
Alternating Signed Bipartite Graph Colourings

Cian O’Brien
Rachel Quinlan and Kevin Jennings

Postgraduate Modelling Research Group
National University of Ireland, Galway

c.obrien40@nuigalway.ie

April 12th, 2019

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 1 / 15

Alternating Signed Bipartite Graphs

An Alternating Signed Bipartite Graph (ASBG) is a graphical
representation of Alternating Sign Matrices introduced by Richard Brualdi
et al. (2013) [1].

A bipartite graph G with edges
coloured red and blue is an ASBG
if there exists an ordering of the
vertices in each part of the
bipartition of G for which the
edges incident with any vertex
alternate in colour, starting and
ending with blue.

We say that G is configurable.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 2 / 15

Alternating Signed Bipartite Graphs

An Alternating Signed Bipartite Graph (ASBG) is a graphical
representation of Alternating Sign Matrices introduced by Richard Brualdi
et al. (2013) [1].

A bipartite graph G with edges
coloured red and blue is an ASBG
if there exists an ordering of the
vertices in each part of the
bipartition of G for which the
edges incident with any vertex
alternate in colour, starting and
ending with blue.

We say that G is configurable.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 2 / 15

Alternating Signed Bipartite Graphs

An Alternating Signed Bipartite Graph (ASBG) is a graphical
representation of Alternating Sign Matrices introduced by Richard Brualdi
et al. (2013) [1].

A bipartite graph G with edges
coloured red and blue is an ASBG
if there exists an ordering of the
vertices in each part of the
bipartition of G for which the
edges incident with any vertex
alternate in colour, starting and
ending with blue.

We say that G is configurable.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 2 / 15

ASBG-Colourings

Question: Given a graph G without coloured edges, how can we tell if its
edges have a red/blue colouring c such that G c is an ASBG?

We break the problem into two steps:

We say a graph G has a feasible colouring c of its edges if
degB(v)− degR(v) = 1,∀v ∈ V (G).

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 3 / 15

ASBG-Colourings

Question: Given a graph G without coloured edges, how can we tell if its
edges have a red/blue colouring c such that G c is an ASBG?

We break the problem into two steps:

We say a graph G has a feasible colouring c of its edges if
degB(v)− degR(v) = 1,∀v ∈ V (G).

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 3 / 15

ASBG-Colourings

Question: Given a graph G without coloured edges, how can we tell if its
edges have a red/blue colouring c such that G c is an ASBG?

We break the problem into two steps:

We say a graph G has a feasible colouring c of its edges if
degB(v)− degR(v) = 1,∀v ∈ V (G).

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 3 / 15

ASBG-Colourings

Question: Given a graph G without coloured edges, how can we tell if its
edges have a red/blue colouring c such that G c is an ASBG?

We break the problem into two steps:

We say a graph G has a feasible colouring c of its edges if
degB(v)− degR(v) = 1,∀v ∈ V (G).

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 3 / 15

ASBG-Colourings

Question: Given a graph G without coloured edges, how can we tell if its
edges have a red/blue colouring c such that G c is an ASBG?

We break the problem into two steps:

We say a graph G has a feasible colouring c of its edges if
degB(v)− degR(v) = 1,∀v ∈ V (G).

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 3 / 15

Leaves and Twigs

A leaf is a vertex of degree 1.

A twig is a configuration of three vertices; two leaves which are both
attached to a third vertex of degree 3.

A leaf-twig configuration at a vertex v is a leaf and a twig both
attached to the same vertex v .

We will refer to the following graph as the trivial asbg:

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 4 / 15

Leaves and Twigs

A leaf is a vertex of degree 1.
A twig is a configuration of three vertices; two leaves which are both
attached to a third vertex of degree 3.

A leaf-twig configuration at a vertex v is a leaf and a twig both
attached to the same vertex v .

We will refer to the following graph as the trivial asbg:

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 4 / 15

Leaves and Twigs

A leaf is a vertex of degree 1.
A twig is a configuration of three vertices; two leaves which are both
attached to a third vertex of degree 3.

A leaf-twig configuration at a vertex v is a leaf and a twig both
attached to the same vertex v .

We will refer to the following graph as the trivial asbg:

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 4 / 15

Leaves and Twigs

A leaf is a vertex of degree 1.
A twig is a configuration of three vertices; two leaves which are both
attached to a third vertex of degree 3.

A leaf-twig configuration at a vertex v is a leaf and a twig both
attached to the same vertex v .

We will refer to the following graph as the trivial asbg:

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 4 / 15

Leaves and Twigs

A leaf is a vertex of degree 1.
A twig is a configuration of three vertices; two leaves which are both
attached to a third vertex of degree 3.

A leaf-twig configuration at a vertex v is a leaf and a twig both
attached to the same vertex v .

We will refer to the following graph as the trivial asbg:

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 4 / 15

Leaves and Twigs

A leaf is a vertex of degree 1.
A twig is a configuration of three vertices; two leaves which are both
attached to a third vertex of degree 3.

A leaf-twig configuration at a vertex v is a leaf and a twig both
attached to the same vertex v .

We will refer to the following graph as the trivial asbg:

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 4 / 15

Leaves and Twigs

A leaf is a vertex of degree 1.
A twig is a configuration of three vertices; two leaves which are both
attached to a third vertex of degree 3.

A leaf-twig configuration at a vertex v is a leaf and a twig both
attached to the same vertex v .

We will refer to the following graph as the trivial asbg:

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 4 / 15

Leaves and Twigs

A leaf is a vertex of degree 1.
A twig is a configuration of three vertices; two leaves which are both
attached to a third vertex of degree 3.

A leaf-twig configuration at a vertex v is a leaf and a twig both
attached to the same vertex v .

We will refer to the following graph as the trivial asbg:

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 4 / 15

Trees

Theorem

A tree T has a feasible colouring if and only if leaf-twig configurations can
be removed until the trivial ASBG remains.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 5 / 15

Trees

Theorem

A tree T has a feasible colouring if and only if leaf-twig configurations can
be removed until the trivial ASBG remains.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 5 / 15

Trees

Theorem

A tree T has a feasible colouring if and only if leaf-twig configurations can
be removed until the trivial ASBG remains.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 5 / 15

Trees

Theorem

A tree T has a feasible colouring if and only if leaf-twig configurations can
be removed until the trivial ASBG remains.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 5 / 15

Trees

Theorem

A tree T has a feasible colouring if and only if leaf-twig configurations can
be removed until the trivial ASBG remains.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 5 / 15

Trees

Theorem

A tree T has a feasible colouring if and only if leaf-twig configurations can
be removed until the trivial ASBG remains.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 5 / 15

Trees

Theorem

A tree T has a feasible colouring if and only if leaf-twig configurations can
be removed until the trivial ASBG remains.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 5 / 15

Trees

Theorem

A tree T has a feasible colouring if and only if leaf-twig configurations can
be removed until the trivial ASBG remains.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 5 / 15

Trees

Theorem

A tree T has a feasible colouring if and only if leaf-twig configurations can
be removed until the trivial ASBG remains.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 5 / 15

Trees

Theorem

A tree T has a feasible colouring if and only if leaf-twig configurations can
be removed until the trivial ASBG remains.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 5 / 15

Unicyclic Graphs

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 6 / 15

Unicyclic Graphs

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 6 / 15

Unicyclic Graphs

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 6 / 15

Leaf, Twig, and Triple-Type Vertices

There are three types of vertices that can appear in the cycle of a unicyclic
graph: leaf-type, twig-type, and triple-type:

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 7 / 15

Leaf, Twig, and Triple-Type Vertices

There are three types of vertices that can appear in the cycle of a unicyclic
graph: leaf-type, twig-type, and triple-type:

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 7 / 15

Leaf, Twig, and Triple-Type Vertices

There are three types of vertices that can appear in the cycle of a unicyclic
graph: leaf-type, twig-type, and triple-type:

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 7 / 15

Leaf, Twig, and Triple-Type Vertices

There are three types of vertices that can appear in the cycle of a unicyclic
graph: leaf-type, twig-type, and triple-type:

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 7 / 15

Leaf, Twig, and Triple-Type Vertices

There are three types of vertices that can appear in the cycle of a unicyclic
graph: leaf-type, twig-type, and triple-type:

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 7 / 15

Unicyclic Graphs

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 8 / 15

Unicyclic Graphs

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 8 / 15

Unicyclic Graphs

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 8 / 15

Unicyclic Graphs

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 8 / 15

Unicyclic Graphs

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 8 / 15

Unicyclic Graphs

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 8 / 15

Unicyclic Graphs

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 8 / 15

Unicyclic Graphs

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 8 / 15

Unicyclic Graphs

Theorem

A unicyclic bipartite graph G has a feasible colouring if and only if:

Every vertex of the cycle of G is either leaf-type, twig-type, or
triple-type;

Any twig/triple-type vertex must be an odd (even) distance away from
the next twig/triple-type vertex if it is of the same (opposite) type.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 9 / 15

Unicyclic Graphs

Theorem

A unicyclic bipartite graph G has a feasible colouring if and only if:

Every vertex of the cycle of G is either leaf-type, twig-type, or
triple-type;

Any twig/triple-type vertex must be an odd (even) distance away from
the next twig/triple-type vertex if it is of the same (opposite) type.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 9 / 15

Unicyclic Graphs

Theorem

A unicyclic bipartite graph G has a feasible colouring if and only if:

Every vertex of the cycle of G is either leaf-type, twig-type, or
triple-type;

Any twig/triple-type vertex must be an odd (even) distance away from
the next twig/triple-type vertex if it is of the same (opposite) type.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 9 / 15

Unicyclic Graphs

Theorem

A unicyclic bipartite graph G has a feasible colouring if and only if:

Every vertex of the cycle of G is either leaf-type, twig-type, or
triple-type;

Any twig/triple-type vertex must be an odd (even) distance away from
the next twig/triple-type vertex if it is of the same (opposite) type.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 9 / 15

Unicyclic Graphs

Theorem

A unicyclic bipartite graph G has a feasible colouring if and only if:

Every vertex of the cycle of G is either leaf-type, twig-type, or
triple-type;

Any twig/triple-type vertex must be an odd (even) distance away from
the next twig/triple-type vertex if it is of the same (opposite) type.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 9 / 15

Unicyclic Graphs

Theorem

A unicyclic bipartite graph G has a feasible colouring if and only if:

Every vertex of the cycle of G is either leaf-type, twig-type, or
triple-type;

Any twig/triple-type vertex must be an odd (even) distance away from
the next twig/triple-type vertex if it is of the same (opposite) type.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 9 / 15

Skeletons and Junctions

We define the skeleton of a graph Sk(G) to be the graph that remains
after all leaves have been repeatedly removed.

As well as leaf, twig, and triple-type vertices, we define one other type
of vertex: a junction, which is a vertex with degSk(G) > 2.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 10 / 15

Skeletons and Junctions

We define the skeleton of a graph Sk(G) to be the graph that remains
after all leaves have been repeatedly removed.

As well as leaf, twig, and triple-type vertices, we define one other type
of vertex: a junction, which is a vertex with degSk(G) > 2.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 10 / 15

Skeletons and Junctions

We define the skeleton of a graph Sk(G) to be the graph that remains
after all leaves have been repeatedly removed.

As well as leaf, twig, and triple-type vertices, we define one other type
of vertex: a junction, which is a vertex with degSk(G) > 2.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 10 / 15

Skeletons and Junctions

We define the skeleton of a graph Sk(G) to be the graph that remains
after all leaves have been repeatedly removed.

As well as leaf, twig, and triple-type vertices, we define one other type
of vertex: a junction, which is a vertex with degSk(G) > 2.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 10 / 15

Skeletons and Junctions

We define the skeleton of a graph Sk(G) to be the graph that remains
after all leaves have been repeatedly removed.

As well as leaf, twig, and triple-type vertices, we define one other type
of vertex: a junction, which is a vertex with degSk(G) > 2.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 10 / 15

Surplus Weights

We have an algorithm that tries to assign values of 1 or −1 to all edges
incident with each junction in a graph:

We don’t want the algorithm to make any choices - this can lead to
surplus weights.

We need to figure out if the surplus weights are redistributable.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 11 / 15

Surplus Weights

We have an algorithm that tries to assign values of 1 or −1 to all edges
incident with each junction in a graph:

We don’t want the algorithm to make any choices - this can lead to
surplus weights.

We need to figure out if the surplus weights are redistributable.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 11 / 15

Surplus Weights

We have an algorithm that tries to assign values of 1 or −1 to all edges
incident with each junction in a graph:

We don’t want the algorithm to make any choices - this can lead to
surplus weights.

We need to figure out if the surplus weights are redistributable.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 11 / 15

Surplus Weights

We have an algorithm that tries to assign values of 1 or −1 to all edges
incident with each junction in a graph:

We don’t want the algorithm to make any choices - this can lead to
surplus weights.

We need to figure out if the surplus weights are redistributable.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 11 / 15

Surplus Weights

We have an algorithm that tries to assign values of 1 or −1 to all edges
incident with each junction in a graph:

We don’t want the algorithm to make any choices - this can lead to
surplus weights.

We need to figure out if the surplus weights are redistributable.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 11 / 15

Surplus Weights

We have an algorithm that tries to assign values of 1 or −1 to all edges
incident with each junction in a graph:

We don’t want the algorithm to make any choices - this can lead to
surplus weights.

We need to figure out if the surplus weights are redistributable.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 11 / 15

Surplus Weights

We have an algorithm that tries to assign values of 1 or −1 to all edges
incident with each junction in a graph:

We don’t want the algorithm to make any choices - this can lead to
surplus weights.

We need to figure out if the surplus weights are redistributable.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 11 / 15

Surplus Weights

We have an algorithm that tries to assign values of 1 or −1 to all edges
incident with each junction in a graph:

We don’t want the algorithm to make any choices - this can lead to
surplus weights.

We need to figure out if the surplus weights are redistributable.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 11 / 15

Surplus Weights

We have an algorithm that tries to assign values of 1 or −1 to all edges
incident with each junction in a graph:

We don’t want the algorithm to make any choices - this can lead to
surplus weights.

We need to figure out if the surplus weights are redistributable.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 11 / 15

Surplus Weights

We have an algorithm that tries to assign values of 1 or −1 to all edges
incident with each junction in a graph:

We don’t want the algorithm to make any choices - this can lead to
surplus weights.

We need to figure out if the surplus weights are redistributable.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 11 / 15

Surplus Weights

We have an algorithm that tries to assign values of 1 or −1 to all edges
incident with each junction in a graph:

We don’t want the algorithm to make any choices - this can lead to
surplus weights.

We need to figure out if the surplus weights are redistributable.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 11 / 15

Redistributability

We can reframe the problem of redistributing surplus weights as finding a
subgraph H of Sk(G) where every vertex of H has some degree dictated
by the surplus weight of that vertex.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 12 / 15

Redistributability

We can reframe the problem of redistributing surplus weights as finding a
subgraph H of Sk(G) where every vertex of H has some degree dictated
by the surplus weight of that vertex.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 12 / 15

Redistributability

We can reframe the problem of redistributing surplus weights as finding a
subgraph H of Sk(G) where every vertex of H has some degree dictated
by the surplus weight of that vertex.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 12 / 15

Redistributability

We can reframe the problem of redistributing surplus weights as finding a
subgraph H of Sk(G) where every vertex of H has some degree dictated
by the surplus weight of that vertex.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 12 / 15

Redistributability

We can reframe the problem of redistributing surplus weights as finding a
subgraph H of Sk(G) where every vertex of H has some degree dictated
by the surplus weight of that vertex.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 12 / 15

Redistributability

We can reframe the problem of redistributing surplus weights as finding a
subgraph H of Sk(G) where every vertex of H has some degree dictated
by the surplus weight of that vertex.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 12 / 15

Redistributability

We can reframe the problem of redistributing surplus weights as finding a
subgraph H of Sk(G) where every vertex of H has some degree dictated
by the surplus weight of that vertex.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 12 / 15

Redistributability

We can reframe the problem of redistributing surplus weights as finding a
subgraph H of Sk(G) where every vertex of H has some degree dictated
by the surplus weight of that vertex.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 12 / 15

Redistributability

We can reframe the problem of redistributing surplus weights as finding a
subgraph H of Sk(G) where every vertex of H has some degree dictated
by the surplus weight of that vertex.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 12 / 15

Redistributability

We can reframe the problem of redistributing surplus weights as finding a
subgraph H of Sk(G) where every vertex of H has some degree dictated
by the surplus weight of that vertex.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 12 / 15

Redistributability

We can reframe the problem of redistributing surplus weights as finding a
subgraph H of Sk(G) where every vertex of H has some degree dictated
by the surplus weight of that vertex.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 12 / 15

Redistributability

We have the following condition for when it is possible to find a subgraph
H of a graph G where the degree of each vertex v is some required value
r(v):

Theorem

Let G be a bipartite graph with bipartition P1 and P2, and let each vertex
v of G be assigned an integer value r(v) in the range 0 to deg(v). Then
G has a subgraph H with degH(v) = r(v) for all vertices v if and only if
every S ⊂ P1 in G satisfies∑

v∈S
r(v) ≤

∑
n∈Γ(S)

min{r(n), |Γ(n) ∩ S |},

where Γ(S) is the set of neighbours of S in G.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 13 / 15

Redistributability

We have the following condition for when it is possible to find a subgraph
H of a graph G where the degree of each vertex v is some required value
r(v):

Theorem

Let G be a bipartite graph with bipartition P1 and P2, and let each vertex
v of G be assigned an integer value r(v) in the range 0 to deg(v). Then
G has a subgraph H with degH(v) = r(v) for all vertices v if and only if
every S ⊂ P1 in G satisfies∑

v∈S
r(v) ≤

∑
n∈Γ(S)

min{r(n), |Γ(n) ∩ S |},

where Γ(S) is the set of neighbours of S in G.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 13 / 15

The General Case

Theorem

A bipartite graph G has a feasible colouring if and only if:

Each vertex in Sk(G) is either leaf-type, twig-type, triple-type, or a
junction which has been assigned a weight of 1 by our algorithm;

Any twig/triple-type vertex must be an odd (even) distance away from
the next twig/triple-type vertex if it is of the same (opposite) type;

All surplus weights in G are redistributable.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 14 / 15

The General Case

Theorem

A bipartite graph G has a feasible colouring if and only if:

Each vertex in Sk(G) is either leaf-type, twig-type, triple-type, or a
junction which has been assigned a weight of 1 by our algorithm;

Any twig/triple-type vertex must be an odd (even) distance away from
the next twig/triple-type vertex if it is of the same (opposite) type;

All surplus weights in G are redistributable.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 14 / 15

The General Case

Theorem

A bipartite graph G has a feasible colouring if and only if:

Each vertex in Sk(G) is either leaf-type, twig-type, triple-type, or a
junction which has been assigned a weight of 1 by our algorithm;

Any twig/triple-type vertex must be an odd (even) distance away from
the next twig/triple-type vertex if it is of the same (opposite) type;

All surplus weights in G are redistributable.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 14 / 15

The General Case

Theorem

A bipartite graph G has a feasible colouring if and only if:

Each vertex in Sk(G) is either leaf-type, twig-type, triple-type, or a
junction which has been assigned a weight of 1 by our algorithm;

Any twig/triple-type vertex must be an odd (even) distance away from
the next twig/triple-type vertex if it is of the same (opposite) type;

All surplus weights in G are redistributable.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 14 / 15

Unique Colourings and Configurability

There are classes of graphs for which all feasible colourings are unique
and configurable.

We define the class of cycle-edge-disjoint graphs to be any graph in
which no pair of cycles contain a common edge.

Theorem

If a cycle-edge-disjoint graph G has a feasible colouring c, then c is the
unique feasible colouring of G and G c is configurable.

Theorem

If a graph G has two distinct feasible colouring c and d, then c and d
differ only by alternating cycle rotations.

We are currently working on conditions for when a coloured graph G c

is configurable in general.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 15 / 15

Unique Colourings and Configurability

There are classes of graphs for which all feasible colourings are unique
and configurable.

We define the class of cycle-edge-disjoint graphs to be any graph in
which no pair of cycles contain a common edge.

Theorem

If a cycle-edge-disjoint graph G has a feasible colouring c, then c is the
unique feasible colouring of G and G c is configurable.

Theorem

If a graph G has two distinct feasible colouring c and d, then c and d
differ only by alternating cycle rotations.

We are currently working on conditions for when a coloured graph G c

is configurable in general.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 15 / 15

Unique Colourings and Configurability

There are classes of graphs for which all feasible colourings are unique
and configurable.

We define the class of cycle-edge-disjoint graphs to be any graph in
which no pair of cycles contain a common edge.

Theorem

If a cycle-edge-disjoint graph G has a feasible colouring c, then c is the
unique feasible colouring of G and G c is configurable.

Theorem

If a graph G has two distinct feasible colouring c and d, then c and d
differ only by alternating cycle rotations.

We are currently working on conditions for when a coloured graph G c

is configurable in general.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 15 / 15

Unique Colourings and Configurability

There are classes of graphs for which all feasible colourings are unique
and configurable.

We define the class of cycle-edge-disjoint graphs to be any graph in
which no pair of cycles contain a common edge.

Theorem

If a cycle-edge-disjoint graph G has a feasible colouring c, then c is the
unique feasible colouring of G and G c is configurable.

Theorem

If a graph G has two distinct feasible colouring c and d, then c and d
differ only by alternating cycle rotations.

We are currently working on conditions for when a coloured graph G c

is configurable in general.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 15 / 15

Unique Colourings and Configurability

There are classes of graphs for which all feasible colourings are unique
and configurable.

We define the class of cycle-edge-disjoint graphs to be any graph in
which no pair of cycles contain a common edge.

Theorem

If a cycle-edge-disjoint graph G has a feasible colouring c, then c is the
unique feasible colouring of G and G c is configurable.

Theorem

If a graph G has two distinct feasible colouring c and d, then c and d
differ only by alternating cycle rotations.

We are currently working on conditions for when a coloured graph G c

is configurable in general.

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 15 / 15

Richard A. Brualdi, Kathleen P. Kiernan, Seth A. Meyer, Michael W.
Schroeder , Patterns of Alternating Sign Matrices, Department of
Mathematics University of Wisconsin, 2011

Cian O’Brien (NUIG) ASBG-Colourings April 12th, 2019 15 / 15

	Bibliography

