Global transitions of multistable networks via pinning control: a comparison among control strategies

Roberto Galizia

National University of Ireland Galway r.galizia1@nuigalway.ie

February 14, 2019

Multistable Network

Consider the network

$$\dot{x}_i = -x_i^3 + bx_i + \sigma \sum_j a_{i,j}(x_j - x_i), \quad i = 1, ..., N.$$
 (1)

 $a_{i,j}$ are the entries of the adjacency matrix, σ is the coupling strength.

Multistable Network

Consider the network

$$\dot{x}_i = -x_i^3 + bx_i + \sigma \sum_j a_{i,j}(x_j - x_i), \quad i = 1, ..., N.$$
 (1)

 $a_{i,j}$ are the entries of the adjacency matrix, σ is the coupling strength.

If b > 0 and $\sigma > 0$ then two synchronous stable states exist:

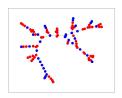
$$x_i = \sqrt{b} \, \forall i \qquad x_i = -\sqrt{b} \, \forall i$$
 (2)

exist.

Multistable Network

Consider the network

$$\dot{x}_i = -x_i^3 + bx_i + \sigma \sum_j a_{i,j}(x_j - x_i), \quad i = 1, ..., N.$$
 (1)


 $a_{i,j}$ are the entries of the adjacency matrix, σ is the coupling strength.

If b > 0 and $\sigma > 0$ then two synchronous stable states exist:

$$x_i = \sqrt{b} \, \forall i \qquad x_i = -\sqrt{b} \, \forall i$$
 (2)

exist.

Controlled system:

$$\dot{x}_i = -x_i^3 + bx_i + \sigma \sum_i a_{i,j}(x_j - x_i) + u_i, \quad i = 1, \dots, N.$$
 (3)

Controlled system:

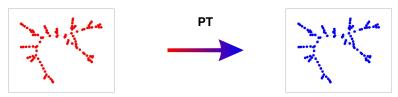
$$\dot{x}_i = -x_i^3 + bx_i + \sigma \sum_j a_{i,j}(x_j - x_i) + u_i, \quad i = 1, ..., N.$$
 (3)

We define *Global Transition* a controlled trajectories that drives the network from one synchronous stable state to the other.

Controlled system:

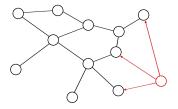
$$\dot{x}_i = -x_i^3 + bx_i + \sigma \sum_j a_{i,j}(x_j - x_i) + u_i, \quad i = 1, \dots, N.$$
 (3)

We define *Global Transition* a controlled trajectories that drives the network from one synchronous stable state to the other.

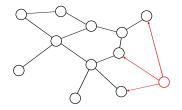


Controlled system:

$$\dot{x}_i = -x_i^3 + bx_i + \sigma \sum_i a_{i,j}(x_j - x_i) + u_i, \quad i = 1, ..., N.$$
 (3)


We define *Global Transition* a controlled trajectories that drives the network from one synchronous stable state to the other.

Aim: Compare prerequisites and performances of different control strategies (i.e. rules for determining the control input $u_i \forall < i$) that trigger a global transition for the network (3).


Pinning control

Control strategies are based on **Pinning Control**, a powerful theory that provides rules for determine controllability of networks.

Pinning control

Control strategies are based on **Pinning Control**, a powerful theory that provides rules for determine controllability of networks.

Which nodes have to be pinned?

Random

- 1) A random uncontrolled node is pinned. Go to 2.
- 2) When the network settles if the transition is not completed go to 1. Otherwise go to 3.
- 3) Global transition has been achieved. Return.

Random

- 1) A random uncontrolled node is pinned. Go to 2.
- 2) When the network settles if the transition is not completed go to 1. Otherwise go to 3.
- 3) Global transition has been achieved. Return.

Highest Degree

- 1) An uncontrolled node with the highest degree is pinned Go to 2.
- 2) When the network settles if the transition is not completed go to 1. Otherwise go to 3.
- 3) Global transition has been achieved. Return.

Random

- 1) A random uncontrolled node is pinned. Go to 2.
- 2) When the network settles if the transition is not completed go to 1. Otherwise go to 3.
- 3) Global transition has been achieved. Return.

Highest Degree

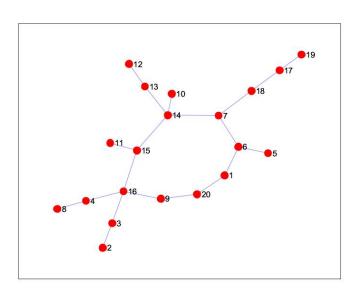
- 1) An uncontrolled node with the highest degree is pinned Go to 2.
- 2) When the network settles if the transition is not completed go to 1. Otherwise go to 3.
- 3) Global transition has been achieved. Return.

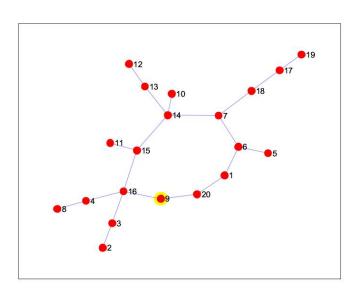
Furthest from Synchronization

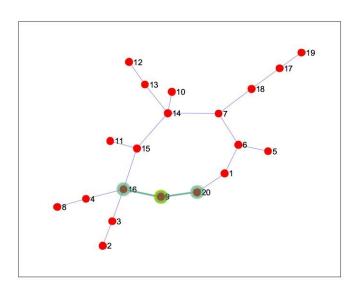
- 1) The first pinned node is selected randomly. Go to 2.
- 2) When the network settles if the transition is not completed go to 3. Otherwise go to 4.
- 3) An uncontrolled node furthest from synchronization is pinned. Go to 2.
- 4) Global transition has been achieved. Return.

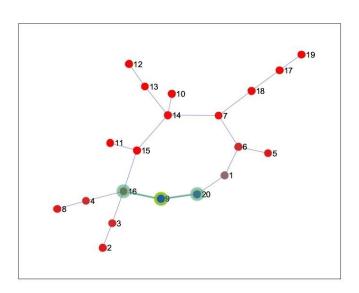
Random

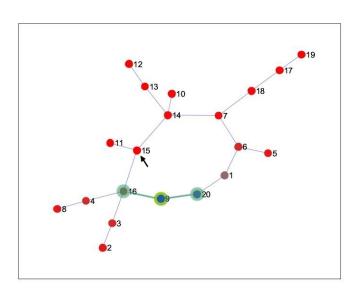
- 1) A random uncontrolled node is pinned. Go to 2.
- 2) When the network settles if the transition is not completed go to 1. Otherwise go to 3.
- 3) Global transition has been achieved. Return.

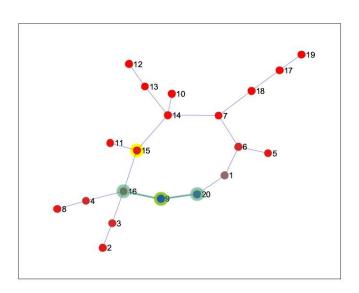

Highest Degree

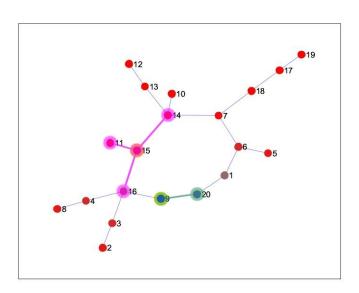

- 1) An uncontrolled node with the highest degree is pinned Go to 2.
- 2) When the network settles if the transition is not completed go to 1. Otherwise go to 3.
- 3) Global transition has been achieved. Return.

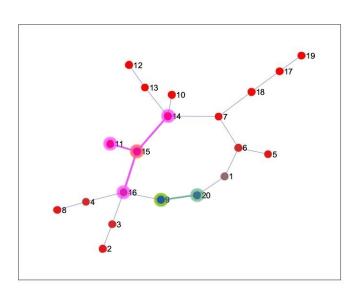

Furthest from Synchronization

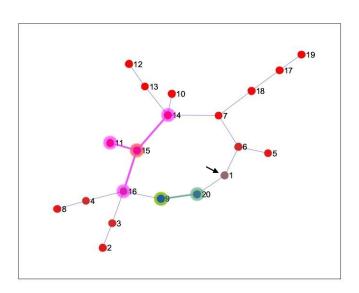

- 1) The first pinned node is selected randomly. Go to 2.
- 2) When the network settles if the transition is not completed go to 3. Otherwise go to 4.
- 3) An uncontrolled node furthest from synchronization is pinned. Go to 2.
- 4) Global transition has been achieved. Return.
- Tree-Spreading Algorithm

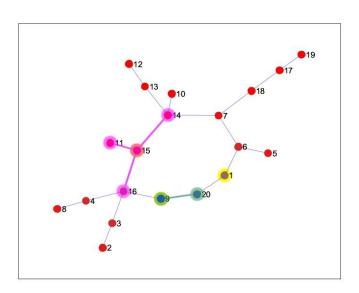


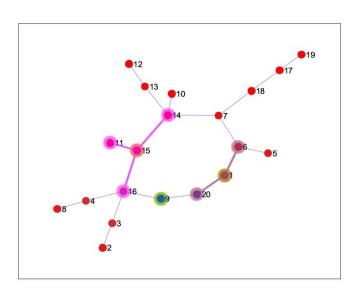


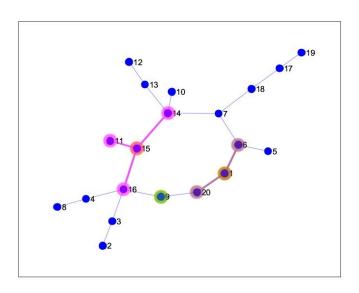


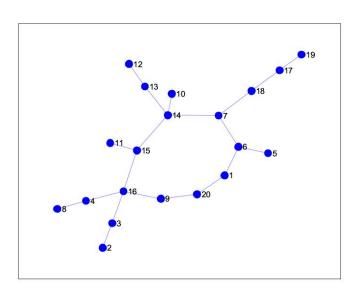


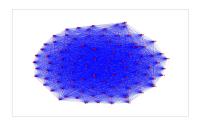


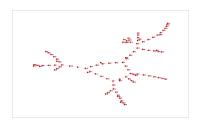











Topologies

We compare 4 topologies with 100 nodes:

Watts-Strogatz Network - Random

Watts-Strogatz Network - Highest

Watts-Strogatz Network - Furthest

Watts-Strogatz Network - Tree-spreading

Results

STRATEGY	Centralized	Topology based
Random	Yes	No
Highest	Yes	Yes
Furthest	Yes	No
TreeSpreading	No	No

	Line		Ring		Complete		WattsStrogatz	
	t	pn	t	pn	t	pn	t	pn
Random	2756	38	3238	26	20	2	1640	61
Highest	2893	25	2731	21	20	2	1334	20
Furthest	626	11	2827	12	20	2	1632	17
TreeSpreading	8979	47	4858	46	20	2	1176	45

pn: pinned nodes

The End