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Motivation

Our goal is to design an algorithm that automatically constructs
layer-resolving meshes for differential equations whose solutions
exhibit layer-type phenomena, without a priori knowledge of the
location of layers. Solutions computed on these meshes should be
robust for any layer width.
The main challenges to be addressed are

1. how to estimate errors in the computed solution and quantify
them locally to drive the mesh adaption algorithm, and

2. how to solve the non-linear adaptivity problem.

Today I’ll mainly talk about a method to solve the
non-linear adaptivity problem.
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Burgers’ equation

Our model non-linear one-dimensional time-dependent problem is
Burgers’ equation,

ut = εuxx −
(

u2

2

)
x
, for x ∈ (0,1), t > 0, (1a)

subject to the boundary conditions,

u(0, t) = u(1, t) = 0, (1b)

and the initial conditions,

u(x ,0) = sin(2πx) +
1
2

sin(πx). (1c)

When ε > 0 is small the solution is initially smooth, but a shock
develops over time.
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Solution to model example, ε = 10−4
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Numerical method

We use a standard Galerkin finite element method (FEM) to compute
our numerical solutions to (1). Let V be the finite dimensional
subspace of H1

0 (Ω) made up of the piecewise linear functions on a
mesh {0 = x0 < x1 < · · · < xN = 1}.

The weak form of (1) is: find u ∈ V such that

F (u, v) = 0 ∀v ∈ V , (2)

where
F (u, v) =

∫
Ω

εu′v ′ + (ut + uu′)vdx . (3)

In the following example we use backward difference approximation
to discretise the time derivative and implement the method in
FEniCS [Langtangen and Logg, 2016], a Python based system for
the automatic solution of PDEs.
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FEniCS code

Extract of python code to implement the method
# Create mesh , de f ine f u n c t i o n space and i n i t i a l s o l u t i o n
mesh = Uni t In te rva lMesh (N)
V = FunctionSpace (mesh , "P" , 1)
u0 = i n t e r p o l a t e ( u_0 ,V)

# Def ine t e s t and t r i a l f u n c t i o n
v = TestFunct ion (V)
u = Funct ion (V)

# Assign the boundary c o nd i t i o n
bc = D i r i ch le tBC (V, g , " on_boundary " )

wh i le t <= T :
# Def ine weak form
F = tau∗eps i l on∗dot ( u . dx ( 0 ) , v . dx ( 0 ) )∗dx \

+ tau∗u∗u . dx ( 0 )∗v∗dx \
+ u∗v∗dx \
− u0∗v∗dx

solve (F == 0 , u , bc , solver_parameters ={ " newton_solver " : { "
r e l a t i v e _ t o l e r a n c e " : 1e−9, " abso lu te_ to le rance " : 1e−9}})

u0 . assign ( u )
t +=tau
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Layer-resolving meshes

a priori meshes: generated before the problem is solved, usually
using specific information about solution: the location of
layers and their width (e.g., Shishkin and Bakhvalov
meshes).

a posteriori meshes: generated using information gained by solving
the problem on an initial mesh and then refining the
mesh. Methods to refine the mesh to better resolve
regions of interest, e.g., where layers occur, include:

1. h-refinement: reduce the local mesh width (h) in
regions where large errors are detected.

2. r -refinement: mesh points are relocated to regions
where large errors are detected, but the total
number of points is unchanged.

Our focus is on r -refinement.
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Mesh generating function

Moving Mesh PDE (MMPDE) [Huang and Russell, 2011]:

The mesh generating function is obtained by integrating a parabolic
differential equation, such as the heat equation,

xt =
1
ργ

(ρxξ)ξ , ξ ∈ (0,1),

with x(0, t) = 0, x(1, t) = 1 and x(ξ,0) = ξ.

(4)

Here the function ρ(x(ξ, t), t) indicates where the mesh should be
fine/coarse, and the constant γ controls the speed of the movement.
To implement this numerically we solve (4) in its weak form,∫

Ωc

(ρxξvξ + ργxtv)dξ = 0, (5)

on the mesh {ξi}.
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Mesh density function

The mesh density function ρ is an arbitrary, strictly positive function
defined on Ω that is used to indicate where a mesh should be
fine/coarse.
Often ρ is based on a measurement of the error in the solution, or on
one of its derivatives.

The resulting mesh should be denser in regions
where the value of ρ is larger.

This can be understood as a coordinate transformation from the
computational domain Ωc with mesh points ξi = i/N (uniform mesh)
to the physical domain Ω with mesh points xi .
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Typical solution on Ωc and Ω

Solution to (1) with ε = 10−4 at time t = 0.25 on Ωc and Ω
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Mesh adaption using a MMPDE

Steps to generate an adapted mesh using an MMPDE
1. compute the numerical solution of (1) on an initial (uniform)

mesh,
2. calculate the mesh density function ρ on each mesh interval,
3. compute the numerical solution to the MMPDE (4),
4. generate a new mesh, using the solution to (4),
5. compute the numerical solution of (1) on the new mesh, and
6. repeat steps 2 – 5 until a stopping criterion is achieved.
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Why the heat equation is appropriate

Examples of two choices of ρ
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Why the heat equation is appropriate

1. Heat conducts monotonically through an insulated bar:
=⇒ mesh tangling won’t happen.

2. Changes in temperature will be small for small changes in
distance:
=⇒ reduces the chance of mesh starvation.
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Solution to (1), uniform mesh, ε = 10−4

N = 40 N = 5000

Róisín Hill & Niall Madden | Adapted meshes Burgers’



14

Solution to (1), adapted mesh, ε = 10−4

N = 40
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Solution and mesh movement
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Conclusion

1. Numerical solutions computed on uniform meshes need a large
number of mesh points to resolve the interior layer region in
Burgers’ equation.

2. Specially fitted a priori meshes need to be able to track the layer,
making them unsuitable.

3. We can construct suitable a posteriori meshes using an MMPDE
which will resolve the layer region using significantly less points.
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Future work

1. Investigate the suitability of other MMPDEs.

2. Explore different types of error measurements.

3. Look at other time integration methods.

4. Extend this approach to convection diffusion problems,
particularly with a constricted flow.
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Thank you for listening, any questions!
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