matrix, H,

to be cocyclic developed over a group, G. This is essentially a restriction of Lemmas

3.22 and 3.23 to the case of Hadamard matrices. First however we restrict our definition

of cocyclic to the case of Hadamard matrices.

Definition 4.6. A Hadamard matrix H is cocyclic over the group G with cocycle ψ :

G×G→ C2 if and only if

H ≡H [ψ (g, h)φ (gh)]g,h∈G

where ≡H denotes Hadamard equivalence and φ is some set map from G to 〈±1〉.

We call a Hadamard matrix pure cocyclic if φ (gh) = 1 for all g, h ∈ G.

Lemma 4.7. Every cocyclic Hadamard matrix is Hadamard equivalent to a pure cocyclic

matrix.

Proof. We use the argument given at the start of Theorem 3.22 to remove the set map

φ. We observe that if H is cocyclic developed then:

H ≡H [ψ (g, h)φ (gh)]g,h∈G

≡H
[
ψ (g, h)φ−1 (g)φ−1 (h)φ (gh)

]
g,h∈G

≡H
[
ψ (g, h) ∂φ−1 (gh)

]
g,h∈G

≡H
[
ψ′ (g, h)

]
g,h∈G

as required.

As we remarked in Chapter 3, we have experimented with several definitions of cocyclic

development. We could use this Lemma to remove the set map from the definition, how-

ever we have found that retaining φ leads to somewhat more concise statements about

cocyclic Hadamard matrices. When we refer to a Hadamard matrix as being cocyclic

over ψ, we implicitly assume that φ has been suppressed via the above argument. The

following theorem of course follows directly from more general results, but we consider

it instructive to review it here in the context of Hadamard matrices.

Theorem 4.8. A Hadamard matrix, H, is cocyclic, with cocycle ψ, if and only if there is

an isomorphism, θ of Eψ onto a centrally regular subgroup of PermAut(EH), such that

θ ((1,−1)) = ζ.
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Proof. Suppose that H is cocyclic with cocycle ψ : G×G→ 〈−1〉. By Lemma 4.7,

EH =

(
ψ′ (x, y) −ψ′ (x, y)

−ψ′ (x, y) ψ′ (x, y)

)

for ψ′ = ψ∂φ, where ∂φ : G×G→ C is some suitable coboundary. We label the first |G|
rows of EH with elements (x, 1) of E (ψ′), and the remaining rows with elements (x,−1).

We label the columns in the same manner. Then defining a map g : E (ψ′) → 〈−1〉 by

g (x, a) = a, we have that

EH = [g ((x, a) (y, b))](x,a),(y,b)∈E(ψ′)

Hence EH is group developed over E (ψ′), which is equivalent in a cohomological sense

to E (ψ) and thus E (ψ) acts regularly on EH .

We observe that the involution (1,−1) acts on the rows and columns of the matrix as

follows:

(x, a) (1,−1) = (x,−a)

(1,−1)−1 (y, b) = (y,−b)

It swaps every row and column with its negation, thus it has the same action as ζ. It

follows that there is a faithful representation of E (ψ′) ∼= E (ψ) in PermAut(EH) that

maps (1,−1) to ζ.

We now prove the converse. Suppose that E (ψ) acts regularly on EH via an embedding

θ into PermAut(EH), such that θ ((1,−1)) = ζ. Therefore

EH =

(
H −H
−H H

)
= [g ((x, a) (y, b))](x,a),(y,b)∈E(ψ)

for some appropriate set map g : E (ψ)→ 〈−1〉. Since (1,−1) acts like ζ,

g ((x,−a)) = −g ((x, a))

Hadamard matrices are linearly independent by definition, thus no row/column of H

will be the negation of another row/column. Hence the first |G| rows of EH must be

labeled by elements (x, a) ∈ E (ψ) as x runs completely and irredundantly over G. So

there is a Hadamard matrix, H ′ ≡ H such that

H ′ = [g ((x, 1) (y, 1))](x,1)(y,1)∈E(ψ) = [g (xy, ψ (x, y))](x,1)(y,1)∈E(ψ)
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Finally, we define h : G→ 〈−1〉 by h (x) = g (x, 1). Then

H ′ = [ψ (x, yh (xy))]x,y∈G

so that H ≡H H ′ is cocyclic with cocycle ψ.

This theorem provides us with the necessary theory to classify Hadamard matrices by

their cocyclic development properties. Later in this chapter we describe in some detail

how we implement this theory in the computer algebra system Magma, [2]. First how-

ever, we determine the automorphism group and cocyclic development properties of the

unique Hadamard matrix of order 2.

4.4.1 Example: Order 2

We note that as the order of this matrix is not square, it cannot be group developed.

We show that it is cocyclic developed over the cyclic group of order 2, however.

H2 =

(
1 1

1 −1

)

The group Mon(2, 〈−1〉) has order 8 and is isomorphic to D4 since it clearly contains more

then one involution. Mon(2, 〈−1〉)× Mon(2, 〈−1〉) thus has order 64, and is isomorphic

to the direct product. It is easy to see that there are 8 elements in the orbit of H:

4 equivalent through permutations alone, and their 4 negations. Thus by the Orbit-

Stabiliser Theorem, the order of Aut(H) is 8.

Recall that if H is invertible, and (P,Q) ∈ Aut(H) then P = HQH−1. Thus for each

element, P of Mon(2, 〈−1〉) there is a unique automorphism of H, given by
(
P,HPH−1

)
.

It follows that Aut(H) ∼= D4. We need not calculate the subgroups of Aut(H) that

act regularly on EH as in this case it is unnecessary. We observe that there is only

one candidate for a regular subgroup of order 2, containing the central involution, ζ :

〈(−I,−I)〉, that is ζ itself. Finally we observe that the normalised cocycle ψ : C2×C2 →
C2 uniquely defined by ψ (c, c) = −1 does indeed generate the Hadamard matrix of order

2.

4.5 Computation of Automorphism groups

Theorem 4.8 gives us a characterisation of the cocyclic development properties of H in

terms of subgroups of Aut(H) that act regularly on E (H), and contain ζ. The problem



Chapter 4. Group actions on Hadamard matrices 47

of classifying Hadamard matrices by their cocyclic development properties now begins

to look amenable to computation. At the time of writing, no computer algebra system is

equipped to compute the automorphism groups of matrices with entries in an arbitrary

group. There do exist highly efficient algorithms for computing the automorphism group

of a {0, 1}-array, using Brendan McKay’s nauty programme, [13], as implemented in

Magma. Thus we introduce a lemma to relate the automorphism group of H to the

automorphism group of a {0, 1}-matrix. We begin, however, by defining the associated

design of a Hadamard matrix to be

AH = 1/2 [EH + J2n] (4.4)

Where J2n is the all 1′s matrix of order 2n. Essentially, we change the −1 entries of

EH to zeros. We observe that the expanded design is in fact a symmetric balanced

incomplete block design.

Lemma 4.9. Aut(AH) = PermAut(AH) = PermAut(EH)

Proof. Since AH is a (0, 1)-matrix, the first isomorphism is trivial. As to the second, let

P,Q ∈ PermAut(AH). Then

PAHQ
> = 1/2

[
PEHQ

> + PJ2nQ
>
]

= 1/2
[
PEHQ

> + J2n

]
= 1/2 [EH + J2n] = AH

Note that Aut(AH) and PermAut(EH) are not merely isomorphic, they are in fact equal.

This means, in particular, that regular actions are preserved.

Combining this Lemma with Theorem 4.5, we get the following result:

Theorem 4.10. Aut(H) ∼=PermAut(EH) = Aut(AH)

Proof. Immediate from Theorem 4.5 and Lemma 4.9.

This associated design may thus be used to efficiently calculate the automorphism group

of a Hadamard matrix: since it is a (0, 1)-array, we may use nauty to do so efficiently.

There is an inbuilt Magma function that determines subgroups that act regularly on EH .

Further discussion of this function may be found in Appendix A, which also contains a

copy of the code that we wrote. It is a simple matter to check that a regular subgroup,

R contains ζ. Furthermore, since ζ ∈ Z (R), we have that 〈ζ〉 is a normal subgroup of R

and hence we may form the quotient group R/ 〈ζ〉. By the cohomology of Chapter 2 and

the general results of Chapter 3, we have that H is cocyclic developed over this R/ 〈ζ〉.
Note that this approach may of course be generalised to many other types of pairwise

combinatorial design. We will restrict our attention to Hadamard matrices, however.
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The computer algebra system Magma, [2], contains a library of Hadamard matrices

which is complete for orders up to 28, and which contains a representative matrix for

every order up to 256. We used the procedure, described in detail in Appendix A, on

each of the Hadamard matrices of order at most 28 to generate information on their

cocyclic development properties.

4.6 Equivalence of cocyclic Hadamard matrices and rela-

tive difference sets

We promised in Chapter 1 a partial proof of a theorem of Warwick de Launey which

establishes a relationship between Central Relative Difference Sets in groups of order

8t and cocyclic Hadamard matrices of order 4t. We elaborate on that remark here,

and prove the first part of the equivalence. This proof is due originally to Flannery,

see section 3 of [8]. The key observation in the following Lemmas is that a CRDS, if

it exists, is a special transversal of the forbidden subgroup, C, in E. The forbidden

subgroup is of course precisely that generated by the special central involution, ζ that

we have discussed at length in this chapter.

Lemma 4.11. Suppose that G is a group of order 4t and ψ ∈ Z2 (G, 〈−1〉) a cocycle such

that [ψ (x, y)]x,y∈G is a Hadamard matrix. Then

R = {(x, 1) |x ∈ G}

is a (4t, 2, 4t, 2t)-RDS in E (φ) with forbidden subgroup C = {(1, 1) , (1,−1)} ∼= Z2.

Proof. Let (x, 1) and (y, 1) ∈ R, x 6= y. Then

(x, 1) (y, 1) = (x, 1)
(
y−1, ψ

(
y, y−1

))
=

(
xy−1, ψ

(
x, y−1

))
ψ
(
y, y−1

)
=

(
xy−1, ψ

(
xy−1, y

))
Note that we used the cocycle identity, (2.2), in the last line of the above proof to show

that ψ
(
xy−1, y

)
ψ
(
x, y−1

)
= ψ

(
y, y−1

)
ψ
(
xy−1, yy−1

)
. We also made use of the fact

that the exponent of Z2 (G,C2) is 2. Now since [ψ (a, b)]a,b∈G is Hadamard, every non-

initial row contains the same number of 1′s and −1′s. So for fixed xy−1 ∈ G\1 there

are exactly 2t elements y ∈ G such that ψ
(
xy−1, y

)
= 1 and 2t elements y ∈ G such

that ψ
(
xy−1, y

)
= −1. Equivalently, each element of E (ψ) \C occurs 2t times in the

multiset of quotients (x, 1) (y, 1)−1 6= (1, 1) formed from distinct elements of R.
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This lemma shows how to extract a relative difference set from a cocyclic Hadamard

matrix. We now show how a cocyclic Hadamard matrix may be constructed from a

(4t, 2, 4t, 2t)-RDS.

Lemma 4.12. Let E be a group containing a (4t, 2, 4t, 2t)-RDS, with forbidden subgroup

C ∼= 〈1,−1〉. Then E acts centrally regularly on EH for some Hadamard matrix H, i.e.

for some f ∈ Z2 (E/C, 〈−1〉), [f (x, y)]x,y∈G is Hadamard.

Proof. Let R be a (4t, 2, 4t, 2t)-RDS in E with forbidden subgroup C. If r, s ∈ R with

rC = sC then rs−1 ∈ C. We observe that |R| = |E/C|, hence R is a transversal of C in

E. Now, write E/C = G, and define a transversal function τ : G → E by τ (rC) = r.

Let fτ : E/C → 〈−1〉 be the associated cocycle:

fτ (rC, sC) = rsτ (rsC)−1 .

Recall that since E is a group, fτ is necessarily normalised. Fix r 6= 1. Then

fτ (rC, sC) = 1⇔ rs ∈ R⇔ us−1 = r

for some u ∈ R. Since r 6= 1 there are exactly 2t pairs, u, s ∈ R such that us−1 = r

by the definition of a RDS. Thus for fixed r 6= 1 row rC of M = [fτ (rC, sC)]rC,sC∈E/C
contains precisely 2t occurrences of 1 and 2t occurrences of −1. Now by Lemma 4.2, a

{±1} cocyclic matrix is Hadamard if and only if each non-identity row is orthogonal to

the first.

The above two lemmas prove the first part of de Launey’s theorem: that there exists a

(4t, 2, 4t, 2t)-CRDS if and only if there exists a cocyclic Hadamard matrix of order 4t.

Towards the end of the project, we became interested in the problem of constructing

Hadamard matrices from Relative Difference Sets. Using Marc Röder’s Gap package,

RDS, [14, 15] we wrote a series of short programs to generate a Hadamard matrix from

a suitable relative difference set. We search for all difference sets in the groups of order

16, 24, 32, and 40, and used these to generate Hadamard matrices. Up to transpose

equivalence, all matrices were represented. This problem is of exponential complexity

however. It is conceivable that this technique could be used to construct all cocyclic

Hadamard matrices of, say, order 32, without further optomisations it is not a feasible

method for finding cocyclic Hadamard matrices of large order, however.

The next chapter of the thesis gives the full classification of cocyclic Hadamard matrices

of order at most 28 that we promised in Chapter 1. We observe that by the above

lemmas that this gives us a complete census of all CRDS’s with parameters (8t, 2, 4t, 2t)

essentially for free.



Chapter 5

Classification of small cocyclic

Hadamard matrices

In this section we describe the results of our application of the Magma procedure de-

scribed in Appendix A to all Hadamard matrices of order 4n for n ≤ 7. The Hadamard

matrices were drawn from Magma’s database, [2]. It is a well established result that all

Hadamard matrices of order 4n are known for n ≤ 7, see for example page 268 of [16],

or page 17 of [1]. For each matrix, we enumerate and analyse the subgroups of its auto-

morphism group that act regularly on the expanded design and contain ζ. The theory

of the previous chapters shows that this is sufficient to establish the groups over which

each of the Hadamard matrices are cocyclic. Throughout this chapter, we shall use the

term regular subgroup to mean a subgroup of the automorphism group acting regularly

on the expanded design of the matrix. By a centrally regular subgroup, we will mean

a regular subgroup containing ζ. We stress that, in general, a regular subgroup in this

sense will not act regularly on the Hadamard matrix itself. If we have a centrally regular

subgroup, we can factor out by 〈ζ〉 to get an indexing group over which the Hadamard

matrix is cocyclic. It should be noted that an automorphism group may contain several

isomorphic centrally regular subgroups, but factoring out by the central involution ζ

may give non-isomorphic factor groups. Conversely, non-isomorphic extensions of the

indexing groups can also appear. We list the factor groups first, with the correspond-

ing extensions to the right. In listing groups, we first checked if they belonged to any

well known family, then we attempted to classify them as direct products of well known

groups, failing this, they are given as semidirect products. The remaining cases may

all be described as non-split extensions; as there is no well established symbol in the

literature for such a product, we define one. Throughout this chapter, we will denote a

non-split extension of N by G as N A G. Group extensions are not in general unique,

50
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we have in places found it expedient to use the same description for non-isomorphic ex-

tensions. When this occurs, we uniquely identify such groups with a reference number.

Power commutator presentations of groups not uniquely defined will be given at the

end of the section in which they occur. In general, the group descriptions given were

computed with GAP, while the presentations were computed with Magma.

Since we make extensive use of the groups of order 16, we give a table of our shorthand

notation for the non-Abelian groups. The Abelian groups will be presented as direct

products of cyclic groups. In our group presentations we omit commutators. Thus we

will not in general include relations of the form ab = a. We also omit relations of the

form a2 = 1, though we do not omit relations of the form an = 1 for n 6= 2. The notation

Dn will denote the dihedral group of order 2n throughout this section.

Label Presentation
(C4 × C2) o C2

〈
a, b, c | a2 = d, ba = bc

〉
C4 o C4

〈
a, b, c | a2 = d, b2 = c, ba = bc

〉
C8 o C2

〈
a, b, c | a2 = c, c2 = d, ba = bd

〉
D8

〈
a, b, c | c2 = d, ba = bc, ca = cd, cb = cd

〉
QD8

〈
a, b, c | a2 = d, c2 = d, ba = bc, ca = cd, cb = cd

〉
GQ

〈
a, b, c | a2 = d, b2 = d, c2 = d, ba = bc, ca = cd, cb = cd

〉
D4 × C2 〈a, b, c | ba = bd〉
Q× C2

〈
a, b, c | a2 = d, b2 = d, ba = bd

〉
C4 A C2

2

〈
a, b | c2 = d, ba = bd

〉

5.1 Order 4

We observe that the calculations of Section 4.4.1 show that the Hadamard matrix of

order 2 is cocyclic. Since 2 is not square, we know that a regular subgroup acting on

the expanded design of the Hadamard matrix of order 2 will not be split. Hence there

is a unique centrally regular action on the expanded design by C4.

We showed in Section 1.5 that the Hadamard matrix of order 4 is group developed

over C4. Of course this implies that it is cocyclic over C4 × C2, which is indeed the

case. We provide here a summary of all centrally regular subgroups of PermAut(EH).

First however, we note that the automorphism group has order 192, and contains 5

regular subgroups. One of these is not centrally regular however. As we noted in

the introduction, we will present our results in the following format: the groups of

order n that the Hadamard matrix in question is cocyclic over will be given in the left

hand column. The corresponding groups of order 2n over which the expanded design is

group developed will be given in the right hand column. Where necessary we will give

presentations for the groups described in the table.
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Indexing Group Extension Groups
C2 × C2 C4 × C2

C4 C4 × C2, Q8, C3
2

5.2 Order 8

The unique, up to equivalence, matrix of order 8 has an automorphism group of order

21504. This group turned out to have 10 centrally regular subgroups.

Indexing Group Extension Groups
C4 × C2 C4 × C4, C4 o C4, C8 × C2

D4 (C4 × C2) o C2, C4 o C4, GQ
C3

2 C4 × C3
2 , C2 ×D4, C2 ×Q, C4 A C2

2

5.3 Order 12

There is up to equivalence only a single Hadamard matrix of order 12. Its automorphism

group is the Schur cover of M12 which has order 190,080. This group has only 3 regular

subgroups of order 24, all of which contain ζ. None are Abelian, though when 〈ζ〉 is

factored out, one does become Abelian.

Indexing Group Extension Groups
C2

2 × C3 Q8 ×C3

Alt (4) SL (2, 3)
D6 C3 oQ8

Since semi-direct products are not in general unique, we give a power commutator pre-

sentation for C3 oQ8:
〈
a, b, c, d | a3 = 1, b2 = c2 = d, ba = c, ca = bc, cb = cd

〉

5.4 Order 16

This order was by far the most time consuming to consider. There were in total 165

centrally regular subgroups of order 32 to consider, including all but 6 of the isomorphism

classes of groups of order 32. All of the groups that did occur will be described later in

this section, but we consider it instructive to mention explicitly those that do not occur

as extension groups. Ito’s results preclude both C32 and D16 from occurring. The other

groups that fail to appear are closely related to these. They are of the types: C16 ×C2,

C16 o C2, C2 ×D8 and QD16, the quasidihedral group of order 32. It should be noted

that the only group of exponent 32 is included in this list as well as all but one of the

groups of exponent 16. No group of lower exponent appears here.
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5.4.1 The Sylvester Hadamard Matrix of order 16

This Hadamard matrix has an automorphism group of order 10,321,920. This group

contains 113 centrally regular subgroups of order 32, which belong to 34 different iso-

morphism types. In fact, this matrix is cocyclic over all but two of the groups of order

16. The two exclusions are the cyclic group C16 and the dihedral group, D8. Note also

that this matrix is group developed over no less then 6 different groups of order 16.

Indexing Group Extension Groups
C4 × C4 C2

4 × C2, (C4 × C2) o C4

(C4 × C2) o C2 (C4 × C2) o C4, (C8 × C2) o C2 [7], (C4 × C2) A C4, Q8 o C4,
C2

4 o C2 [11], C2
2 A (C4 × C2) [5]

C4 o C4 (C4 × C2) o C4, C2
2 A (C4 × C2) [6]

C2 × C8 (C8 × C2) o C2 [7], C8 × C2
2

C8 o C2 (C8 × C2) o C2 [7], (C4 × C2) A C2
2

QD8 Qo C4, QH8 × C2

GQ Qo C4, GQ× C2

C4 × C2
2 C2

4 × C2, C2
2 A (C4 × C2) [5, 6], C2

4 × C2, D4 × C4, Q× C4, C8 × C2
2 ,

(C4 × C2) A C2
2 , (C8 × C2) o C2 [9], C4 × C3

2

D4 × C2 C2
2 A (C4 × C2) [5, 6], C4 ×D4, C4

2 o C2,
(
C4 × C2

2

)
o C2 [21, 22],

(C2 ×Q) o C2 [16], C2
4 o C2 [13], C4 oQ8, C2 ×QH8,

C2 ×GQ, (C2 × C8) o C2 [10], (D4 × C2) o C2, C8 A C2
2 , D4 × C2

2

Q× C2 C2
2 A (C4 × C2) [6], (Q× C2) o C2, Q× C2

2

C4 A C2
2 C2

4 o C2, D4 × C4, Q× C4, C4 × C2
2 o C2 [21, 22], (C2 ×Q) o C2 [16],

C2
2 A C3

2 [18, 19], C2
4 o C2 [14]

C4
2 C4 × C3

2 , D4 × C2
2 , Q× C2

2 , C2
2 A C3

2 , (C2 ×D4) o C2,
(C2 ×Q) o C2 [17], C5

2

Table 5.1: Groups over which the Sylvester Hadamard matrix of order 16 is cocyclic

5.4.2 The second Hadamard matrix of order 16

This matrix has an automorphism group of order 49152. It has 48 centrally regular

subgroups, comprising 25 different isomorphism types. Despite having the smallest

automorphism group of all of the matrices of order 16, this Hadamard matrix is cocyclic

over 12 of the fourteen groups of order 16. Its associated design may be group developed

from any one of 25 groups of order 32.

5.4.3 The remaining Hadamard matrices of order 16

There exist a pair of equivalence classes of Hadamard matrices at order 16 such that each

is the transpose of the other. As a result their automorphism groups are isomorphic,
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Indexing Group Extension Groups
C4 × C4 C8 × C4, C8 o C4 [1]

(C4 × C2) o C2 C2
2 A (C4 × C2) [20], C3

2 A C4

C4 o C4 C4 o C8 [4], C4 A D4

C8 × C2 C8 × C4, C4 o C8 [4]
C8 o C2 C4 o C8 [4], C8 o C4 [3]
D8 (C8 × C2) o C2 [8], C8 o C4 [3]
QD8 Q8 o C4, C8 o C4 [2]

C4 × C2
2 C2

4 × C2, D4 × C4, Q× C4, C2
4 o C2 [12], (C4 × C2) A C2

2

D4 × C2 D4 × C4, C2
4 o C2 [13, 15], C4 oQ8, GQ× C2, C8 A C2

2 ,
(C2 ×Q) o C2 [16]

Q× C2 Q× C4, C2
2 A C3

2 [18], C4 oQ, Q× C2
2 , (C2 ×Q) o C2 [16]

C4 A C2
2 D4 × C4, Q× C4, C2

4 o C2 [12], (C2 ×Q) o C2 [16],
C2

4 o C2 [13, 14], C2
2 A C2

2 [18, 19]
C4

2 Q× C2
2 , C2

2 A C3
2 [19]

Indexing Group Extension Groups
D8 GQ32

and we need only analyse one. This automorphism group has order 86016, and has only

one regular subgroup, which contains ζ.

The remaining Hadamard matrix of order 16 has an automorphism group of order

294912. It has however only two regular subgroups containing ζ. One group is Abelian,

the other is, like the previous pair, cocyclic over D8, but has a different extension group.

Note that the Abelian extension is split: thus by Lemma 3.25, this matrix is group

developed over C8 × C2.

Indexing Group Extension Groups
C8 × C2 C8 × C2 × C2

D8 C8 o C4 [1]
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C8 o C4 [1] =
〈
a, b, c, d, e | a2 = c, b2 = d, c2 = e, ba = be

〉
C8 o C4 [2] =

〈
a, b, c, d, e | a2 = d, b2 = c, c2 = e, ba = bc, ca = ce

〉
C8 o C4 [3] =

〈
a, b, c, d, e | a2 = d, b2 = ce, c2 = e, ba = bc, ca = ce

〉
C4 o C8 [4] =

〈
a, b, c, d, e | a2 = d, b2 = c, d2 = e, ba = bc

〉
C2

2 A (C4 × C2) [5] =
〈
a, b, c, d, e | a2 = e, ba = bd

〉
C2

2 A (C4 × C2) [6] =
〈
a, b, c, d, e | a2 = e, b2 = d, ba = bd

〉
(C8 × C2) o C2 [7] =

〈
a, b, c, d, e | a2 = d, d2 = e, ba = bc

〉
(C8 × C2) o C2 [8] =

〈
a, b, c, d, e | a2 = d, c2 = e, ba = bc, ca = ce, cb = ce

〉
(C8 × C2) o C2 [9] =

〈
a, b, c, d, e | a2 = d, d2 = e, cb = ce

〉
(C8 × C2) o C2 [10] =

〈
a, b, c, d, e | c2 = e, d2 = e, ba = bd, da = de, db = de

〉
C2

4 o C2 [11] =
〈
a, b, c, d, e | a2 = d, c2 = e, d2 = e, ba = bc, ca = ce, cb = ce

〉
C2

4 o C2 [12] =
〈
a, b, c, d, e | a2 = e, c2 = d, ba = bd

〉
C2

4 o C2 [13] =
〈
a, b, c, d, e | b2 = e, c2 = d, ba = bd, ca = ce

〉
C2

4 o C2 [14] =
〈
a, b, c, d, e | b2 = de, c2 = d, ba = bd, ca = ce

〉
C2

4 o C2 [15] =
〈
a, b, c, d, e | b2 = d, c2 = e, ba = bd, ca = ce

〉
(Q8 × C2) o C2 [16] =

〈
a, b, c, d, e | a2 = d, b2 = d, ba = bd, ca = ce

〉
(Q8 × C2) o C2 [17] =

〈
a, b, c, d, e | b2 = e, c2 = e, ba = be, cb = ce, da = de

〉
C2

2 A C3
2 [18] =

〈
a, b, c, d, e | a2 = d, b2 = e, c2 = d, ba = bd, ca = ce

〉
C2

2 A C3
2 [19] =

〈
a, b, c, d, e | c2 = e, ba = be

〉
C2

2 A (C4 × C2) [20] =
〈
a, b, c, d, e | a2 = d, b2 = e, d2 = e, ba = bc, ca = ce, db = de

〉
(
C4 × C2

2

)
o C2 [21] =

〈
a, b, c, d, e | b2 = d, ba = bd, ca = ce

〉(
C4 × C2

2

)
o C2 [22] =

〈
a, b, c, d, e | c2 = d, ba = bd, ca = ce

〉
(C4 × C2) o C4 =

〈
a, b, c, d, e | a2 = d, b2 = e, ba = bc

〉
(C4 × C2) A C4 =

〈
a, b, c, d, e | a2 = d, ba = bc, ca = ce, db = de

〉
C3

2 A C4 =
〈
a, b, c, d, e | a2 = d, d2 = e, ba = bc, ca = ce, db = de

〉
Q8 o C4 =

〈
a, b, c, d, e | a2 = d, b2 = e, c2 = e, ba = bc, ca = ce, cb = ce

〉
C4 A D4 =

〈
a, b, c, d, e | a2 = d, b2 = c, c2 = e, d2 = e, ba = bc, ca = ce

〉
C4

2 o C2 = 〈a, b, c, d, e | ba = bd, ca = ce〉
C4 oQ8 =

〈
a, b, c, d, e | a2 = d, b2 = d, c2 = e, ba = bd, ca = ce

〉
(C4 × C2) A C2

2 =
〈
a, b, c, d, e | a2 = d, d2 = e, ba = be

〉
(D4 × C2) o C2 =

〈
a, b, c, d, e | d2 = e, ba = bd, ca = ce, da = de, db = de

〉
C8 A C2

2 =
〈
a, b, c, d, e | b2 = e, d2 = e, ba = bd, ca = ce, da = de, db = de

〉
C3

2 A C2
2 =

〈
a, b, c, d, e | ba = be, cb = ce, da = de

〉
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5.5 Order 20

There are three Hadamard matrices of order 20. All are cocyclic, though as there are

only 5 groups of order 20, this case is much simpler than that of order 16.

The first Hadamard matrix of order 20 has an automorphism group of order 6840.

PermAut(EH) has only a single centrally regular subgroup. The presentation for the

group of order 40 follows below.

Indexing Group Extension Groups
D5 × C2 D10 o C2

D10 o C2 :
〈
a, b, c, d | a2 = b2 = c, d5 = 1, ba = bc, da = d4

〉
The second matrix has an automorphism group of order 5760. PermAut(EH) has four

centrally regular subgroups, though three of these are isomorphic in all respects to the

regular subgroup of the first matrix. The presentation for the second group of order 40

follows below.

Indexing Group Extension Groups
D5 × C2 D10 o C2

C10 × C2 C20 o C2

C20 o C2 :
〈
a, b, c, d | a2 = b2 = c, d5 = 1, ba = bd

〉
The final Hadamard matrix of order 20 has an automorphism group of order 3840. Again,

PermAut(EH) has only a single centrally regular subgroup. Note that the extension group

is in this case a direct product, in contrast to the previous cases. Observe that this does

not mean that H is group developed, however.

Indexing Group Extension Groups
D5 × C2 D10 × C2
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5.6 Order 24

As the number of Hadamard matrices begins to grow rapidly at this order, we adapt our

method slightly. We observe that the PermAut(EH), for a Hadamard matrix H of order

n, will contain a regular subgroup only if its order is some multiple of 2n. So in this

case, we discard all Hadamard matrices with automorphism groups not divisible by 48.

Of the 60 Hadamard matrices of order 24, 27 have automorphism groups with order

in {8, 16, 24, 32, 64, 72, 128, 256}. None of these can have regular subgroups of order 48,

so we discard them immediately. Calculation of the centrally regular subgroups of the

remaining automorphism groups eliminated a further 17 matrices. In fact there are only

16 matrices at this order that are cocyclic. It would, however, be tiresome to present

all of the centrally regular subgroups for each matrix. We instead give a summary of

the information. The largest automorphism group that occurs at order 24 has 760320

elements, a number of matrices have automorphism groups of order 96. One occurrence

of note is an automorphism group of order 576 having 9 centrally regular subgroups,

which is a high number for such a small group.

We provide a table giving all indexing groups and their respective extensions. We observe

that 8 groups of order 24 occur as indexing sets, and that 14 groups of order 48 occur

as extension groups.

Indexing Group Extension Groups
C4 × S3 C8 × S3

D14 C3 oGQ [1](
C2

2 × C3

)
o C2 C3 oGQ [2]

C3 ×D4 C3 ×GQ
S4 C2 A S4

C2 ×A4 C2 × SL (2, 3), SL (2, 3) o C2

C2
2 ×D3 (C3 oQ8)× C2,

(
C3

2 × C3

)
o C2,

C12 A C2
2 , Q8 ×D3, (C4 ×D3) o C2

C2
2 × C6 C6 ×Q8, Q8 A C6

Table 5.2: Indexing groups and extension groups of Hadamard matrices of order 24
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There follow presentations of the groups described above in non-unique terms above.

(
C2

2 × C3

)
o C2 =

〈
a, b, c, d | d3 = 1, ba = bc, da = d2

〉
C3 oGQ [1] =

〈
a, b, c, d, e | a2 = c2 = d, b2 = cd, e3 = 1, ba = bc, ca = cd, ea = e2

〉
C3 oGQ [2] =

〈
a, b, c, d, e | a2 = b2 = c2 = d, e3 = 1, ba = bc, ca = cd, cb = cd, ea = e2

〉
C2 A S4 =

〈
a, b, c, d, e | a2 = c2 = d2 = e, b3 = 1, ba = b2,

ca = d, cb = de, da = c, db = cd, dc = de
〉

SL (2, 3) o C2 =
〈
a, b, c, d, e | a2 = c2 = d2 = e, b3 = 1, cb = d, db = cd, dc = de

〉
(C3 oQ8)× C2 =

〈
a, b, c, d, e | a2 = c2 = d, e3 = 1, ca = cd, ea = e2

〉
(
C3

2 × C3

)
o C2 =

〈
a, b, c, d, e | b2 = d, e3 = 1, ca = cd, ea = e2

〉
C12 A C2

2 =
〈
a, b, c, d, e | b2 = d, e3 = 1, ca = cd, cb = cd, ea = e2

〉
(C4 ×D3) o C2 =

〈
a, b, c, d, e | b2 = c2 = d, e3 = 1, ca = cd, cb = cd, ea = e2

〉
Q8 A C6 =

〈
a, b, c, d, e | c2 = e, d3 = 1, ba = be

〉

5.7 Order 28

An analysis similar to that described for order 24 quickly shows that of the 487 matrices

of order 28, at most 8 are cocyclic. For two of these matrices, PermAut(EH) lacks

centrally regular subgroups. As a result, precisely 6 Hadamard matrices of order 28 are

cocyclic. Furthermore, all these matrices are cocyclic over one of only two groups of order

28, and have expanded designs group developed over one of only two groups of order

56. It is also interesting to note that at this order we find the first minimally cocyclic

matrices, that is, a single centrally regular subgroup forms the entire automorphism

group. Also at this order we find the first Hadamard matrices with automorphism groups

of order 2, that is those that consist only of 〈(−I,−I)〉. Within the six equivalence classes

of matrices, there are two pairs of equivalence classes that are transposes of one another.

As stated earlier, these necessarily have isomorphic automorphism groups, and hence

are acted upon centrally regularly by the same groups. Thus we need consider only four

matrices at this order to complete our classification of the cocyclic Hadamard matrices

of order at most 28.
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5.7.1 The cocyclic Hadamard matrices of order 28

The first matrix has an automorphism group of order 58968, but has only a single

centrally regular subgroup. The presentation of the semidirect product follows at the

Indexing Group Extension Groups
D14 C7 oQ8

end of the section. We observe that the second and third cocyclic Hadamard matrices

are transposes of one another and are cocyclic over D14, just as is the first matrix. In

their case however, the entire automorphism group is of order 56.

The fourth cocyclic Hadamard matrix of order 28 has an automorphism group of order

8736 and has 4 centrally regular subgroups. Three of these are isomorphic as groups

however. As a result, this Hadamard matrix is cocyclic over 2 groups of order 28.

The groups in the first line of the table are those described above; it is these groups

that appear as three non-permutation-isomorphic centrally regular subgroups in the

automorphism group. Note that those in the second line are direct products. The

Indexing Group Extension Groups
D14 Q8 o C7

C2
2 × C7 Q8 × C7

final pair of cocyclic Hadamard matrices are again transpose equivalent. They have

automorphism group of order 336, and are cocyclic over the same two groups as are

given in the table above. Note that each group appears as a centrally regular subgroup

only once in the automorphism group however.

C7 oQ8 :
〈
a, b, c, d | a2 = b2 = c, d7 = 1, ba = bc, da = d6

〉

5.8 Summary of Results

In the following table, we give a summary of the information collected in this chapter.

In the second column we list the number of cocyclic Hadamard matrices at that order.

Where a fraction appears, the numerator is the number of cocyclic matrices and the

denominator is the total. Where a single number appears, it implies that all matrices

at that order are cocyclic. In particular, it can be immediately seen from the table that

all matrices of order at most 20 are cocyclic. The third column gives the proportion of

indexing groups of order n, while the last column gives the proportion of groups of order

2n that act regularly on (EH). The first two columns as far down as order 20 were known
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to de Launey by the early 1990’s. On page 136 of [1], Horadam comments on this result

of de Launey, and poses as a research problem the determination of the proportion

of cocyclic Hadamard matrices among all Hadamard matrices for larger orders. The

following table provides an answer to this question for orders 24 and 28.

Order Cocyclic Indexing Groups Extension Groups
2 1 1 2
4 1 2 3 / 5
8 1 3 / 5 9 / 14
12 1 3 / 5 3 / 15
16 5 13 / 14 45 / 51
20 3 2 / 5 3 / 14
24 16 / 60 8 / 15 14 / 52
28 6 / 487 2 / 4 2 / 13

Table 5.3: Summary of cocyclic equivalence classes of Hadamard matrices

We observe that the even Dihedral groups seem to always occur as indexing groups of

Hadamard matrices, though it is a well established result of Ito that Dihedral groups

never occur as extension groups. As we observed in our analysis of the groups of order

16, the exponent of a group seems to be somehow related to its likelihood of being a

Hadamard group. It is difficult to draw more meaningful information from the above

table without access to information on at least the next few terms in each column. In

the next chapter, we consider Hadamard matrix constructions that are known to be

cocyclic. We use this information to show that there exists a cocyclic Hadamard matrix

of order 4t for all t ≤ 50 apart from t = 47.
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Cocyclic Hadamard matrix

constructions

In this chapter we give summary results of the existence of cocyclic Hadamard matrices

at larger orders. We show that many constructions always generate cocyclic Hadamard

matrices, and that there is a known cocyclic Hadamard matrix of order n for all suitable

n ≤ 184.

6.1 The Sylvester construction

Sylvester’s construction generates Hadamard matrices of order 2n for all n ∈ N. The nth

Sylvester Hadamard matrix is:

⊗n
(

1 1

1 −1

)
.

As an example, the Sylvester Hadamard matrix of order 8 follows below.

1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1


(6.1)

61
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The Sylvester Hadamard matrices are closely related to Walsh functions in coding theory.

This tensor product construction may be used with any Hadamard matrix of order k to

yield Hadamard matrices of order 2nk for any n ∈ N. Thus to resolve the Hadamard

conjecture it is sufficient to search for Hadamard matrices of order 4n where n is odd.

6.1.1 Proof of cocyclic property

Lemma 6.1. M ⊗N is a Hadamard matrix if M and N are both Hadamard matrices.

Proof. Let A and B be square non-singular matrices, let the determinant of A be a,

and the determinant of B be b. Then by elementary linear algebra, det (A⊗B) =

(detA)b (detB)a. Recall that a {±1}-matrix M is Hadamard if and only if |detM | =

mm/2, where m is the number of rows in M . Then:

|det (M ⊗N)| =
(
mm/2

)n (
nn/2

)m
= mmn/2nmn/2

= (mn)mn/2

Lemma 6.2. The tensor product of cocyclic matrices is cocyclic.

Proof. Let φ1 ∈ Z2 (G,C) and φ2 ∈ Z2 (H,C). We define φ1⊗φ2 : (G×H)×(G×H)→
C by

φ1 ⊗ φ2 ((g1, h1) , (g2, h2)) = φ1 (g1, g2)φ2 (h1, h2) .

The cocyclic matrix associated with φ1⊗φ2 is the tensor product of the cocyclic matrices

associated with φ1 and φ2. This is immediate from the definition of the tensor product

of matrices.

Thus the nth Sylvester Hadamard matrix is cocyclic, by Lemma 6.2 and our verification

in Section 4.4.1 that the first Sylvester matrix is indeed cocyclic over C2.

6.2 The Williamson construction

This construction was first described by Williamson in the early 1940s. Details can be

found in [17]. Let A,B,C and D be circulant, or back circulant, matrices of order n

satisfying the following equalities:

XY > = Y X> ∀X,Y ∈ {A,B,C,D}
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AA> +BB> + CC> +DD> = 4nIn

We observe that the first condition is often bypassed by requiring that all component

matrices be symmetric. Williamson proves that under these constraints, the above

matrices may be composed as follows to give a Hadamard matrix:

H =


A B C D

B −A D −C
C −D −A B

D C −B −A


The Williamson construction has been the object of much study since Baumert and

Golomb’s discovery of a Williamson matrix of order 92 in 1962, [18]. This was significant

in that it was the last order less then 100 for which no Hadamard matrix was known. It

is known that no Williamson matrix with symmetric components of order 35 exists. It

is conjectured that there exist Williamson matrices with arbitrary circulant components

for all n ∈ N. Variations upon the Williamson construction have been developed by

other authors, notably Goethals and Seidel that relax the above requirements. We shall

see in Chapter 7 that such modifications drastically change the cocyclic-development

properties of the construction.

6.2.1 Proof of cocyclic property

The proof that the Williamson Hadamard matrices are cocyclic was one of the earli-

est results in this area. The proof is given in a series of papers by Baliga, de Launey,

Flannery and Horadam, beginning in 1993 with [19] and culminating in 2000 with [9].

The argument is based on a detailed analysis of the properties of cocyclic matrices. In

particular, any matrix cocyclic developed over a group G may be decomposed into a

Hadamard, or componentwise, product: M = S •P •C where S is the tensor product of

an all 1’s matrix with a backcirculant matrix, P is developed over a coboundary, and C

is developed over a commutator cocycle, which is determined by the Schur Multiplicator

of G. In essence, the proof generalises Lemma 6.2 to include some simple plug-in con-

structions. Setting the circulant components to be 1, we observe that the Williamson

construction template is cocyclic over C2
2 . Since the input matrices are all circulant

of order n, they are cocyclic over Cn. Thus it turns out that a Williamson Hadamard

matrix is cocyclic over C2
2 × Cn. The full argument is given in [20].

We observe also that Williamson matrices are a subset of Ito’s type Q matrices, details

of which are given in section (6.4). As such the Williamson matrices are also cocyclic

over the dihedral group, D2p.
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6.3 The Paley construction

As stated above, this construction is based on the quadratic residues of a finite field.

Let F be a finite field of order pa. The quadratic character, χ, of an element of F is

defined to be 1 if f is a quadratic residue, and −1 otherwise, in addition, χ (0) = 0. We

may form a matrix, Q, of order pa by

Q = [χ (fi − fj)]1≤i,j≤pa

where i, j ∈ {0, 1, 2, . . . , pa − 1}. We then define the square pa + 1 matrix, S by

S =

(
0 1

1> Q

)

Here, and in all later constructions, 1 is the all one’s vector of length pa. The Paley

construction consists in fact of two separate constructions, depending on whether pa ≡ 3

mod 4, or pa ≡ 1 mod 4. In the first case, we insert Q into the following template:

Ppa =

(
1 -1

1 Q+ Ipa

)

and Ppa is Hadamard of order pa + 1. This construction is generally known as Paley

Type I. Otherwise, pa ≡ 1 mod 4, and we use the following template:

P ′pa =

(
S + Ipa+1 S − Ipa+1

S − Ipa+1 −S − Ipa+1

)

In this case, P ′pa is a Hadamard matrix of order 2 (q + 1). This is Paley Type II. Although

the theory behind these constructions is similar, the standard proofs that they always

generate cocyclic matrices are quite different, so we present them separately.

6.3.1 Proof of cocyclic property - Paley Type I

Building on work by Kantor, de Launey and Stafford have completely determined the

structure of the Automorphism group of the Paley Type I matrices. Details of this work

are given in [21]. The full automorphism group of the Paley matrix derived from the

field of order pa is closely related to the general linear group GL (2, pa). de Launey

and Stafford define GS (2, pa) to be the subgroup of index 2 of GL (2, pa), in which all

matrices have square determinants. The centre of this group, L, consists of all non-zero

multiples of the identity matrix. We denote by Q the subgroup of the centre formed by{
λ2I|λ ∈ GF (pa)

}
. Note that |L : Q| = 2. Now, we consider in particular the action
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of GS (2, pa) on the elements of GF
(
p2a
)
, considered as a vector space of dimension

2 over GF (pa). We may then form a group GΓS (2, pa) by appending the Frobenius

automorphism, σ (x, y) 7→ (xp, yp), to GS (2, pa). Finally, the automorphism group of

a Paley Type I Hadamard matrix of order pa + 1 is isomorphic to the quotient group

GS (2, pa) /Q.

The only regular subgroup acting on the expanded design of the Paley Type I matrix

of order pa + 1 is the generalised quaternion group, Q2pa+2. All nontrivial generalised

quaternion groups have centre of order 2. This coincides with the central involution of

the Automorphism group. Factoring out by this central involution, we see that the Paley

Type I Hadamard matrices are cocyclic over the Dihedral groups of appropriate order,

and over these groups only. The cases q = 3, 7, 11, 23, 59 are exceptional. In each case,

the Hadamard matrix admits some additional regular actions. In all cases they admit

the regular action described above, and thus all Paley Type I Hadamard matrices are

cocyclic.

6.3.2 Proof of cocyclic property - Paley Type II

The following elementary proof, due originally to Turyn, is taken from a paper on cocyclic

Hadamard matrices and difference sets by De Launey, Flannery and Horadam, [9]. It

relies on the fact that Williamson Hadamard matrices are cocyclic, and that the matrix

Q given above is Hadamard equivalent to a matrix of the form:

Q′ =

(
A B

B −A

)

where A and B are symmetric circulant matrices. A has 0’s on the main diagonal, and

±1 everywhere else, and B is a ±1 matrix. Now with this observation, the Paley Type
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II matrix may be rewritten as follows:

Ppa =

(
I + C I − C
I − C −I − C

)

=


I +A B I −A −B
B −I −A −B I +A

I −A −B −I −A −B
−B I +A −B −I +A



≈H


I +A I −A B B

−I +A I +A −B B

−B B I +A −I +A

−B −B I −A I +A



Now, I + A, I − A, and B are all symmetric circulant matrices. Inspection shows that

this matrix is in fact in the form of a Williamson Hadamard matrix. Thus all Paley

Type II matrices are of Williamson type, and as such are cocyclic over both C2
2 ×Cpa/2

and the dihedral group D2t.

6.4 The Ito Type Q matrices

In the early 1990s Ito began investigating what he termed Hadamard groups, which are

groups of order 8t containing a central relative difference set with parameters (4t, 2, 4t, 2t).

As we demonstrated in Section 4.6, the existence of these difference sets is equivalent to

the existence of a cocyclic Hadamard matrix. The Paley Type II Hadamard matrices

have already been shown to be a subset of the Williamson Hadamard matrices. Ito’s

Type Q construction weakens some of the conditions on the component matrices of the

Williamson construction to give a larger family of matrices. This construction includes

also Paley Type I matrices. In all cases, the expanded design of the Hadamard matrix

in question is shown to be group developed over the group

Q8w =
〈
a, b | a4w = b4 = 1, a2w = b2, ab = a−1

〉
The forbidden subgroup in all cases is

〈
b2
〉

and the quotient Q8w/
〈
b2
〉

is D2t. We do not

attempt to give a proof of Ito’s results, referring the reader instead to a series of papers

by Ito. Type Q matrices are introduced in [7]. The Paley constructions are shown to be

of this type in [22]. Further results are contained in a number of papers by Ito on the

subject, notably the other papers in the series On Hadamard Groups and in [23].
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6.4.1 The Golay construction

The Golay construction is another example of a Type Q construction. It relies on the

existence of a pair of Golay sequences of length n. Such sequences are described in detail,

and some existence results are given by Golay in [24]. These are a pair of sequences

A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn) such that the sum of their autocorrelation

functions, R (A) and R (B) is the zero vector. The ith entry of R (A) is given by the

sum:
n−i∑
k=1

akak+i

In this application we are interested in complex Golay sequences, that is sequences in

which all entries of A and B come from {±1,±i}. Define A = W + iX, B = Y + iZ,

where W,X, Y and Z are {0,±1} sequences. Then we form four circulant matrices with

the following initial rows: A1 = W + X, A2 = W −X, B1 = Y + Z and B2 = Y − Z.

Holzmann and Karaghani, in [25] have shown that these matrices satisfy the conditions

for Ito’s Type Q construction. Thus Golay Hadamard matrices belong also to Ito’s Type

Q, and as such are cocyclic over D2t.

6.5 Existence of cocyclic Hadamard matrices

We showed in Chapter 5 that all Hadamard matrices of order at most 20 were cocyclic.

In the following table we give some existence results for larger orders. In particular, we

show that a cocyclic Hadamard matrix of order 4t exists for t ≤ 7. We now expand this

result.

Several different constructions may give cocyclic Hadamard matrices at any given order.

We have given preference to the Sylvester and Paley constructions, as they generate

unique matrices at each of the orders for which they exist. Where a product of two

numbers is given, the tensor product of cocyclic Hadamard matrices of these orders can

be taken. Details of the Williamson matrices of the orders listed above are given in

[26], pages 160-162. Currently the smallest order for which the existence of a cocyclic

Hadamard matrix is unknown appears to be 188.
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Matrix order Construction Matrix order Construction
4 Sylvester 104 Paley I
8 Sylvester 108 Paley I
12 Paley I 112 4× 28
16 Sylvester 116 Williamson
20 Paley I 120 2× 60
24 Paley I 124 Paley II
28 Paley I 128 Sylvester
32 Sylvester 132 Paley I
36 Paley II 136 2× 68
40 2× 20 140 Paley I
44 Paley I 144 2× 72
48 Paley I 148 Paley II
52 Paley II 152 Paley I
56 2× 28 156 Williamson
60 Paley I 160 2× 80
64 Sylvester 164 Paley I
68 Paley I 168 Paley I
72 Paley I 172 Williamson
76 Paley II 176 4× 44
80 Paley I 180 Paley I
84 Paley I 184 2× 92
88 2× 44 188 Unknown
92 Williamson 192 Paley I
96 2× 48 196 Paley II
100 Paley II 200 Paley I

Table 6.1: Existence of cocyclic Hadamard matrices



Chapter 7

Non-cocyclic Hadamard matrix

constructions

In the previous chapter, we examined some constructions that are known always to

give cocyclic Hadamard matrices. We now investigate some constructions for Hadamard

matrices which may not be cocyclic. This work is prompted by the research questions

numbered 39-42 posed in Chapter 6 of [1]. We wish to distinguish between Hadamard

matrix constructions that always produce cocyclic matrices, constructions which produce

a mixture of cocyclic and non-cocyclic matrices and constructions which never produce

cocyclic matrices. In this chapter we will refer to constructions of the first type as

strongly cocyclic, the second type as weakly cocyclic, and the third type as non-cocyclic.

7.1 The Goethals-Seidel Construction

The Goethals-Seidel construction, described originally in [27], takes as its input 4 circu-

lant {±1}-matrices of odd order n, normally labeled A, B, C and D, which satisfy the

condition:

AA> = BB> = CC> = DD> = 4nIn (7.1)

The back diagonal matrix of order n is denoted by R. A GS-Hadamard matrix of order

4n may then be constructed in the following manner:
A BR CR DR

−BR A D>R −C>R
−CR −D>R A B>R

−DR C>R −B>R A

 (7.2)

69
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If A, B, C and D are all symmetric, then this construction is identical to the Williamson

construction. There are several orders for which a GS-Hadamard matrix exists, but for

which it has been shown that no Williamson Hadamard matrix exists.

7.1.1 Order 28

There are 128 distinct ±1 vectors of length 7. We may form one circulant matrix from

each of these. With no restrictions on the circulant matrices, A, B, C and D, there are

5, 378, 240 solutions to (7.1). Since there are only 487 Hadamard matrices of order 28,

it is obvious that many of these solutions give Hadamard equivalent matrices. Thus we

impose some restrictions on our parameters.

We discard J and −J from our set of circulant matrices, since they will never occur in a

Hadamard matrix. Then there are precisely 9 Hadamard inequivalent circulant matrices

of order 7, since every nontrivial matrix is Hadamard equivalent to 14 other circulant

matrices. We restrict our search for solutions to these 9 matrices. By this method,

we found exactly two GS-Hadamard matrices of order 28. They are generated by the

following sequences:

(1, 1, 1, 1, 1, 1,−1) , (1, 1, 1, 1,−1,−1,−1) , (1, 1,−1, 1, 1,−1,−1) , (1, 1,−1, 1,−1, 1,−1)

(1, 1, 1, 1, 1,−1,−1) , (1, 1, 1, 1,−1, 1,−1) , (1, 1, 1,−1, 1, 1,−1) , (−1,−1,−1, 1,−1, 1, 1)

The first of these matrices has an automorphism group of order 48. The second has

an automorphism group of order 24. It follows immediately that there is no cocyclic

Goethals-Seidel-Hadamard matrix of order 28, and that this construction is not strongly

cocyclic.

7.1.2 Larger orders

We undertook a partial search for GS-Hadamard matrices at larger orders. Our results

are given below.

Order Matrices
28 2
36 15
44 105
52 1305

Table 7.1: Goethals-Seidel Hadamard matrices

None of the matrices found were cocyclic; in fact only a single matrix even had a suf-

ficiently large automorphism group to make searching for regular subgroups necessary.
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Thus we have partially answered Horadam’s Problem 40, at least for the strong cocyclic

property and we provide strong evidence that there is no cocyclic Hadamard matrix of

Goethals-Seidel type of order ≤ 52. It seems reasonable to conjecture that the Goethals-

Seidel construction never generates cocyclic Hadamard matrices for orders greater than

or equal to 28.

Conjecture: The Goethals-Seidel construction is non-cocyclic.

7.2 Two circulant cores construction

This construction, due to Fletcher, Gysin and Seberry and described in [28], uses a pair

of circulant matrices as the basis for a Hadamard matrix, instead of using four, as the

Goethals-Seidel and Williamson constructions do. The construction requires a pair of

circulant matrices, A and B, of odd order l such that

AA> +BB> = (2l + 2) Il − 2Jl

where Il is the identity matrix of order l and Jl is the all +1 matrix of order l. If this

condition is satisfied, then 
−1 −1 1 1

−1 1 1 -1

1> 1> A B

1> -1> B> −A>

 (7.3)

is a Hadamard matrix, where 1 represents an all-1’s row vector of length l. It is con-

jectured by Seberry et al. in [3] that TCC-Hadamard matrices exist at every order 4n.

Since all Hadamard matrices of order at most 20 are known to be cocyclic, we began

our investigation with the TCC matrices of order 24.

7.2.1 Orders investigated

We observe that by negating the first two columns of a TCC Hadamard matrix, we

obtain an equivalent matrix in which the first row consists entirely of positive entries

and A and B are unchanged. Since the matrix is orthogonal, we obtain constraints on

the row sums of the component matrices. In particular, for any row we have that:

l∑
j=1

ai,j =
l∑

j=1

bi,j = 1.
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This greatly reduces the number of matrices that we must iterate over in our searches.

For small orders we did a complete search for solutions. Our results follow below.

l Matrix order Number of matrices Number of cocyclic matrices
11 24 3 3
13 28 4 2
15 32 13 1
17 36 11 1
19 40 17 2

Table 7.2: Twin circulant cores Hadamard matrices

Our results at order 28 proved to be typical. We observe that two of the Hadamard

matrices were cocyclic, and that two were not. It is interesting that the orders of the

automorphism groups seem to vary widely and unpredictably. In this case the largest

automorphism group had order 58968, the smallest only order 52. It is notable that

all have a subgroups of order 13. The twin circulant cores construction has the weak

cocyclic property for all orders investigated. This result may be regarded as a partial

solution to Horadam’s Problem 42.

7.3 Twin prime power difference set construction

This construction, described in [1], and due originally to Paley, is loosely related to

both the Paley Type I and Type II matrices, being also based on the quadratic residue

characters of finite fields. If k and k+2 are prime powers, then there exists a difference set

with parameters 2−(k (k + 2) , [k (k + 2)− 1] /2, [k (k + 2)− 3] /4) in the direct product

of the additive groups (GF (k) ,+) × (GF (k + 2) ,+). The elements of this difference

set are all elements of the form (g, 0) , g ∈ GF (k) or (g, h) , g ∈ GF (k) , h ∈ GF (k + 2)

where χ (g)χ (h) = 1 and χ is the standard quadratic residue. We observe that this

difference set has the parameters of a Hadamard 2-design. Recall that we described a

method in Section 1.3 to obtain a Hadamard matrix from a 2-design.

7.3.1 Orders at which TPP-Hadamard matrices exist

Let k− 1 and k+ 1 be prime powers. Then we can generate a unique Hadamard matrix

of order (k − 1) (k + 1) + 1 = k2 by the twin prime power construction. Thus TPP

Hadamard matrices occur only at square orders. In the table below we provide a list of

all twin prime powers that generate Hadamard matrices of order at most 1000.

Our computation has shown that the smallest TPP-Hadamard matrix, of order 16,

is equivalent to the Sylvester matrix of order 16, and thus is cocyclic. Note that by
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Twin prime powers Matrix order Order of Automorphism Group
3, 5 16 10321920
5, 7 36 840
7, 9 64 6048
9, 11 100 15840
11, 13 144 17160
17, 19 324 93024
23, 25 576 607200
25, 27 676 2527200
27, 29 784 1710072
29, 31 900 755160

Table 7.3: Twin prime powers

our classification in Chapter 5 that all Hadamard matrices of order 16 are cocyclic.

Examination of the orders of the automorphism groups of the matrices of larger orders

shows that they cannot be cocyclic. This is a surprising result, as the Paley constructions

generate only cocyclic Hadamard matrices in a similar fashion from prime powers. We

observe however that the order of the automorphism group of the matrix generated by

the prime powers k and (k + 2) is divisible by k (k + 1) (k + 2). A study of the subgroup

structure of the automorphism group may provide a proof that this construction does

not generate cocyclic Hadamard matrices. We provide a copy of the Magma code that we

used to generate these twin prime power matrices in Appendix B. In any case, we have

proved that apart from order 16, which we consider exceptional, the twin prime power

Hadamard construction is non-cocyclic for all orders less then 1000. This provides at

least a partial answer to Horadam’s Problem 39: this construction is not strongly cocyclic

and furthermore, is non-cocyclic for all orders less then 1764. We make the following

conjecture:

Conjecture: The twin prime power construction is non-cocyclic.

7.4 Kimura construction

Kimura’s construction, described in [29], is notable in that it yields a Hadamard matrix

of order 8n + 4, where n is odd, from an ordered set of four {0, 1}-matrices of order

2n that satisfy certain conditions. As we have previously noted, it is sufficient to prove

the existence of Hadamard matrices at all orders 4n for odd n to prove the Hadamard

conjecture, as all other orders may be obtained from these via the Sylvester construction.

Kimura’s construction produces a (0, 1)-matrix, we obtain a Hadamard matrix from

this simply by replacing 0 with −1 wherever it occurs. The template for the Kimura
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construction is as follows:

1 1 1 1 1 1 1 1

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 0 0 1 1 0 0 1

1> 1> 1> 0> A B C D

1> 1> 0> 1> B̃ A D C̃

1> 0> 1> 1> C̃ D̃ A B

1> 0> 0> 0> D C̃ B Ã


Where Ã is the complement of A, this will be clarified below in our discussion of the

component matrices. First however, we observe that the above template produces a

Hadamard matrix if and only if the component matrices satisfy the following equations:

A>A+B>B + C>C +D>D = (2n+ 1) I + (2n− 2) J

AB̃> +BA> + CD> +DC̃> = (2n− 1) J

AC̃> + CA> +BD> +DB̃> = (2n− 1) J

DÃ> +AD> + CB> +BC̃> = (2n− 1) J.

The matrices above are not necessarily circulant, though they are required to have

constant row-sum. In particular we require that A have constant row sum n − 1, and

that the remaining matrices have row sum n. A y-invariant subset of a group G, for

some y ∈ G, is a subset K that satisfies yKy = K. Kimura and Niwasaki demonstrate

in [29] that y-invariant subsets of Dn, where n is odd, satisfying the first property above

automatically satisfy the remaining three. Thus it is in Dihedral groups that we search

for solutions. On finding such a subset in Dn, we take a regular degree 2n matrix

representation of the group, and add the matrices that belong to K. If K gives rise to

the matrix A then the complement of K in G gives rise to Ã. After construction of all

y invariant subsets of a Dihedral group, searching for Hadamard matrices is equivalent

to searching for solutions of the first equation above.

7.4.1 Orders at which Kimura matrices exist

n Matrix order Number of matrices Order of Automorphism Group
5 44 1 160
7 60 8 224
9 76 8 288

Table 7.4: Kimura Hadamard matrices
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We carried out comprehensive searches for Kimura matrices generated from Dihedral

groups of small orders. Our data is summarised in the table above. Note that, by the

orders of the automorphism groups, none of the Kimura matrices generated are cocyclic.

We observe that for a Kimura matrix of order 8n + 4, the automorphism group is of

order 32n. We conjecture that this is the case for all Kimura Hadamard matrices. If

this is so, then this construction will never generate cocyclic Hadamard matrices. Thus

we have partially answered Horadam’s Problem 41: we have shown that the Kimura

construction is not strongly cocyclic. Furthermore when restricted to Dihedral groups,

as described by Kimura and Niwasaki, the construction is non-cocyclic for orders ≤ 76.

For this construction we give a somewhat stronger conjecture:

Conjecture: Let H be a Kimura Hadamard matrix of order 8n+ 4. Then its automor-

phism group has order 32n.

Proof of this conjecture would of course imply a negative answer to Horadam’s problem.



Appendix A

Testing for cocyclic development

Here we provide a series of Magma programs that determine the cocyclic development
properties of a Hadamard matrix. The theory supporting this appendix may be found
in Chapter 4. The procedure IsCocyclic calls AssociatedDesign which in turn calls
ExpandedDesign. Otherwise, we make use of existing Magma functions. Note that
we do not calculate the automorphism group of a Hadamard matrix explicitly, but
rather calculate the automorphism group of the associated design, which is isomorphic
by Theorem 4.10. Magma’s inbuilt function for calculating regular subgroups only checks
that they act regularly on the points of a design. We check that all blocks lie in a single
orbit also. These are reported as regular subgroups. Our proofs require also that the
regular subgroups contain the central involution 〈ζ〉; we test all regular subgroups for
this property and return the number of centrally regular subgroups. This gives us the
information we require about the cocyclic development properties of a Hadamard matrix.
This procedure was used to compute the data given in Chapter 5, and to check that the
matrices produced in Chapter 7 were not cocyclic. Our procedure also investigates our
conjecture that the equality given in (4.3) holds for all cocyclic Hadamard groups. In
the case that it is found to fail, the procedure will produce an error message. This can
be circumvented by changing the definition of c to be the central involution 〈ζ〉.

ExpandedDesign := function(H); \\
z := Integers(); \\
n := NumberOfRows(H);\\
B := MatrixAlgebra(z, 2)![1,-1,-1,1];\\

return TensorProduct(B,H);\\
end function;\\

AssociatedDesign := function(H);
EH := ExpandedDesign(H);
n := NumberOfRows(EH);
for i in [1..n] do;
for j in [1..n] do;

EH[i,j] := (EH[i,j] + 1) / 2;
end for;

end for;

76
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return EH;
end function;

IsCocyclic := procedure(H);
AH := AssociatedDesign(H);
n := NumberOfRows(AH);
d := IncidenceStructure<n|AH>;
p := Points(d);
b := Blocks(d);
aut := AutomorphismGroup(d);
c := Centre(aut);

print "Order of automorphism group:", #(aut);
print "Automorphism group has centre of order:", #c;

reg := RegularSubgroups(aut);
m := #(reg);
reg1 := [];

for i in [1..m] do;
reg1 := Append(reg1, reg[i]‘subgroup);

end for;

A := [];
B := [];

for i in [1..m] do;
if #(p[1]^reg1[i]) eq n then

if #(b[1]^reg1[i]) eq n then
A := Append(A, reg1[i]);

end if;
end if;

end for;

q := #(A);

print "Number of regular subgroups:", q;

for i in [1..q] do;
if c subset A[i] then

B := Append(B, A[i]);
end if;

end for;

r := #B;
print "Number of centrally regular subgroups:", r;

C := [];
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for i in [1..r] do;
C := Append(C, (B[i]/c));

end for;

print "Expanded design is group developed
/Matrix is cocyclic over the following groups:";

for i in [1..r] do;
IdentifyGroup(B[i]), IdentifyGroup(C[i]);

end for;
end procedure;



Appendix B

Hadamard matrix constructions

In this Appendix we give some of the code that we used to derive the results of Chapter
7. In particular, we provide programs to construct Hadamard matrices of Kimura type,
as well as Twin Prime Power Hadamard matrices. These are the more intricate of the
programs that we wrote in preparing the material of Chapter 7. Many of the methods for
the construction Two circulant cores Hadamard matrices and Goethals-Seidel Hadamard
matrices may be seen here also. We give only the code itself with minimum additions in
this Appendix, the reader is directed to Chapter 7 for details of the constructions.

B.1 Kimura construction

The main function here is KimuraMatrices, which takes a Dihedral group as its argu-
ment. It calls KimuraComponentMatrices twice to produce component matrices with
appropriate parameters. It selects all 4-subsets of matrices that satisfy the necessary
equation, then uses KimuraStructure to form the relevant Hadamard matrices. Regu-
larRep and ElementRep together give a simple method of finding a permutation repre-
sentation of a group. They are called by KimuraComponentMatrices. All other functions
are inbuilt in Magma.

yInvariants := function(n, G, y); //Constructs n-element y-Invariant subsets
n := Integers()!n;
m := Order(G);
f := NumberingMap(G);
g := Inverse(f);
A := Subsets({1..m}, n);
B := [];
for i in A do;

B := Append(B, SetToSequence(i));
end for;
B := g(B);
C := B;
p := #B;
for i in [1..p] do;

for j in [1..n] do;
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C[i,j] := y*C[i,j]*y;
end for;

end for;
D := [];
for i in [1..p] do;

if C[i] subset B[i] then;
D := Append(D, B[i]);

end if;
end for;

return D;
end function;

ElementRep := function(a, G); //Constructs a permutation matrix from a
B := []; //group element, note that it is not normalised
for i in G do;

for j in G do;
if i*j eq a then;

B := Append(B, 1);
else;

B := Append(B, 0);
end if;

end for;
end for;

return Matrix(Order(G), B);
end function;

RegularRep := function(G); //Computes a matrix representation of a group
z := ElementRep(Identity(G), G)^-1;
B := [];
for x in G do;

B := Append(B, ElementRep(x, G)*z);
end for;

return MatrixGroup<Order(G),Integers()|B>;
end function;

KimuraComponentMatrices := function(k, G);
z := Generators(G); //We find a suitable y to create Invariant subsets
for i in z do;

if Order(i) eq 2 then;
b := i;

end if;
end for;

A := yInvariants(k, G, b);
a := #A;
h1, h2 := IsIsomorphic(G, RegularRep(G)); // h2 is a homomorphism
A1 := []; //from G to its matrix representation
for i in [1..a] do;

Z := Matrix(h2(A[i,1])); //We add the matrix reps of the elements
for j in [2..k] do; //to form the required Kimura components
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Z := Z + Matrix(h2(A[i,j]));
end for;
A1 := Append(A1, Z);

end for;
return A1;

end function;

KimuraStructure := function(A,B,C,D); //This function takes the components and
n := NumberOfRows(A); //inserts them into the template
A1 := ZeroToOne(A);
B1 := ZeroToOne(B);
C1 := ZeroToOne(C);
D1 := ZeroToOne(D);
R1 := HorizontalJoin([A, B, C, D]);
R2 := HorizontalJoin([B1, A, D, C1]);
R3 := HorizontalJoin([C1, D1, A, B]);
R4 := HorizontalJoin([D, C1, B, A1]);
Core := VerticalJoin([R1, R2, R3, R4]);
j0 := [];
j1 := [];
for i in [1..n] do;

j0 := Append(j0, 0);
j1 := Append(j1, 1);

end for;
r1 := j1 cat j1 cat j0 cat j0;
r2 := j1 cat j0 cat j1 cat j0;
r3 := j0 cat j1 cat j1 cat j0;
c1 := [1,0,0] cat r1;
c2 := [0,1,0] cat r2;
c3 := [0,0,1] cat r3;
S1 := Vector(r1);
S2 := Vector(r2);
S3 := Vector(r3);
V := VerticalJoin(S3, Core);
V1 := VerticalJoin(S2, V);
V2 := VerticalJoin(S1, V1);
T1 := Matrix(4*n+3, 1, c1);
T2 := Matrix(4*n+3, 1, c2);
T3 := Matrix(4*n+3, 1, c3);
V3 := HorizontalJoin(T3, V2);
V4 := HorizontalJoin(T2, V3);
H := HorizontalJoin(T1, V4);
M := AdjoinBorder(H);
M1 := M - ZeroToOne(M);

return M1;
end function;

KimuraMatrices := function(G);
n := Order(G);
a := n/2-1; //These are the parameters given
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b := n/2; //in the construction.
E := [];
F := [];
A := KimuraComponentMatrices(a, G);
B := KimuraComponentMatrices(b, G);
p := #A;
q := #B;
J := [2*n-1];
for i in [2..n] do;

J := Append(J, n-2);
end for;
I := Circulant(J);
for i in [1..p] do;

for j in [1..q] do;
for k in [j..q] do;

for l in [k..q] do;
if A[i]*Transpose(A[i]) + B[j]*Transpose(B[j]) +
B[k]*Transpose(B[k]) + B[l]*Transpose(B[l]) eq I then;

E := Append(E, [A[i], B[j], B[k], B[l]]);
end if;

end for;
end for;

end for;
end for;
e := #E;
for i in [1..e] do;

F:= Append(F, KimuraStructure(E[i,1], E[i,2], E[i,3], E[i,4]));
end for;

return F;
end function;

B.2 TPP construction

The main function here is TPPMatrix, which takes as its arguments a pair of twin prime
powers. It generates the Galois fields for each of these prime powers. Then for each field,
it forms an elementary Abelian group isomorphic to the additive group of the field, and
creates an isomorphism between this and the respective additive group. The group G
is formed from the direct sum of the two elementary Abelian groups. This is necessary
as Magma does not allow any such operations on subgroups of a finite field. Quadratic
residues and non-residues are determined in each field, using the functions Squares
and NonSquares, and mapped into G using the isomorphisms mentioned previously and
canonical inclusion maps. As per the construction, we form the Hadamard difference
set as a series of products of elements from the two subgroups. We then iterate over a
multiplication table of the group, in list form, to create the core of the Hadamard matrix.
The function AdjoinBorder adds a row and column of 1’s, producing a Hadamard
matrix, as required by the construction.
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AdjoinBorder := function(M);
n := NumberOfRows(M);
a := [];
b := [1];
for i in [1..n] do;

a := Append(a, 1);
b := Append(b, 1);

end for;
a1 := Matrix(1, n, a);
b1 := Matrix(n+1, 1, b);
M1 := VerticalJoin(a1, M);
M2 := HorizontalJoin(b1, M1);

return M2;
end function;

Squares:= function(GF);
A := [];
for i in GF do;

if IsZero(i) eq false then;
if IsSquare(i) eq true then;

A := Append(A, i);
end if;

end if;
end for;

return A;
end function;

NonSquares := function(GF);
A := [];
for i in GF do;

if IsSquare(i) eq false then;
A := Append(A, i);

end if;
end for;

return A;
end function;

AppendSum := function(X, I, J);
for i in I do;

for j in J do;
X := Append(X, i+j);

end for;
end for;

return X;
end function;

TPPMatrix := function(p,q);
GFp := GF(p);
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GFq := GF(q);
p1 := Factorization(p)[1,1]; //The characteristic of GFp
q1 := Factorization(q)[1,1];
Ap, phi := AdditiveGroup(GFp);
Aq, psi := AdditiveGroup(GFq);
Phi := Inverse(phi); // A map from (GFp, +) to GFp
Psi := Inverse(psi);

G := DirectSum(Ap, Aq); // The group over which we develop the H-matrix
Gp := SylowSubgroup(G, p1); //A subgroup isomorphic to GFp
Gq := SylowSubgroup(G, q1);
a, alpha := IsIsomorphic(Ap, Gp);
b, beta := IsIsomorphic(Aq, Gq);

Sp := Squares(GFp);
Spi := Phi(Sp); //We coerce the squares into (GFp, +)
Spii := alpha(Spi); //We coerce the squares into a subgroup of G
NSp := NonSquares(GFp);
NSpi := Phi(NSp);
NSpii := alpha(NSpi); //We coerce the non squares into a subgroup of G

Sq := Squares(GFq);
Sqi := Psi(Sq);
Sqii := beta(Sqi);
NSq := NonSquares(GFq);
NSqi := Psi(NSq);
NSqii := beta(NSqi);

I := [];
J := [];
for i in Spii do;

I := Append(I, G!i); // We coerce the squares into G itself
end for;
for i in Sqii do;

J := Append(J, G!i);
end for;

K := [];
L := [];
for i in NSpii do;

K := Append(K, i); //We coerce the non squares into G itself
end for;
for i in NSqii do;

L := Append(L, i);
end for;

X := []; //We form the list of elements described in the construction
X := AppendSum(X, I, J);
X := AppendSum(X, K, L);
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for i in Gp do;
X := Append(X, i);

end for;

Z := [];
for i in G do;

for j in G do; //We iterate over a Cayley table of G
if i+j in X then; // to form the required matrix

Z := Append(Z, 1);
else;

Z := Append(Z, -1);
end if;

end for;
end for;

TPPcore := Matrix(p*q, p*q, Z);
TPPmatrix := AdjoinBorder(TPPcore); //We adjoin a border of +1’s
return TPPmatrix;

end function;
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