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Chua’s Circuit

Figure: Chua’s Circuit

Figure: The V − I
characteristic of Chua’s
Diode.

Created with the aim of being the simplest
autonomous circuit capable of generating
chaos [Mat84, Chu92].

First physical system for which the presence
of chaos was shown experimentally,
numerically and mathematically [CKM86].

Contains four linear elements and one
nonlinear resistor known as a Chua’s diode.

Easily and cheaply constructed using
stadard electronic components [Ken92].
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System equations
The system equations of Chua’s circuit are

dV1
dt

=
1

C1
(G(V2 − V1)− f(V1)),

dV2
dt

=
1

C2
(G(V1 − V2) + I3)

dI3
dt

= − 1

L
(V2 +R0I3), (1)

where

G =
1

R
and f(V1) = GbV1 +

1

2
(Ga −Gb)(|V1 + E| − |V1 − E|). (2)

Nondimensionalising gives

dx

dt′
= α(y − x− g(x)),

dy

dt′
= x− y + z,

dz

dt′
= −(βy + γz), (3)

where

g(x) = m1x+
1

2
(m0 −m1)(|x+ 1| − |x− 1|). (4)
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Complicated Dynamics

Figure: A Zoo of Attractors Produced by Chua’s Circuit [BP08]
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Hidden and Self-Excited Attractors

Hidden attractors: have basins of attraction that do not intersect
with small neighborhoods of equilibria.

Self-excited attractors: Can be found by following trajectories from
the neighbourhoods of unstable equilibria until the end of a transient
process [LK13].

Most classical attractors are self-excited attractors and easily found. On
the other hand the search for hidden attractors can be difficult. The first
chaotic hidden attractor was found in Chua’s circuit in 2010 [KLV10].
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Noisy Saltation
In order to deal the with stochastically moving boundaries when linearising
we generalise the concept of a saltation matrix, the matrix that allows us
to deal with nonsmoothness when linearising deterministic systems.
We extend the state space, such that the state vector is x̃ = (x, t,∆tref)

T .
Here ∆tref is the random quantity which represents the difference in the
hitting time of the reference trajectory in the stochastic system compared
to the corresponding deterministic system.
We calculate the saltation matrix in this extended state space before
projecting back. As a result, in the original state space we find that

φ(x0, t)−φ(x̂ref
0 , t) ≈ φx(x̂ref

0 , t)(x0−x̂ref
0 )+φ2,x(x̂out, t−t̂ref)(f̂in−f̂out)∆tref,

(5)
where

φx(x̂ref
0 , t) = φ2,x(x̂out, t− t̂ref)D∗x(x̂in)φ1,x(x̂in, t̂ref) (6)

and

D∗x(x̂in) = I +
(f̂out − f̂in)ĥx(x̂in)

ĥx(x̂in)f̂in − v̂(t̂ref)− V (t̂ref|P (t̂ref) = 0)
(7)
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A Discontinuous Model

We note that in the case of continuous piecewise-smooth systems that
f̂in = f̂out and so (5) collapses to

φ(x0, t)− φ(x̂ref
0 , t) ≈ φ2,x(x̂out, t− t̂ref)φ1,x(x̂in, t̂ref)(x0 − x̂ref

0 ) (8)

meaning that neither the noise nor the nonsmoothness has a linear effect.
As a result we will consider an discontinuous model of Chua’s circuit
where the function describing the V − I characteristic of Chua’s diode
given in (4) is replaced by a discontinuous one

g(x) =


m1x+m1 −m0 if x < −1,
(m0 − ε)x if |x| ≤ 1,
m1x+m0 −m1 if x > 1.

(9)
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A Discontinuous Model
Provided the magnitude of ε is not too large the hidden attractors shown
in Figure 4 continue to exist and can be easily found by numerical
continuation.
They are destroyed in saddle-bifurcations if the magnitude of ε grows too
large.

Figure: Bifurcation diagram showing the saddle bifurcations of C− as the
magnitude of ε grows. Here α = 8.4, β = 12, γ = −0.005, m0 = −1.2 and
m1 = 0.145.
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Steady-State Distributions
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Figure: Steady state distribution of orbit
errors on the discontinuity boundary D−

for trajectories with initial condition on
the periodic orbit C−.
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Figure: Convergence of σz to its steady
state value for the distribution shown on
the left.
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The Next Steps

Figure: 5 standard deviation ellipses for
increasing values of noise amplitude.

Use our method to predict
changes in qualitative
behaviour.

I Destruction of attractors
I Merging of attractors
I Switching/Flickering
I Multi/Monostability

Interaction of linearised
distributions with features of the
deterministic system.

Generalise our method
I Second order terms for continuous systems
I Non-identity boundary mappings
I Dealing with non-transversal intersections
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