Alternating Signed Bipartite Graph Colourings

Cian O'Brien
Rachel Quinlan and Kevin Jennings
Postgraduate Modelling Research Group
National University of Ireland, Galway
c.obrien40@nuigalway.ie

April 12th, 2019

Alternating Signed Bipartite Graphs

An Alternating Signed Bipartite Graph (ASBG) is a graphical representation of Alternating Sign Matrices introduced by Richard Brualdi et al. (2013) [1].

Alternating Signed Bipartite Graphs

An Alternating Signed Bipartite Graph (ASBG) is a graphical representation of Alternating Sign Matrices introduced by Richard Brualdi et al. (2013) [1].

A bipartite graph G with edges coloured red and blue is an ASBG if there exists an ordering of the vertices in each part of the bipartition of G for which the edges incident with any vertex alternate in colour, starting and ending with blue.

Alternating Signed Bipartite Graphs

An Alternating Signed Bipartite Graph (ASBG) is a graphical representation of Alternating Sign Matrices introduced by Richard Brualdi et al. (2013) [1].

A bipartite graph G with edges coloured red and blue is an ASBG if there exists an ordering of the vertices in each part of the bipartition of G for which the edges incident with any vertex alternate in colour, starting and ending with blue.

We say that G is configurable.

ASBG-Colourings

Question: Given a graph G without coloured edges, how can we tell if its edges have a red/blue colouring c such that G^{c} is an ASBG?

ASBG-Colourings

Question: Given a graph G without coloured edges, how can we tell if its edges have a red/blue colouring c such that G^{c} is an ASBG?

- We break the problem into two steps:

ASBG-Colourings

Question: Given a graph G without coloured edges, how can we tell if its edges have a red/blue colouring c such that G^{c} is an ASBG?

- We break the problem into two steps:

ASBG-Colourings

Question: Given a graph G without coloured edges, how can we tell if its edges have a red/blue colouring c such that G^{c} is an ASBG?

- We break the problem into two steps:

ASBG-Colourings

Question: Given a graph G without coloured edges, how can we tell if its edges have a red/blue colouring c such that G^{c} is an ASBG?

- We break the problem into two steps:

- We say a graph G has a feasible colouring c of its edges if $\operatorname{deg}^{B}(v)-\operatorname{deg}^{R}(v)=1, \forall v \in V(G)$.

Leaves and Twigs

- A leaf is a vertex of degree 1 .

Leaves and Twigs

- A leaf is a vertex of degree 1 .
- A twig is a configuration of three vertices; two leaves which are both attached to a third vertex of degree 3.

Leaves and Twigs

- A leaf is a vertex of degree 1 .
- A twig is a configuration of three vertices; two leaves which are both attached to a third vertex of degree 3.

Leaves and Twigs

- A leaf is a vertex of degree 1 .
- A twig is a configuration of three vertices; two leaves which are both attached to a third vertex of degree 3.

Leaves and Twigs

- A leaf is a vertex of degree 1 .
- A twig is a configuration of three vertices; two leaves which are both attached to a third vertex of degree 3.

- A leaf-twig configuration at a vertex v is a leaf and a twig both attached to the same vertex v.

Leaves and Twigs

- A leaf is a vertex of degree 1 .
- A twig is a configuration of three vertices; two leaves which are both attached to a third vertex of degree 3.

- A leaf-twig configuration at a vertex v is a leaf and a twig both attached to the same vertex v.

Leaves and Twigs

- A leaf is a vertex of degree 1 .
- A twig is a configuration of three vertices; two leaves which are both attached to a third vertex of degree 3.

- A leaf-twig configuration at a vertex v is a leaf and a twig both attached to the same vertex v.

- We will refer to the following graph as the trivial asbg:

Leaves and Twigs

- A leaf is a vertex of degree 1 .
- A twig is a configuration of three vertices; two leaves which are both attached to a third vertex of degree 3.

- A leaf-twig configuration at a vertex v is a leaf and a twig both attached to the same vertex v.

- We will refer to the following graph as the trivial asbg:

Trees

Theorem

A tree T has a feasible colouring if and only if leaf-twig configurations can be removed until the trivial $A S B G$ remains.

Trees

Theorem

A tree T has a feasible colouring if and only if leaf-twig configurations can be removed until the trivial ASBG remains.

Trees

Theorem

A tree T has a feasible colouring if and only if leaf-twig configurations can be removed until the trivial ASBG remains.

Trees

Theorem

A tree T has a feasible colouring if and only if leaf-twig configurations can be removed until the trivial ASBG remains.

Trees

Theorem

A tree T has a feasible colouring if and only if leaf-twig configurations can be removed until the trivial ASBG remains.

Trees

Theorem

A tree T has a feasible colouring if and only if leaf-twig configurations can be removed until the trivial ASBG remains.

Trees

Theorem

A tree T has a feasible colouring if and only if leaf-twig configurations can be removed until the trivial ASBG remains.

Trees

Theorem

A tree T has a feasible colouring if and only if leaf-twig configurations can be removed until the trivial ASBG remains.

Trees

Theorem

A tree T has a feasible colouring if and only if leaf-twig configurations can be removed until the trivial ASBG remains.

Trees

Theorem

A tree T has a feasible colouring if and only if leaf-twig configurations can be removed until the trivial ASBG remains.

Unicyclic Graphs

Unicyclic Graphs

Unicyclic Graphs

Leaf, Twig, and Triple-Type Vertices

There are three types of vertices that can appear in the cycle of a unicyclic graph: leaf-type, twig-type, and triple-type:

Leaf, Twig, and Triple-Type Vertices

There are three types of vertices that can appear in the cycle of a unicyclic graph: leaf-type, twig-type, and triple-type:

Leaf, Twig, and Triple-Type Vertices

There are three types of vertices that can appear in the cycle of a unicyclic graph: leaf-type, twig-type, and triple-type:

Leaf, Twig, and Triple-Type Vertices

There are three types of vertices that can appear in the cycle of a unicyclic graph: leaf-type, twig-type, and triple-type:

Leaf, Twig, and Triple-Type Vertices

There are three types of vertices that can appear in the cycle of a unicyclic graph: leaf-type, twig-type, and triple-type:

Unicyclic Graphs

Unicyclic Graphs

Theorem

A unicyclic bipartite graph G has a feasible colouring if and only if:

Unicyclic Graphs

Theorem

A unicyclic bipartite graph G has a feasible colouring if and only if:

- Every vertex of the cycle of G is either leaf-type, twig-type, or triple-type;

Unicyclic Graphs

Theorem

A unicyclic bipartite graph G has a feasible colouring if and only if:

- Every vertex of the cycle of G is either leaf-type, twig-type, or triple-type;
- Any twig/triple-type vertex must be an odd (even) distance away from the next twig/triple-type vertex if it is of the same (opposite) type.

Unicyclic Graphs

Theorem

A unicyclic bipartite graph G has a feasible colouring if and only if:

- Every vertex of the cycle of G is either leaf-type, twig-type, or triple-type;
- Any twig/triple-type vertex must be an odd (even) distance away from the next twig/triple-type vertex if it is of the same (opposite) type.

Unicyclic Graphs

Theorem

A unicyclic bipartite graph G has a feasible colouring if and only if:

- Every vertex of the cycle of G is either leaf-type, twig-type, or triple-type;
- Any twig/triple-type vertex must be an odd (even) distance away from the next twig/triple-type vertex if it is of the same (opposite) type.

Unicyclic Graphs

Theorem

A unicyclic bipartite graph G has a feasible colouring if and only if:

- Every vertex of the cycle of G is either leaf-type, twig-type, or triple-type;
- Any twig/triple-type vertex must be an odd (even) distance away from the next twig/triple-type vertex if it is of the same (opposite) type.

Skeletons and Junctions

We define the skeleton of a graph $S k(G)$ to be the graph that remains after all leaves have been repeatedly removed.

Skeletons and Junctions

We define the skeleton of a graph $\operatorname{Sk}(G)$ to be the graph that remains after all leaves have been repeatedly removed.

Skeletons and Junctions

We define the skeleton of a graph $S k(G)$ to be the graph that remains after all leaves have been repeatedly removed.

Skeletons and Junctions

We define the skeleton of a graph $\operatorname{Sk}(G)$ to be the graph that remains after all leaves have been repeatedly removed.

As well as leaf, twig, and triple-type vertices, we define one other type of vertex: a junction, which is a vertex with $\operatorname{deg}_{S k(G)}>2$.

Skeletons and Junctions

We define the skeleton of a graph $\operatorname{Sk}(G)$ to be the graph that remains after all leaves have been repeatedly removed.

As well as leaf, twig, and triple-type vertices, we define one other type of vertex: a junction, which is a vertex with $\operatorname{deg}_{S k(G)}>2$.

Surplus Weights

We have an algorithm that tries to assign values of 1 or -1 to all edges incident with each junction in a graph:

Surplus Weights

We have an algorithm that tries to assign values of 1 or -1 to all edges incident with each junction in a graph:

Surplus Weights

We have an algorithm that tries to assign values of 1 or -1 to all edges incident with each junction in a graph:

Surplus Weights

We have an algorithm that tries to assign values of 1 or -1 to all edges incident with each junction in a graph:

We don't want the algorithm to make any choices - this can lead to surplus weights.

Surplus Weights

We have an algorithm that tries to assign values of 1 or -1 to all edges incident with each junction in a graph:

We don't want the algorithm to make any choices - this can lead to surplus weights.

Surplus Weights

We have an algorithm that tries to assign values of 1 or -1 to all edges incident with each junction in a graph:

We don't want the algorithm to make any choices - this can lead to surplus weights.
We need to figure out if the surplus weights are redistributable.

Surplus Weights

We have an algorithm that tries to assign values of 1 or -1 to all edges incident with each junction in a graph:

We don't want the algorithm to make any choices - this can lead to surplus weights.
We need to figure out if the surplus weights are redistributable.

Surplus Weights

We have an algorithm that tries to assign values of 1 or -1 to all edges incident with each junction in a graph:

We don't want the algorithm to make any choices - this can lead to surplus weights.
We need to figure out if the surplus weights are redistributable.

Surplus Weights

We have an algorithm that tries to assign values of 1 or -1 to all edges incident with each junction in a graph:

We don't want the algorithm to make any choices - this can lead to surplus weights.
We need to figure out if the surplus weights are redistributable.

Surplus Weights

We have an algorithm that tries to assign values of 1 or -1 to all edges incident with each junction in a graph:

We don't want the algorithm to make any choices - this can lead to surplus weights.
We need to figure out if the surplus weights are redistributable.

Surplus Weights

We have an algorithm that tries to assign values of 1 or -1 to all edges incident with each junction in a graph:

We don't want the algorithm to make any choices - this can lead to surplus weights.
We need to figure out if the surplus weights are redistributable.

Redistributability

We can reframe the problem of redistributing surplus weights as finding a subgraph H of $\operatorname{Sk}(G)$ where every vertex of H has some degree dictated by the surplus weight of that vertex.

Redistributability

We can reframe the problem of redistributing surplus weights as finding a subgraph H of $S k(G)$ where every vertex of H has some degree dictated by the surplus weight of that vertex.

Redistributability

We can reframe the problem of redistributing surplus weights as finding a subgraph H of $S k(G)$ where every vertex of H has some degree dictated by the surplus weight of that vertex.

Redistributability

We can reframe the problem of redistributing surplus weights as finding a subgraph H of $S k(G)$ where every vertex of H has some degree dictated by the surplus weight of that vertex.

Redistributability

We can reframe the problem of redistributing surplus weights as finding a subgraph H of $S k(G)$ where every vertex of H has some degree dictated by the surplus weight of that vertex.

Redistributability

We can reframe the problem of redistributing surplus weights as finding a subgraph H of $S k(G)$ where every vertex of H has some degree dictated by the surplus weight of that vertex.

Redistributability

We can reframe the problem of redistributing surplus weights as finding a subgraph H of $S k(G)$ where every vertex of H has some degree dictated by the surplus weight of that vertex.

Redistributability

We can reframe the problem of redistributing surplus weights as finding a subgraph H of $S k(G)$ where every vertex of H has some degree dictated by the surplus weight of that vertex.

Redistributability

We can reframe the problem of redistributing surplus weights as finding a subgraph H of $S k(G)$ where every vertex of H has some degree dictated by the surplus weight of that vertex.

Redistributability

We can reframe the problem of redistributing surplus weights as finding a subgraph H of $S k(G)$ where every vertex of H has some degree dictated by the surplus weight of that vertex.

Redistributability

We can reframe the problem of redistributing surplus weights as finding a subgraph H of $\operatorname{Sk}(G)$ where every vertex of H has some degree dictated by the surplus weight of that vertex.

Redistributability

We have the following condition for when it is possible to find a subgraph H of a graph G where the degree of each vertex v is some required value $r(v)$:

Redistributability

We have the following condition for when it is possible to find a subgraph H of a graph G where the degree of each vertex v is some required value $r(v)$:

Theorem

Let G be a bipartite graph with bipartition P_{1} and P_{2}, and let each vertex v of G be assigned an integer value $r(v)$ in the range 0 to $\operatorname{deg}(v)$. Then G has a subgraph H with $\operatorname{deg}_{H}(v)=r(v)$ for all vertices v if and only if every $S \subset P_{1}$ in G satisfies

$$
\sum_{v \in S} r(v) \leq \sum_{n \in \Gamma(S)} \min \{r(n),|\Gamma(n) \cap S|\}
$$

where $\Gamma(S)$ is the set of neighbours of S in G.

The General Case

Theorem

A bipartite graph G has a feasible colouring if and only if:

The General Case

Theorem

A bipartite graph G has a feasible colouring if and only if:

- Each vertex in $\operatorname{Sk}(G)$ is either leaf-type, twig-type, triple-type, or a junction which has been assigned a weight of 1 by our algorithm;

The General Case

Theorem

A bipartite graph G has a feasible colouring if and only if:

- Each vertex in $\operatorname{Sk}(G)$ is either leaf-type, twig-type, triple-type, or a junction which has been assigned a weight of 1 by our algorithm;
- Any twig/triple-type vertex must be an odd (even) distance away from the next twig/triple-type vertex if it is of the same (opposite) type;

The General Case

Theorem

A bipartite graph G has a feasible colouring if and only if:

- Each vertex in $\operatorname{Sk}(G)$ is either leaf-type, twig-type, triple-type, or a junction which has been assigned a weight of 1 by our algorithm;
- Any twig/triple-type vertex must be an odd (even) distance away from the next twig/triple-type vertex if it is of the same (opposite) type;
- All surplus weights in G are redistributable.

Unique Colourings and Configurability

- There are classes of graphs for which all feasible colourings are unique and configurable.

Unique Colourings and Configurability

- There are classes of graphs for which all feasible colourings are unique and configurable.
- We define the class of cycle-edge-disjoint graphs to be any graph in which no pair of cycles contain a common edge.

Unique Colourings and Configurability

- There are classes of graphs for which all feasible colourings are unique and configurable.
- We define the class of cycle-edge-disjoint graphs to be any graph in which no pair of cycles contain a common edge.

Theorem

If a cycle-edge-disjoint graph G has a feasible colouring c, then c is the unique feasible colouring of G and G^{c} is configurable.

Unique Colourings and Configurability

- There are classes of graphs for which all feasible colourings are unique and configurable.
- We define the class of cycle-edge-disjoint graphs to be any graph in which no pair of cycles contain a common edge.

Theorem

If a cycle-edge-disjoint graph G has a feasible colouring c, then c is the unique feasible colouring of G and G^{c} is configurable.

Theorem

If a graph G has two distinct feasible colouring c and d, then c and d differ only by alternating cycle rotations.

Unique Colourings and Configurability

- There are classes of graphs for which all feasible colourings are unique and configurable.
- We define the class of cycle-edge-disjoint graphs to be any graph in which no pair of cycles contain a common edge.

Theorem

If a cycle-edge-disjoint graph G has a feasible colouring c, then c is the unique feasible colouring of G and G^{c} is configurable.

Theorem

If a graph G has two distinct feasible colouring c and d, then c and d differ only by alternating cycle rotations.

- We are currently working on conditions for when a coloured graph G^{c} is configurable in general.

Richard A. Brualdi, Kathleen P. Kiernan, Seth A. Meyer, Michael W. Schroeder, Patterns of Alternating Sign Matrices, Department of Mathematics University of Wisconsin, 2011

