Wrinkling instabilities in soft dielectric plates

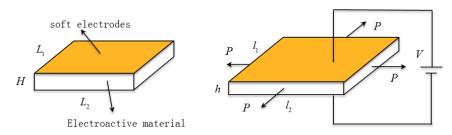
Hannah Conroy Broderick

School of Mathematics, Statistics and Applied Mathematics NUI Galway

BAMC 2019

Soft Dielectrics

Soft dielectric materials are smart materials that deform elastically in the presence of an electric field.



They are modelled by coupling the equations of electrostatics with those of non-linear elasticity.

Soft Dielectrics

These materials can be used to produce actuators, artificial muscles or wearable electronics.

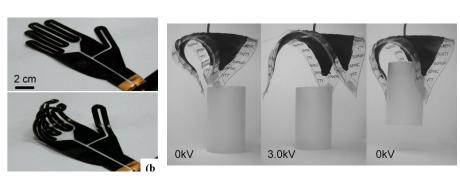


Figure: Applications of dielectric elastomers (Li et al. 2015; Kofod et al. 2007)

Large deformations are achieved using the **snap-through** instability.

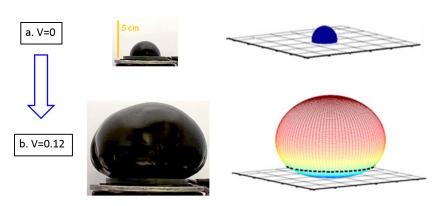
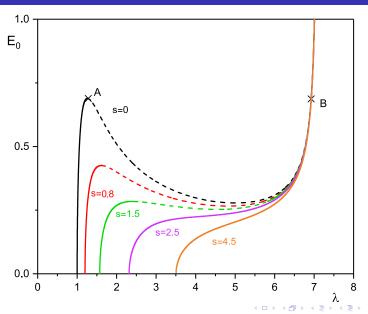
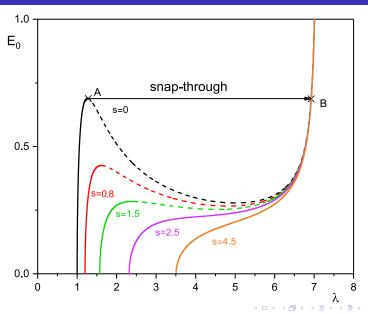
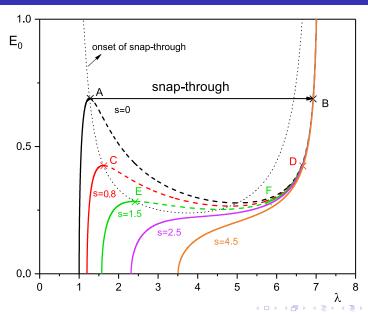


Figure: Experimental evidence of snap-through instability, with area expansion of 1692% (Li et al. 2013)

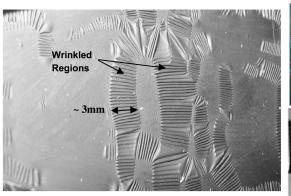






Wrinkling

Snap-through is difficult to achieve in practice, as the material first breaks down or **wrinkles** form.



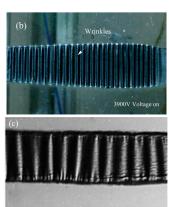
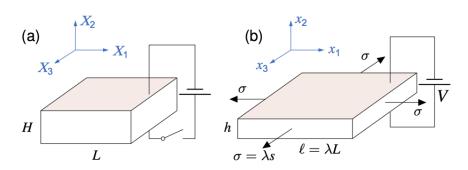


Figure: Experimental evidence of electro-mechanical wrinkling instability (Plante and Dubowsky 2006; Liu et al. 2016; Pelrine et al. 2000)

Setup of Model

Consider a rectangular plate of soft dielectric material that is **stretched equally** along its lateral directions, principal stretches $\lambda_1=\lambda_3=\lambda$, $\lambda_2=\lambda^{-2}$.



We apply a voltage across the thickness direction so that the electric field $E_L = (0, E_0, 0)$.

Setup of Model

We focus on the Gent dielectric, which has energy density

$$\Omega=-rac{J_m}{2}\ln\left(1-rac{(2\lambda^2+\lambda^{-4}-3)}{J_m}
ight)-rac{1}{2}\lambda^4 E_0^2,$$

where J_m is a stiffening parameter.

Setup of Model

We focus on the Gent dielectric, which has energy density

$$\Omega = -\frac{J_{\textit{m}}}{2} \ln \left(1 - \frac{\left(2\lambda^2 + \lambda^{-4} - 3\right)}{J_{\textit{m}}}\right) - \frac{1}{2}\lambda^4 E_0^2, \label{eq:omega_problem}$$

where J_m is a stiffening parameter.

The nominal stress is given by

$$s = \frac{1}{2} \frac{\partial \Omega}{\partial \lambda},$$

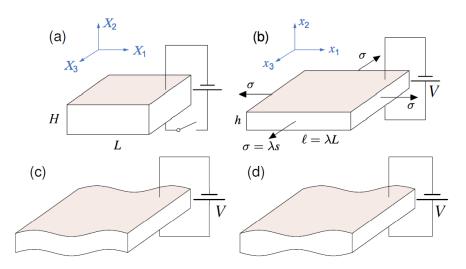
so that the relationship between voltage and stretch is

$$E_0^2 = \frac{\lambda^{-2} - \lambda^{-8}}{1 - (2\lambda^2 + \lambda^{-4} - 3)/J_m} - \lambda^{-3}s.$$

4□ > 4ⓓ > 4ಠ > 4ಠ > 1 € 900

Wrinkling Modes

The plate can wrinkle into antisymmetric or symmetric modes.



Incremental Deformations

We superpose a small **incremental deformation** denoted u onto a finite deformation.



If the incremental motion satisfies the incremental equilibrium equations and boundary conditions, then the material wrinkles.

Incremental Deformations

We linearise the equations and solve the problem using the **Stroh formulation**, which reduces the problem to solving the following equation,

$$\eta' = iN\eta,$$

where prime denotes differentiation w.r.t. x_2 , the thickness direction.

This results in an eigen-problem for the eigenvalues and eigenvectors η of the Stroh matrix N.

For **thin-plates** $(h \rightarrow 0)$, wrinkling occurs when

$$E_0^2 = \frac{\lambda^{-2} - \lambda^{-8}}{1 - (2\lambda^2 + \lambda^{-4} - 3)/J_m}.$$

For **thin-plates** $(h \rightarrow 0)$, wrinkling occurs when

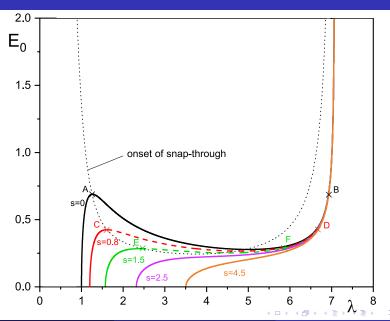
$$E_0^2 = \frac{\lambda^{-2} - \lambda^{-8}}{1 - (2\lambda^2 + \lambda^{-4} - 3)/J_m}.$$

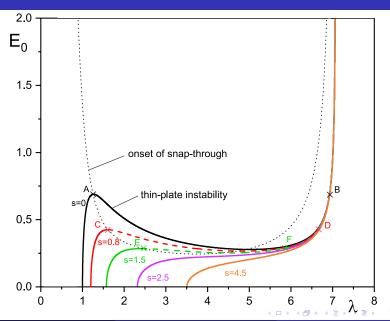
For **thick-plates** $(h \to \infty)$, wrinkling occurs when

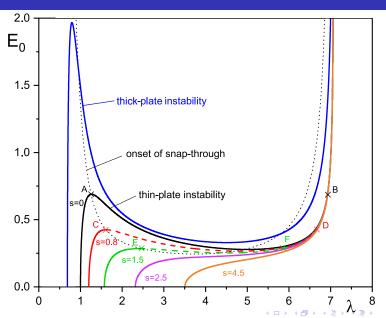
$$\begin{split} 2\lambda(\lambda^9 + \lambda^6 + 3\lambda^3 - 1)W' + 4(\lambda^6 - 1)^2 W'' = \\ \lambda^9(\lambda^3 + 1)E_0^2 \sqrt{1 + 2(\lambda - \lambda^{-2})^2 \frac{W''}{W'}}, \end{split}$$

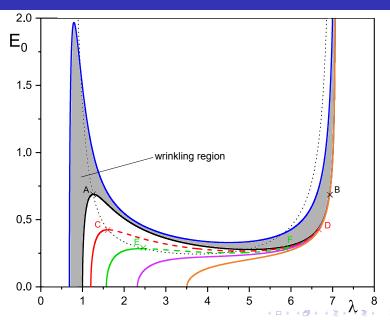
where

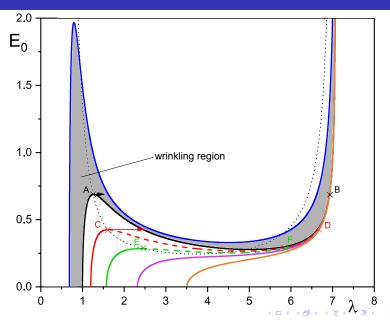
$$W' = \frac{1}{2\left[1 - \left(2\lambda^2 + \lambda^{-4} - 3\right)/J_m\right]}, \qquad W'' = \frac{1}{J_m}W'^2.$$

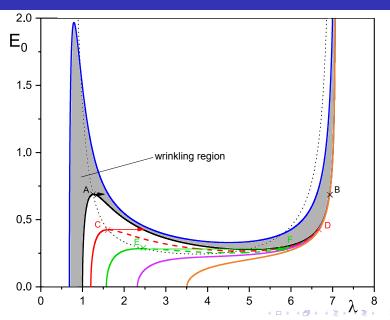




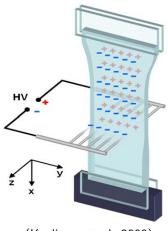








Charge-controlled actuation

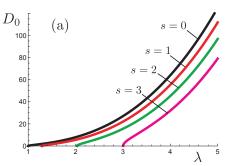


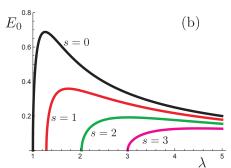
(Keplinger et al. 2009)

- Electric field induced by spraying charges of opposite signs to the lateral faces
- Can wrinkles appear in charge-controlled plates?

Charge-controlled actuation

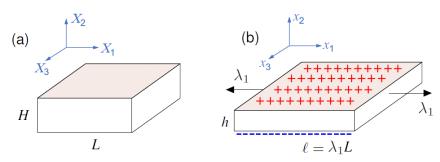
Charge-control is stable with respect to the Hessian criterion.





Charge-controlled actuation

Consider a rectangular plate of dielectric material, stretched **uniaxially** in the x_1 -direction by λ_1 , and charges $\pm D_0$ applied on its lateral faces.



The charges **induce an electric field** E_0 in the x_2 -direction.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

We focus our attention on **ideal dielectrics**, i.e. materials with energy density

$$\Omega = \frac{1}{2} \left(\lambda_1^2 + \lambda_3^2 + \lambda_1^{-2} \lambda_3^{-2} - 3 \right) - \frac{1}{2} \lambda_1^2 \lambda_3^2 E_0^2,$$

where λ_3 is the stretch in the x_3 -direction.

We can then find the following expression for the **charge** D_0

$$D_0 = -\frac{\partial \Omega}{\partial E_0}.$$

For **thin-plates** $(h \rightarrow 0)$, wrinkling occurs when

$$D_0^2 = \lambda_1^4 \lambda_3^2 - 1.$$

For **thin-plates** $(h \rightarrow 0)$, wrinkling occurs when

$$D_0^2 = \lambda_1^4 \lambda_3^2 - 1.$$

For **thick-plates** $(h \to \infty)$, wrinkling occurs when

$$D_0^4 - \left(\lambda_1^4 \lambda_3^2 + 3\lambda_1^2 \lambda_3 - 2\right) D_0^2 - \left(\lambda_1^6 \lambda_3^3 + \lambda_1^4 \lambda_3^2 + 3\lambda_1^2 \lambda_3 - 1\right) = 0.$$

For **thin-plates** $(h \rightarrow 0)$, wrinkling occurs when

$$D_0^2 = \lambda_1^4 \lambda_3^2 - 1.$$

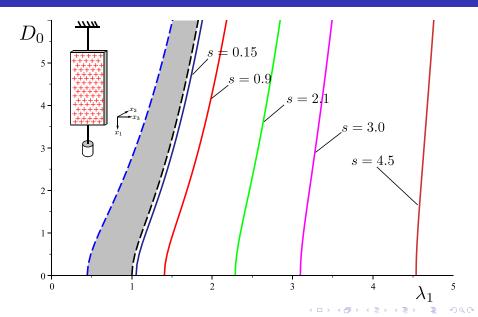
For **thick-plates** $(h \to \infty)$, wrinkling occurs when

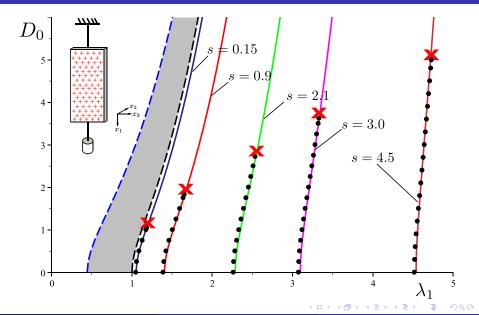
$$D_0^4 - \left(\lambda_1^4 \lambda_3^2 + 3\lambda_1^2 \lambda_3 - 2\right) D_0^2 - \left(\lambda_1^6 \lambda_3^3 + \lambda_1^4 \lambda_3^2 + 3\lambda_1^2 \lambda_3 - 1\right) = 0.$$

We solve these conditions simultaneously with the loading curve,

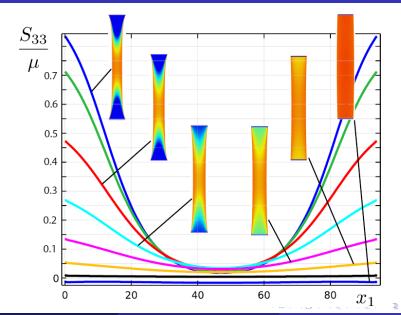
$$D_0^2 = \lambda_1^2 \lambda_3^4 - 1,$$

in order to plot D_0 in terms of λ_1 .





Why do the FE Simulations fail?



Conclusion

- For a real plate, the critical stretch is confined between the thin-plate and thick-plate limits.
- For voltage-controlled actuation, the plates can wrinkle in both contraction and extension.
- Charge-control is **geometrically stable**.
- Overall, charge-control is more stable than voltage-control.

- Y. Su, H. Conroy Broderick, W. Chen, M. Destrade, JMPS, 2018
- H. Conroy Broderick, M. Righi, M. Destrade, R.W. Ogden, preprint 2019