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Motivation

Figure: Smooth linearisation.
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Transversal Crossings

Figure: A nonsmooth dynamical system.
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Constructing the Zero-Time Discontinuity Mapping

Figure: Constructing the ZDM.
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Constructing the Zero-Time Discontinuity Mapping

Figure: Constructing the ZDM.
We can now write

φ(x0, T ) = φ2(D(φ1(x0, tref)), T − tref),

where the ZDM

D(x) = φ2(j(φ1(x, t(x))),−t(x))

takes a point in a neighbourhood of xin and maps it to a point in a
neighbourhood of xout.
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Grazing Interactions

Figure: A grazing interaction in a hybrid system.
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Grazing ZDM

Figure: Constructing the grazing ZDM.
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Grazing ZDM
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Types of Noise

Figure: A rugged boundary.

Figure: An oscillating boundary.

Rugged boundaries are suitable for
modelling situations where the
small-scale structure of the boundary
is uncertain.

Σ̃ = {x : h̃(x, t) = 0},
h̃(x, t) = h(x, t)− χ(x).

Oscillating boundaries are suitable for
modelling situations where the
boundary has small uncertain
oscillations about a known mean.

Σ̃ = {x : h̃(x, t) = 0},
h̃(x, t) = h(x, t)− P (t).
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Noise Requirements

In order for us to carry out our analysis we require that the stochastic
processes χ(x) and P (t) describing the stochastic components of the
discontinuity boundaries

• are at least once differentiable,

• are of small amplitude,

• are mean reverting,

• have mean 0.
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Transversal SZDM
For transversal crossings we base our approximation on linearisation about
the corresponding trajectory in the deterministic system, taking

∆tref = P/ (hx(xin, tref)fin + ht(xin, tref)− V) ,

where P = χ(xin), V = χx(xin)fin in the rugged boundary case and
P = P (tref), V = V (tref) in the case of an oscillating boundary.
We then find that

φ(x0, T ) − φ(xref
0 , T ) ≈

φx(xref
0 , T )(x0 − xref

0 ) + φ2,x(xout, T − tref)N (xin, tref)∆tref

+φ2,x(xout, T − tref)J (xin, tref),

where

φx(xref
0 , T ) = φ2,x(xout, T − tref)D̃x(xin)φ1,x(x̂in, tref),

N (xin, tref) = jx(xin, tref)fin + jt(xin, tref))− fout,

and
J (xin, tref) = j̃(xin|P = 0)− j(xin).
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Example - Boucing a ball on a rugged oscillating floor.

a) b)

Figure: Heatmaps of the distribution of the maximum height attained by the
bouncing ball and its corresponding horizontal position after one bounce on the
rugged surface given by a) full simulation of the system b) linear approximation.
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SZDMs for Higher-Order Discontinuities

When the vector field is Cn−1 for n ≥ 1 but has higher-order
discontinuities the are are no linear effects so one must consider higher
order approximations to capture the effects of noise and the crossing of a
discontinuity boundary.

In this case we approximate the SZDM as

D̃(x) ≈ x+
g(x∗)

(n+ 1)hx(xin)fin

(
h(x)n+1 −

(
Phx(xin)fin − h(x)V

hx(xin)fin − V

)n+1
)
,

where

g(x) =
∞∑
j=0

hj

(j + n)!

∂j+n

∂hj+n
(f2 − f1)|h=0,

P = χ(xin), V = χx(xin)fin in the rugged boundary case and P = P (tref),
V = V (tref) in the case of an oscillating boundary.
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Example - The Chua Circuit

Figure: The Chua circuit.

Figure: V-I characteristic.

Figure: Coexisting attractors in the Chua circuit.
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Example - The Chua Circuit

a)

b)

Figure: The Chua circuit with oscillating boundaries. The results of full
numerical-simulation are shown in a) and the approximations obtained by using
the SZDM in place of boundary interactions are shown in b).
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Grazing SZDM

In the case of a grazing interaction we cannot linearise in the same way as
we considered in the case of a transversal crossing. Instead we consider
second-order approximations about the point and time where the
deterministic component of h̃ (which we denote h) reaches its minimum
value.

We find that D̃(x) = x + ∆̃x

∆̃x ≈

√(
−hx(x∗)x + P + V hxf

(hxxf + hxfx)f
+

V2
2(Ag −A)

)
2(Ag −A)ξ,

where P = χ, V = χxf , A = (χxxf + χxfx)f in the rugged boundary case
and P = P , V = V , A = A in the case of an oscillating boundary.
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Example - A grazing impact oscillator

Figure: Schematic of a one-degree-of-freedom impact oscillator.

Figure: A sample grazing orbit.
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Example - A grazing impact oscillator

a)
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b)

c) d)

Figure: Histograms of the pdf of the maximum amplitude attained by the impact
oscillator by a), c), full simulation of the system and b), d) approximation using
the SZDM. a), b) ε = 0, c), d) ε = 0.00005.
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