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Abstract. We prove analogues of results of Tate and Yoshida on control of

transfer for fusion systems. This requires the notions of p-group residuals and
transfer maps in cohomology for fusion systems. As a corollary we obtain a

p-nilpotency criterion due to Tate.

1. Introduction

In the theory of finite groups, the focal subgroup of a Sylow p-subgroup is deter-
mined entirely by p-fusion and detects whether the whole group G has a nontrivial
p-group quotient. Moreover, under certain conditions, some subgroups of G con-
taining its Sylow p-subgroup determine the focal subgroup and hence whether G
has a nontrivial p-group quotient. This phenomenon is traditionally called control
of transfer; indeed these results can be obtained by using transfer maps in group
cohomology.

A fusion system is a category F whose objects are the subgroups of a fixed fi-
nite p-group S and whose morphisms behave like conjugation maps in finite groups
having S as a Sylow p-subgroup. First introduced by Puig [16],[17] and further
developed by Broto, Levi and Oliver [4], fusion systems constitute a useful frame-
work for studying the local theory of (blocks of) finite groups and p-local homotopy
theory. Hence it is a natural question whether and how classical results of local
group theory can be extended to fusion systems.

Given a fusion system, one defines the focal subgroup (and other related sub-
groups like the hyperfocal subgroup) analogously to the group case. Moreover, these
related constructs display the same key properties as their group theoretic counter-
parts ([3], see also appendix.) In particular, using the characteristic elements of a
fusion system, introduced in [4] and refined in [18], we define an appropriate notion
of transfer maps in the cohomology of fusion systems.

Using these tools, we generalize to fusion systems two classical theorems on
control of transfer in finite groups, one due to Tate and the other due to Yoshida.
Tate’s theorem, reformulated as in [10], concerns three types of residuals of a finite
group G: the elementary abelian p-group residual, the abelian p-group residual and
the p-group residual. It states that, for a subgroup H of G containing a Sylow
p-subgroup of G, H has isomorphic residual to that of G of one of these types if
and only if H does so for the three types. In any of these three cases, then, we say
that H controls transfer in G. Yoshida’s theorem [24, Theorem 4.2] says that if S
is a Sylow p-subgroup of G, then NG(S) controls transfer in G unless the wreath
product Cp o Cp is a quotient of S.
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To generalize these results to fusion systems, we first need appropriate notions of
residuals. The case of the p-group residual is handled in [3], where the authors define
the notion of a fusion subsystem of p-power index. This motivates the following
definition.

Definition 1.1. Let F be a saturated fusion system on a finite p-group S.
(1) OpF (S) = 〈[P,Op(AutF (P ))] | P ≤ S〉 (the hyperfocal subgroup of F).
(2) ApF (S) = [S,F ] = 〈[P,AutF (P )] | P ≤ S〉 (the focal subgroup of F).
(3) EpF (S) = Φ(S)[S,F ] = Φ(S)OpF (S) (the elementary focal subgroup of F).

Using Corollary A.6, we have that OpF (S) ⊆ ApF (S) ⊆ EpF (S) and that the
former two groups are completely determined by OpF (S) and S. Consequently, the
interesting part of the following theorem, which is a generalization of Tate’s theorem
from [10], is the implication (1) =⇒ (3).

Theorem T (Tate’s theorem for fusion systems). Let F be a saturated fusion
system on a finite p-group S, and let H be a saturated subsystem of F on S. The
following are equivalent.

(1) EpF (S) = EpH(S).
(2) ApF (S) = ApH(S).
(3) OpF (S) = OpH(S).

To show the implication (1) =⇒ (3), instead of Tate’s original cohomological
proof, we follow the strategy of Gagola and Isaacs in [10], using transfer maps. As
a corollary, we obtain a fusion system version of the p-nilpotency criterion suggested
by Atiyah [23] and proved independently with alternative methods in [5].

Corollary 1.2. Let F be a saturated fusion system on a finite p-group S. If the
restriction map H1(F ;Fp)→ H1(S;Fp) is an isomorphism, then F = FS(S).

By analogy with the group case, if any of the equivalent statements in Tate’s
Theorem above hold, we say that H controls transfer in F . With this definition,
the natural translation of Yoshida’s theorem to fusion systems is, thus, given by
the following theorem.

Theorem Y (Yoshida’s theorem for fusion systems). Let F be a fusion
system on a finite p-group S and let H = NF (S). If H does not control transfer in
F , then Cp o Cp is a homomorphic image of S.

Organization of the paper: In Section 2, we recall the notion of double
Burnside rings and characteristic elements in order to define the transfer later in
the same section. In Section 3 we prove Yoshida’s theorem for fusion systems. In
section 4, we prove new properties of the the p-power index transfer that are needed
in section 5 to prove Tate’s theorem for fusion systems and Corollary 1.2. In the
appendix, we recall the definitions of invariant subsystems and quotient systems,
and prove some of their properties in the p-power index case.
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2. Characteristic elements and transfer for fusion systems

2.1. Double Burnside ring. We begin this section with a brief review of the (p-
localized) double Burnside ring of a finite group, following closely the treatment
in [18]. For finite groups G and H, a (G,H)-biset is a finite set with commuting
right G-action and left H-action. The Burnside module A(G,H) of G and H is
the Grothendieck group of the monoid of isomorphism classes of (G,H)-bisets with
free left H-action, under disjoint union. For finite groups G, H and K there is a
bilinear map

A(K,H)×A(G,K)→ A(G,H)
given by

(Ω,Λ) 7→ Ω ◦ Λ := Ω×K Λ.
As an abelian group, A(G,H) is free with one generator for each isomorphism

class of transitive (G,H)-bisets with free left H-action. These generators are rep-
resented by bisets of the form H ×(K,ψ) G, where K ≤ G, ψ ∈ Hom(K,H) and

H ×(K,ψ) G = (H ×G)/ ∼ , where (x, uy) ∼ (xψ(u), y) for x ∈ H, y ∈ G, u ∈ K.

We use the notation [K,ψ]HG to denote the generator corresponding to H ×(K,ψ)G,
and we write [K,ψ] if G and H are clear from the context. In case G = H, A(G,G)
becomes a ring, called the double Burnside ring of the group G. We will also
consider its p-localization

A(G,G)(p) := A(G,G)⊗Z Z(p).

Note that A(G,G) is a subring of A(G,G)(p).
For any ZG-module A there is a linear map

H∗(−;A) : A(G,G)→ End(H∗(G;A))

that takes the generator [K,ψ] to

trGK ◦ ψ∗ : H∗(G;A)→ H∗(G;A),

where trGK : H∗(K;A)→ H∗(G;A) is the usual transfer map and ψ∗ : H∗(G;A)→
H∗(K;A) is restriction via ψ. It turns out that H∗(−;A) is a ring homomorphism:
for Ω,Λ ∈ A(G,G) we have

H∗(Ω ◦ Λ;A) = H∗(Ω;A) ◦H∗(Λ;A).

If A is a Z(p)G-module, the ring homomorphism

H∗(−;A) : A(G,G)(p) → End(H∗(G;A)).

is defined analogously.
Now, let F be a saturated fusion system over a finite p-group S. It is a remarkable

result in the theory of fusion systems that there exist certain elements in A(S, S)(p),
called characteristic elements, that reflect all the properties of F (see [4] and [18]).
We discuss them below, and they are at the core of our definition of transfer for
fusion systems.

We denote by AF (S, S) and AF (S, S)(p) the subrings of A(S, S) and A(S, S)(p),
respectively, generated by [P,ϕ]SS with ϕ ∈ HomF (P, S). Let Ω ∈ A(S, S)(p). We
say that Ω is right F-stable if for P ≤ S and every morphism ϕ ∈ HomF (P, S) the
following equality holds in A(P, S)(p)

Ω ◦ [P,ϕ]SP = Ω ◦ [P, incl]SP ,
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where incl : P ↪→ S is the inclusion map. Left F-stability is defined analogously
using the following equality in A(S, P )(p)

[ϕ(P ), ϕ−1]PS ◦ Ω = [P, id]PS ◦ Ω,

where id : P → P is the identity map. There is a unique linear extension ε to
A(S, S)(p) of the map sending every generator [P,ϕ]SS to its number of right S-
orbits:

ε([P,ϕ]SS) = |S|/|P |.
It is easy to see that, in fact, ε : A(S, S)(p) → Z(p) is a ring homomorphism and
that it restricts to ε : A(S, S)→ Z.

Definition 2.1. Let F be a saturated fusion system over a finite p-group S. An
element Ω ∈ A(S, S)(p) is a characteristic element for F if it satisfies the following
properties:

(a) Ω ∈ AF (S, S)(p);
(b) Ω is right F-stable and left F-stable;
(c) ε(Ω) 6≡ 0 (mod pZ(p)).

These three properties were first formulated by Linckelmann and Webb. In
[4, 5.5] Broto, Levi and Oliver proved that for any saturated fusion system F
there exists such a characteristic element Ω, while in [19], Ragnarsson and Stancu
prove that the existence of a characteristic element for a fusion system guarantees
saturation. Furthermore, the element Ω constructed in [4] is contained in AF (S, S)
and has nonnegative coefficients; that is, it is an isomorphism class of an actual
(S, S)-biset. We call such a characteristic element a characteristic biset for F ;
more generally, if negative integral coefficients are allowed, we call it a virtual
characteristic biset. If F is the fusion system induced by a finite group G on its
Sylow p-subgroup S (i.e., F = FS(G)) then G, viewed as an (S, S)-biset in the
obvious way, is a characteristic biset for FS(G). See Example 2.3 for more details.

Characteristic elements of a given saturated fusion system F are not unique.
Indeed, one can simply multiply a given characteristic element by a p′-number
to get a new one. But there is one special characteristic element introduced by
Ragnarsson, which plays a key role in the theory.

Definition 2.2. Let F be a saturated fusion system over the p-group S. A char-
acteristic idempotent for F is a characteristic element for F that is an idempotent
in the ring A(S, S)(p).

Note that the idempotent condition implies that ε(ω) = 1. In [18], Ragnarsson
shows that there exists a unique characteristic idempotent ωF for every saturated
fusion system F . We briefly recall here Ragnarsson’s construction of ωF (see ([18,
4.9, 5.8])) as it will be needed later. Given any virtual characteristic biset Ω ∈
AF (S, S) for F , there is a large enough integer M such that ΩM is an idempotent
modulo p. Then the sequence ΩM , ΩMp, ΩMp2 , . . . converges in the p-adic topology
to an idempotent in A(S, S)∧p := A(S, S)⊗Z Z∧p , where Z∧p are the p-adic integers.
By uniqueness this idempotent has to be the characteristic idempotent ωF , and it
turns out that ωF actually lives in A(S, S)(p).

2.2. Transfer. We devote the rest of the section to defining the transfer map for
fusion systems using characteristic elements and to proving some basic properties.
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In particular, we will show that the definition is essentially unique in spite of the
choice of characteristic elements.

Fix a saturated fusion system F on a finite p-group S. Let A be a Z(p)S-module
and consider a characteristic element Ω ∈ AF (S, S)(p) for F expressed as

Ω =
∑

c[P,ϕ][P,ϕ],

where the sum runs over the generators [P,ϕ] of A(S, S) and c[P,ϕ] ∈ Z(p). The
endomorphism H∗(Ω;A) of H∗(S;A) can be explicitly described as

(1) H∗(Ω;A) =
∑

c[P,ϕ] · (trSP ◦ ϕ∗).

The following example highlights the feature of finite groups that H∗(Ω;A) is
modeling.

Example 2.3. Let G be a finite group with Sylow p-subgroup S and let F = FS(G).
The biset Ω = G, where the (S, S)-biset structure is given by left and right multi-
plication in the group G, is a characteristic biset for F . An easy calculation shows
that

Ω ∼=
∐

g∈[S\G/S]

S ×(S∩gS,cg−1 ) S,

and hence we get
H∗(Ω;A) =

∑
g∈[S\G/S]

trSS∩gS ◦ c∗g−1 .

But this is just the Mackey decomposition formula for the double cosets SgS in G.
Therefore,

H∗(Ω;A) = resGS ◦ trGS
where resGS : H∗(G;A)→ H∗(S;A) is restriction via the inclusion S ↪→ G.

Assume that Ω is a characteristic element for F and A is an abelian p-group
with trivial S-action. The argument in [4, Proposition 5.5] shows that H∗(Ω;A) is
an idempotent in End(H∗(S;A)) up to multiplication by the p′-number ε(Ω) and
that the image of H∗(Ω;A) is exactly

H∗(F ;A) := {z ∈ H∗(S;A) | ϕ∗(z) = resSP (z) for all ϕ ∈ HomF (P, S)}.
Hence, given characteristic elements Ω and Λ for F , H∗(Ω;A) and H∗(Λ;A) are

projections (up to a p′-factor) in End(H∗(S;A)) that have the same image. The
following corollary shows that, indeed, they only differ by a p′-factor.

Corollary 2.4. Let F be a saturated fusion system on a finite p-group S and let A
be an abelian p-group with trivial S-action. If Ω and Λ are characteristics elements
for F then there is a p′-number r such that H∗(Ω;A) = r ·H∗(Λ;A).

Proof. After multiplying by suitable p′-numbers, we may assume that Ω and Λ
lie in A(S, S). Let pe be the exponent of A. As remarked after Definition 2.2,
there is a large enough positive integer k such that Λk − Ωk = peΥ for some
Υ ∈ A(S, S). Because both H∗(Λ;A) and H∗(Ω;A) are idempotents up to a p′-
factor, we get H∗(Λ;A)k = q1 ·H∗(Λ;A) and H∗(Ω;A)k = q2 ·H∗(Ω;A), where q1

and q2 are p′-numbers. On the other hand, pe is the exponent of A and therefore
H∗(peΥ;A) = peH∗(Υ;A) = 0. As H∗(−;A) is a ring homomorphism we finally
obtain

0 = H∗(Λk − Ωk;A) = H∗(Λ;A)k −H∗(Ω;A)k = q1 ·H∗(Λ;A)− q2 ·H∗(Ω;A).
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�

We are now ready to define the transfer map. Working in degree 1, we identify
H1(S;A) = Hom(S,A) and note that H1(F ;A) = Hom(S/[S,F ], A).

Definition 2.5. Let F be a saturated fusion system on a finite p-group S and let
H be a saturated fusion subsystem of F on S. Set A = S/[S,H] and consider the
canonical projection π : S → S/[S,H]. Given a characteristic element Ω for F , the
transfer map from H to F with respect to Ω is

τFH,Ω = H1(Ω;A)(π) : S → S/[S,H].

When H is the trivial fusion system FS(S) on S then [S,H] = [S, S] = S′, the
derived subgroup of S. In this case we write τFS,Ω instead of τFH,Ω and we call it the
transfer map from S to F (with respect to Ω). The transfer τFS,Ω was successfully
used in [8] by three of the authors and Nadia Mazza to study control of transfer and
weak closure in fusion systems. In the next lemma, we show that if Σ is another
characteristic element for F then τFH,Ω and τFH,Σ only differ by the multiplication
by a p′-number.

Lemma 2.6. Let F be a saturated fusion system on a finite p-group S and let H
be a saturated fusion subsystem of F on S. Let Σ and Ω be characteristic elements
for F .

(1) τFH,Σ = r · τFH,Ω for some p′-number r.
(2) Im(τFH,Σ) = Im(τFH,Ω).
(3) Ker(τFH,Σ) = Ker(τFH,Ω) = [S,F ]. In particular, τFH,Ω can be viewed as a

map from S/[S,H] to itself.
(4) τFH,Ω ◦ τFH,Ω = ε(Ω) · τFH,Ω.

Proof. Statement (1) follows immediately from Corollary 2.4 and the definition
of the transfer while (4) reflects the fact that H∗(Ω;A) is an idempotent up to
multiplication by the p′-number ε(Ω). From (1) we obtain (2) and the first equality
in (3). To simplify notation, in the rest of the proof we write τFH instead of τFH,Ω.
Note that [S,F ] is contained in the kernel of τFH because τFH ∈ H1(F ;S/[S,H]). To
prove that Ker(τFH ) is not larger than [S,F ] we take Ω to be a characteristic biset
for F ; Ω then has the form Ω =

∐
i∈I S ×(Pi,ϕi) S and

(2) τFH =
∑
i∈I

trSPi
(π ◦ ϕi).

For x ∈ S we have

τFH (x) =
∑
i∈I

trSPi
(π ◦ ϕi)(x)

=
∑
i∈I

∑
tr∈[S/Pi]

(π ◦ ϕi)((x · t)−1xt),

where [S/Pi] denotes a set of representatives of the left cosets of Pi in S, and for
t ∈ [S/Pi], x·t is the unique element in [S/Pi] such that (x·t)Pi = xtPi. Considering
a set W of 〈x〉-orbit representatives of [S/Pi], we obtain

τFH (x) =
∑
i∈I

∑
w∈W

π(ϕi(w−1xr(w)w)),
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where r(w) denotes the length of the 〈x〉-orbit of [S/Pi] containing w ∈ W . As
ϕi(w−1xr(w)w)[S,F ] = w−1xr(w)w[S,F ], we find that

τFH (x) + π([S,F ]) = π

(∑
i∈I

∑
w∈W

xr(w)

)
+ π([S,F ])

= π

(∑
i∈I

x|S:Pi|

)
+ π([S,F ])

= π
(
x|Ω|/|S|

)
+ π([S,F ])

= |Ω|/|S| · π(x) + π([S,F ]).

If x ∈ Ker(τFH ), then τFH (x) = 0 in S/[S,H] and |Ω|/|S| · π(x) ∈ π([S,F ]). Since
|Ω|/|S| is a p′-number, also π(x) ∈ π([S,F ]). As [S,H] ≤ [S,F ], we conclude that
x ∈ [S,F ]. �

Throughout the paper, in general, we will use the notation τFH for the transfer
map from F to H without specifying the characteristic elements. By Lemma 2.6,
changing the characteristic element amounts to multiplying the transfer map by
some p′-number, and does not change its kernel and image.

Proposition 2.7. Let F be a saturated fusion system on a finite p-group S. If H
is a saturated fusion subsystem of F on S, then

S/[S,H] = [S,F ]/[S,H]× TF [S,H]/[S,H],

where TF denotes the subgroup of S containing S′ and such that TF/S′ = Im(τFS ).
In particular, S/[S,F ] is a direct factor of S/[S,H].

Proof. Applying part (3) of Lemma 2.6 to τFS gives the equality

S/S′ = [S,F ]/S′ × TF/S′

Factoring this equality by [S,H]/S′ gets us the result in the proposition. �

As a cyclic p-group has no proper nontrivial direct factors, the previous propo-
sition immediately gives the following corollary.

Corollary 2.8. Let F be a saturated fusion system on a finite p-group S such that
[S,F ] < S and let H be a saturated fusion subsystem of F on S. If S/[S,H] is
cyclic, then H controls transfer in F , i.e., [S,H] = [S,F ].

3. Yoshida’s theorem

In this section, we prove that for a saturated fusion system F on a finite p-group
S, if Cp o Cp is not a homomorphic image of S, then the focal subgroups of F and
NF (S) coincide. First, we recall a useful lemma that helps detect a homomorphic
image isomorphic to Cp o Cp. This appears as Lemma 6.4 in [11].

Lemma 3.1. Let R be a finite p-group having an elementary abelian subgroup E
of index p. Suppose that there are x ∈ E and z ∈ R− E such that

p−1∏
i=0

z−ixzi 6= 1.

Then R has Cp o Cp as a homomorphic image.
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We can now prove Theorem Y, using part (2) in Theorem T as a definition for
the control of transfer.

Theorem Y (Yoshida’s theorem for fusion systems). Let F be a saturated
fusion system on a finite p-group S and let H = NF (S). If [S,F ] 6= [S,H], then S
has Cp o Cp as a homomorphic image.

Proof. Fix a characteristic biset Ω for F and write

Ω =
∑
i∈I

[Pi, ϕi].

Let I0 = {i ∈ I | Pi = S}. Then

ε(Ω) =
∑
i∈I
|S : Pi| = |I0|+

∑
i∈I−I0

|S : Pi| ≡ |I0| (mod p).

By part (c) of Definition 2.1, it follows that |I0| 6≡ 0 (mod p).
Suppose that [S,F ] 6= [S,H]. By Lemma 2.6, the transfer map τFH has kernel

[S,F ] and hence induces a nonsurjective map

τFH : S/[S,F ]→ S/[S,H].

Let Im(τFH ) = X/[S,H] where [S,H] ≤ X < S. Take a maximal subgroup Y of S
containing X, and take an element x ∈ S − Y of minimal order. We have

τFH (x) =
∑
i∈I0

trSS(π ◦ ϕi)(x) +
∑

j∈I−I0

trSPj
(π ◦ ϕj)(x)

=
∑
i∈I0

ϕi(x)[S,H] +
∑

j∈I−I0

trSPj
(π ◦ ϕj)(x) ∈ Y/[S,H].

Also, since ϕi ∈ AutH(S) whenever i ∈ I0,∑
i∈I0

ϕi(x)[S,H] =
∑
i∈I0

xx−1ϕi(x)[S,H]

= x|I0|[S,H] /∈ Y/[S,H],

because x /∈ Y and |I0| is not divisible by p. Thus, there is a proper subgroup
P < S and ϕ ∈ HomF (P, S) such that

(3) trSP (π ◦ ϕ)(x) /∈ Y/[S,H].

Note that for every u ∈ S,

trSP (π ◦ ϕ)(u) =
∑

t∈[S/P ]

(π ◦ ϕ)((u · t)−1ut) ∈ ϕ(P )[S,H]/[S,H].

Therefore, we can view trSP (π ◦ ϕ) as a map from S to Q/[S,H] where Q =
ϕ(P )[S,H]. By (3), we have Q � Y and hence M := Y ∩Q < Q. Since |S : Y | = p,
it follows that

(4) |Q : M | = p.
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Let A be a maximal subgroup of S containing P . We show that x ∈ A. Suppose
x /∈ A. Then we can take [S/A] = {xi | 0 ≤ i ≤ p− 1} and

x · xi =

{
xi+1 if i < p− 1,
1 if i = p− 1.

Using the transitivity of the transfer maps we get

trSP (π ◦ ϕ)(x) = trSA(tAP (π ◦ ϕ))(x)

=
p−1∑
i=0

trAP (π ◦ ϕ)((x · xi)−1xxi)

= trAP (π ◦ ϕ)(xp)

=
∑

v∈[A/P ]

(π ◦ ϕ)((xp · v)−1xpv)

=
∑
w∈W

(π ◦ ϕ)(w−1xp·r(w)w)

/∈ Y/[S,H]

where W denotes a set of 〈xp〉-orbit representatives of [A/P ] and r(w) denotes
the length of the 〈xp〉- orbit containing w ∈ W . So there is a w ∈ W such that
ϕ(w−1xp·r(w)w) /∈ Y . But by the minimality of the order o(x) of x, we get

o(x) ≤ o(ϕ(w−1xp·r(w)w)) = o(w−1xp·r(w)w) = o(xp·r(w)) < o(x),

a contradiction. Thus x ∈ A.
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If z ∈ S − A, then [S/A] = {zi | 0 ≤ i ≤ p− 1} and x · zi = zi for all i because
x ∈ A and AC S. Therefore,

trSP (π ◦ ϕ)(x) = trSA(trAP (π ◦ ϕ))(x)

=
p−1∑
i=0

trAP (π ◦ ϕ)((x · zi)−1xzi)

=
p−1∑
i=0

tAP (π ◦ ϕ)(z−ixzi)

= trAP (π ◦ ϕ)(
p−1∏
i=0

z−ixzi).

Suppose
∏p−1
i=0 z

−ixzi ∈ Φ(A). Since Φ(A) = Ap[A,A], we have trSP (π ◦ ϕ)(x) ∈
Φ(Q/[S,H]). But by (4), we have Φ(Q/[S,H]) ≤ M/[S,H]. Thus trSP (π ◦ ϕ)(x) ∈
Y/[S,H], contradicting (3). Hence

p−1∏
i=0

z−ixzi /∈ Φ(A).

Now, by Lemma 3.1 applied to R = S/Φ(A) and E = A/Φ(A), the wreath product
Cp o Cp is a homomorphic image of S/Φ(A) and hence of S. �

Recall that if F is a fusion system on a finite p-group S and H is a subsystem
of F , then we say that H controls transfer in F if [S,F ] = [S,H].

Corollary 3.2. Let F be a saturated fusion system on a finite p-group S. If any
of the following conditions hold, then NF (S) controls transfer in F .

(1) S has nilpotence class less than p;
(2) The exponent of S is less than or equal to p;
(3) S is a regular p-group;
(4) p is odd and S is metacyclic.

Proof. The first two conditions imply the result since Cp o Cp has nilpotence class
p and contains an element of order p2. The third statement is immediate since a
regular p-group does not have a homomorphic image isomorphic to Cp oCp and the
last statement follows from the third as every metacyclic p-group is regular if p is
odd (cf. [13, Satz III.10.2]). �

Note that the last statement of the corollary is also a consequence of [22, Propo-
sition 5.4] or [9, Theorem 4.1] and that it cannot be extended to p = 2 since
C2 o C2

∼= D8 is metacyclic. However, if p = 2 and S is metacyclic and not homo-
cyclic abelian, dihedral, semidihedral or generalized quaternion, then F is trivial
and the result holds (see [7] for a complete classification of fusion systems on meta-
cyclic p-groups). Also, 3.2.3 is considerably different than 3.2.1 since a regular
p-group can have an arbitrarily large nilpotence class.

Theorem 3.3 (Huppert). Let p be an odd prime and let F be a saturated fusion
system on a finite p-group S. If S is nonabelian and metacyclic, then [S,F ] < S.

Proof. By Corollary 3.2.4, we may assume that NS(F) = F . In this case, F is
constrained and so, by [2, Proposition 4.3], F = FS(G) for some finite group G with
Sylow p-subgroup S. Thus, [S,F ] = [S,FS(G)] < S by [13, Hilfssatz IV.8.5]. �
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4. p-power index transfer

In this section, we prove important properties of characteristic idempotents and
transfer maps for fusion systems that will be used in the next section to prove
Theorem T. The elementary situation in group theory we want to mimic is the
following: let G be a finite group with two subgroups S and L such that G = SL,
i.e. G = {xy | x ∈ S, y ∈ L}, and let N = S ∩L. Then we have a bijection between
left coset spaces

L/N
∼=−→ G/S

induced by the inclusion L ↪→ G. As a consequence, we get a commutative diagram

S // G
tGS // S/S′

N //

OO

L

OO

tLN // N/N ′.

ρ

OO

where tGS , tLN are group transfer maps, ρ is the map induced by the inclusion N ↪→ S,
and all other arrows are inclusions. Furthermore, if S is a Sylow p-subgroup of G,
LEG and we denote F = FS(G) and N = FN (L) the outer rectangle in the above
gives a commutative diagram

S
τFS,G // S/S′

N
τNN,L //

incl

OO

N/N ′.

ρ

OO

In particular, we have ρ(Im(τNN,L)) ⊆ Im(τFS,G). This inclusion between images of
transfers is the result we want to generalize to fusion systems. As cosets do not
make sense in the fusion system setting we use an alternative approach to prove
this inclusion in the group case.

Viewing G as an (S, S)-biset and L as an (N,N)-biset in the obvious way,there
is an isomorphism of (N,S)-bisets

S ×N L
∼=−→ G

induced by the product map (x, y) ∈ S × L 7→ xy ∈ G. Note that G and L are
characteristic bisets for the fusion systems F and N , respectively. We can rewrite
this isomorphism of (N,S)-bisets as the following equality in A(N,S):

[N, incl]SN ◦ L = G ◦ [N, incl]SN .

We give below an analogous equality in terms of characteristic idempotents, valid
for any saturated fusion system, whose proof was provided by Kári Ragnarsson
through private communication. (See also [20]) As we show in Corollary 4.3, this is
enough to deduce the inclusion between the images of the transfers. We refer the
reader to the appendix for the definition and properties of a saturated subsystem
of p-power index. Recall that ωF is the characteristic idempotent of F .

Theorem 4.1. Let F be a saturated fusion system on the p-group S. If N is a
normal subgroup of S containing OpF (S) and FN is the unique saturated subsystem
of F on N of p-power index, then
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(1) [N, incl]SN ◦ ωFN
= ωF ◦ [N, incl]SN ;

(2) ωFN
◦ [N, id]NS = [N, id]NS ◦ ωF .

Corollary 4.2. In the situation of Theorem 4.1, we have

(5) trSN ◦H∗(ωFN
;A) = H∗(ωF ;A) ◦ trSN : H∗(N ;A)→ H∗(F ;A)

(6) H∗(ωFN
;A) ◦ resSN = resSN ◦H∗(ωF ;A) : H∗(S;A)→ H∗(FN ;A)

for any Z(p)S-module A.

Proof. This follows from Theorem 4.1 and from the equalitiesH∗([N, incl]SN ) = resSN
and H∗([N, id]NS ) = trSN . �

Corollary 4.3. In the situation of Theorem 4.1, the diagram

S
τFS,ωF // S/S′

N
τ
FN
N,ωFN //

incl

OO

N/N ′

ρ

OO

where ρ is the map induced by the inclusion N ↪→ S, is commutative. In particular,
we have

ρ(Im(τFN

N )) ⊆ Im(τFS ).

Proof. By Corollary 4.2, we get the following commutative diagram

H1(S, S/S′)
H1(ωF ,S/S

′) //

resS
N

��

H1(S, S/S′)

resS
N

��
H1(N,S/S′)

H1(ωFN
,S/S′)

// H1(N,S/S′)

H1(N,N/N ′)
H1(ωFN

,N/N ′)
//

ρ∗

OO

H1(N,N/N ′).

ρ∗

OO

For a groupH, let πH : H → H/H ′ denote the canonical surjection. Since resSN (πS) =
ρ∗(πN ), chasing arrows gives

τFS,ωF ◦ inclSN = ρ ◦ τFN

N,ωFN
,

as desired. �

Now we turn to the proof of Theorem 4.1. First we need several lemmas.

Lemma 4.4 ([18]). Let ωF ∈ A(S, S)(p) be the characteristic idempotent of a
saturated fusion system F on a finite p-group S. Let T be a finite p-group and let
X ∈ A(S, T )(p). The following are equivalent:

(1) X ◦ ωF = X.
(2) X is right F-stable, in the sense that for all P ≤ S and ϕ ∈ HomF (P, S)

we have X ◦ [P,ϕ]SP = X ◦ [P, incl]SP .

Proof. This is proved for stable maps in [18, Corollary 6.4], but the same argument
works for X ∈ A(S, T )(p). �
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For the definition of invariant subsystem used in the next lemma, we refer the
reader to Definition A.3 in the appendix.

Lemma 4.5 ([19, Theorem 8.2]). Let F be a saturated fusion system on a finite
p-group S and let N be a saturated fusion subsystem of F on a strongly F-closed
subgroup N of S. Let ωN denote the characteristic idempotent of N . The following
are equivalent:

(1) N is an invariant subsystem of F .
(2) For every subgroup Q of N and every morphism ϕ ∈ HomF (Q,S), the

following identity in A(Q,Q)(p) holds:

[ϕ(Q), ϕ−1]QN ◦ ωN ◦ [Q,ϕ]NQ = [Q, id]QN ◦ ωN ◦ [Q, incl]NQ .

Proof of Theorem 4.1. First we remark that parts (1) and (2) of the theorem are
equivalent by applying the opposite homomorphism [19, Definition 3.19]. We pro-
ceed to prove part (1). Note that by Proposition A.7, N is a strongly F-closed
subgroup of F and FN is a invariant subsystem of F .

Since FN is a subsystem of F , the F-stability of ωF implies that ωF ◦ [N, incl]SN
is FN -stable. Hence, by Lemma 4.4, we have

ωF ◦ [N, incl]SN = ωF ◦ [N, incl]SN ◦ ωFN

and it suffices to show that

ωF ◦ [N, incl]SN ◦ ωFN
= [N, incl]SN ◦ ωFN

,

which, by applying the opposite homomorphism, is equivalent to

ωFN
◦ [N, id]NS ◦ ωF = ωFN

◦ [N, id]NS .

We prove this last equation by showing that ωFN
◦ [N, id]NS is right F-stable.

Now, for P ≤ S and ϕ ∈ HomF (P, S), the double coset formula gives

[N, id]NS ◦ [P,ϕ]SP =
∑

x∈N\S/ϕ(P )

[ϕ−1(ϕ(P ) ∩Nx), cx ◦ ϕ]NP .

Since N is normal in S we have Nx = N , and since N is strongly F-closed we have
ϕ(P ) ∩N = ϕ(P ∩N), so the equation simplifies to

[N, id]NS ◦ [P,ϕ]SP =
∑

x∈[N\S/ϕ(P )]

[P ∩N, cx ◦ ϕ]NP .

Using Lemma A.7 on (ϕ|P∩N )−1 we find t ∈ S and ψ ∈ HomFN
(P ∩ N,N) such

that ϕ|P∩N = ct ◦ ψ.
Using that [N, cx]NN ◦ [N, c−1

x ]NN = [N, id]NN in Lemma 4.5 for the invariant sub-
system FN we get that, for all x ∈ S, ωFN

◦ [N, cx]NN = [N, cx]NN ◦ ωFN
. This result
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applied in the previous equation give
(7)
ωFN

◦ [N, id]NS ◦ [P,ϕ]SP = ωFN
◦

∑
x∈N\S/ϕ(P )

[P ∩N, cx ◦ ϕ]NP

= ωFN
◦

∑
x∈N\S/ϕ(P )

[P ∩N, cx ◦ ct ◦ ψ]NP

= ωFN
◦

 ∑
x∈N\S/ϕ(P )

[N, cx ◦ ct]NN

 ◦ [P ∩N,ψ]NP

=

 ∑
x∈N\S/ϕ(P )

[N, cx ◦ ct]NN

 ◦ ωFN
◦ [P ∩N,ψ]NP

=

 ∑
x∈N\S/ϕ(P )

[N, cx ◦ ct]NN

 ◦ ωFN
◦ [P ∩N, incl]NP

= ωFN
◦

 ∑
x∈N\S/ϕ(P )

[N, cx ◦ ct]NN

 ◦ [P ∩N, incl]NP

= ωFN
◦

∑
x∈N\S/ϕ(P )

[P ∩N, cx ◦ ct]NP .

On the other hand, the double coset formula gives

(8) ωFN
◦ [N, id]NS ◦ [P, incl]SP = ωFN

◦
∑

y∈N\S/P

[P ∩N, cy]NP ,

and the result follows by showing that the expressions in (7) and (8) are equal. To be
able to compare the two sums we try to have the summation over the same indices.
Consider the maps α, β : S → A(P,N) defined by α(x) = ωFN

◦ [P ◦N, cx ◦ct]NP and
β(y) = ωFN

◦ [P ◦ N, cy]NP . For y ∈ S, the map β is constant on the double coset
NyP . Since N is normal in S, NP is the subgroup of S and we have NyP = yNP .
Hence

ωFN
◦

∑
x∈N\S/P

[P ∩N, cy]NP =
1
|NP |

∑
y∈S

β(y) .

For x ∈ S, reversing the algebraic manipulations leading to (7) we obtain that
α(x) = ωFN

◦ [P ∩N, cx ◦ ϕ]NP . Thus, α is constant on the double coset Nxϕ(P ),
and we get

ωFN
◦

∑
x∈N\S/ϕ(P )

[P ∩N, cx ◦ ct]NP =
1

|Nϕ(P )|
∑
x∈S

α(x) .

Observe that β(xt) = α(x) for all x ∈ S, so
∑
y∈S

β(y) =
∑
x∈S

α(x). Moreover |NP | =

|Nϕ(P )| since N is strongly F-closed. We conclude that

ωFN
◦ [N, id]NS ◦ [P,ϕ]SP = ωFN

◦ [N, id]NS ◦ [P, incl]SP .

This shows that ωFN
◦ [N, id]NS is F-stable, completing the proof. �
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5. Tate’s theorem

Recall that for a saturated fusion system F on a finite p-group S, TF denote the
subgroup of S containing S′ such that TF/S′ = Im(τFS ) and that by Proposition
2.7 we get

(9) S/S′ = [S,F ]/S′ × TF/S′.

Proposition 5.1. Let F be a saturated fusion system on S and N an invariant
subsystem of F on a strongly F-closed subgroup N of S. For every s ∈ S,

cs ◦ τFN

N,ωFN
◦ cs−1 = τFN

N,ωFN
.

In particular, TFN
E S.

Proof. This follows immediately from Lemma 4.5 and the definition of τFN

N,ωFN
. �

Proposition 5.2. Let F be a saturated fusion system on a finite p-group S,. If
[S,F ] ≤ N ≤ S, then TF ∩N = TFN

S′.

Proof. By Corollary 4.3, TFN
≤ TF . Using (9) for both S andN we get TF∩[S,F ] =

S′ and N = TFN
[N,FN ]. Dedekind’s lemma then gives:

TFN
S′ ≤ TF ∩N = TF ∩ TFN

[N,FN ] = TFN
(TF ∩ [N,FN ])

≤ TFN
(TF ∩ [S,F ]) = TFN

S′.

�

The following gives a crucial inductive argument.

Proposition 5.3. Let F be a saturated fusion system on a finite p-group S, and
let OpF (S) ≤ U E S. If TFU

[U, S] ≤ V ≤ U , then S/V ∼= U/V × TFV/V .

Proof. The hypotheses imply that [V, S] ≤ [U, S] ≤ V . So, V E S and U/V ≤
Z(S/V ). Moreover, by (9),

S = [S,F ]TF = OpF (S)S′TF = OpF (S)TF ≤ UTF = UTFV ≤ S
and hence S = U · (TFV ). It remains to show that TFV ∩ U = V . By Dedekind’s
lemma, (TFV )∩U = (TF ∩U)V , and hence it is also equivalent to TF ∩U ≤ V . We
proceed by induction on |S : U |. The case U = S being trivial, we assume U < S.
Choose a subgroup W of index p in S and containing U . As S/W is abelian, W con-
tains S′ and, hence, it contains [S,F ]. Since (FW )U = FU and OpFW

(W ) = OpF (S)
by Corollary A.14, we have OpFW

(W ) ≤ UEW and T(FW )U
[U,W ] ≤ V ≤ U . By in-

duction, it follows that U∩TFW
V = V . By Proposition A.7 and Proposition 5.1, we

have TFW
V ES. Let · denote the image modulo TFW

V . Since U/V ≤ Z(S/V ), we
haveW ≤ Z(S). Thus, S/Z(S) ∼= (S/W )/(Z(S/W ) is cyclic, and hence S is abelian.
Therefore S′ ≤ TFW

V and so by Proposition 5.2, TF ∩W = TFW
S′ ≤ TFW

V . So
TF ∩ U = TF ∩W ∩ U ≤ (TFW

V ) ∩ U = V , as desired. �

We are now ready to prove Theorem T.

Theorem T (Tate’s theorem for fusion systems). Let F be a saturated fusion
system on a finite p-group S, and let H be a saturated fusion subsystem of F on S.
The following are equivalent.

(1) EpF (S) = EpH(S).
(2) ApF (S) = ApH(S).
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(3) OpF (S) = OpH(S).

Proof. (3) ⇒ (2) ⇒ (1): Follows from Corollary A.6.
(1) ⇒ (3): Suppose (1). Then OpF (S) ≤ Φ(S)OpF (S) = Φ(S)OpH(S). Applying

Proposition 5.3 to U = OpF (S) and V = OpH(S)[OpF (S),H], we get S/V ∼= U/V ×
TFV/V . Since U/V ≤ Φ(S)/V = Φ(S/V ), it follows that S/V = TFV/V , and
hence U/V = 1, that is, OpF (S) = OpH(S)[OpF (S),H]. Let H = H/OpH(S) and
S = S/OpH(S). Then H = FS(S), and hence OpF (S) = [OpF (S),H] = [OpF (S), S].
Since S is a finite p-group, it follows that OpF (S) = 1, as desired. �

Proof of Corollary 1.2. From section 2, H1(F ;Fp) = Hom(S/[S,F ],Fp), and this is
clearly isomorphic to the elementary abelian p-group S/Φ(S)[S,F ] = S/EpF (S). For
the trivial fusion system FS(S) we obtain H1(FS(S);Fp) = Hom(S/[S, S],Fp) =
H1(S;Fp), which is isomorphic to S/Φ(S) = S/EpFS(S). From the hypothesis we
get EpFS(S) = EpF (S), and then by Tate’s theorem OpF (S) = OpFS(S) = {1}. This
can only be the case if F = FS(S). �

Appendix A. Invariant fusion systems

For the convenience of the reader, we recall definitions and some standard prop-
erties of p-power index subsystems, invariant subsystems and quotient systems used
in this paper.

In the proofs of our transfer theorems we deal with a special class of fusion
subsystems containing the hyperfocal subgroup.

Definition A.1. [3, Definition 3.1] Let F be a saturated fusion system on a finite
p-group S and H a fusion subsystem of F on a subgroup T of S. We say that
H is a p-power index subsystem of F if T contains OpF (S) and AutH(P ) contains
Op(AutF (P )) for all subgroups P of T .

Theorem A.2 ([3, Theorem 4.3]). Let F be a saturated fusion system on a finite
p-group S. There is a bijection between the subgroups of S containing OpF (S) and
the saturated p-power index subsystems of F .

The above result was stated (with an additional hypothesis) independently by
Puig in [17, 7.3]. Let Op(F) denote the unique saturated subsystem of F on OpF (S)
of p-power index and, more generally, let FU denote the unique saturated fusion
subsystem of of F on U of p-power index, for OpF (S) ≤ U ≤ S.

Our first goal is to see what more is true about U and FU if OpF (S) ≤ U E S.
This requires us to recall the definition of an F-invariant subsystem.

Definition A.3. Let F be a fusion system on a finite p-group S and H a fusion
subsystem of F on a subgroup T of S. We say that H is F-invariant if T is
strongly F-closed and if for every isomorphism ϕ : Q → P in F and any two
subgroups U, V ≤ Q ∩ P , we have

ϕ ◦HomH(U, V ) ◦ ϕ−1 ⊆ HomH(ϕ(U), ϕ(V )) .

In the presence of saturation, there is a very useful characterization of invariant
subsystems due to Puig [17, 6.6]. Note that in [15], Linckelmann calls saturated
invariant subsystems normal.
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Lemma A.4 ([1],[17]). Let F be a saturated fusion system on a finite p-group S. A
saturated fusion subsystem H on a strongly F-closed subgroup T of S is F-invariant
if and only if the following conditions are satisfied

(i) AutF (T ) ≤ Aut(H),
(ii) any morphism ψ ∈ HomF (P,Q) with P,Q ≤ T decomposes as ψ = φ ◦ χ|P

where φ ∈ HomH(χ(P ), Q) and χ ∈ AutF (T ).

We will use this to show that if N is a normal subgroup of S containing OpF (S),
then FN is F-invariant. First we will need the following lemma which will help us to
prove the morphism decomposition component of Aschbacher’s criterion. As in [3,
Definition 3.3], let Op∗(F) denote the smallest restrictive subcategory of F whose
morphism set contains Op(AutF (P )) for all subgroups P ≤ S. Using Alperin’s
fusion theorem and the fact that AutF (P ) = Op(AutF (P ))AutS(P ) for any fully
F-normalized subgroup P of S, one obtains the following decomposition lemma
where cs denotes the map induced by conjugation with an element s.

Lemma A.5. [3, Lemma 3.4] Let F be a saturated fusion system on a finite p-
group S. If P ≤ S and ψ ∈ HomF (P, S), then there exist s ∈ S and ϕ ∈
HomOp

∗(F)(cs(P ), S) such that ψ = ϕ ◦ cs|P .

We quickly mention the following useful corollary.

Corollary A.6. If F is a saturated fusion system on a finite p-group S, then
ApF (S) = [S, S]OpF (S).

Proof. With the notation in Lemma A.5 we have [ψ, u] = [ϕ◦cs, u] = [ϕ, cs(u)][cs, u] ∈
[S, S]OpF (S). �

Using Lemma A.5, we now show that normal subgroups containing the hyperfocal
subgroup give rise to invariant subsystems.

Proposition A.7. Let F be a saturated fusion system on S. If N is a normal
subgroup of S containing OpF (S), then

(1) N is strongly F-closed;
(2) FN is a saturated F-invariant fusion subsystem.

Proof. Let P ≤ N and let ψ ∈ HomF (P, S). By Lemma A.5, there exist s ∈ S and
φ ∈ HomOp

∗(F)(cs(P ), S) such that ψ = φ ◦ cs|P . If u ∈ P , then

ψ(u) = φ(cs(u))cs(u)−1cs(u),

where φ(cs(u))cs(u)−1 ∈ OpF (S) ≤ N and cs(u) ∈ N because N E S. Thus, ψ(u) ∈
N and N is strongly F-closed, proving (1), from which it follows that φ belongs to
FN . Invoking Lemma A.4, it remains to show that AutF (N) ≤ Aut(FN ). But this
comes from the uniqueness of the saturated fusion subsystems of p-power index on
a given subgroup of S containing OpF (S). Indeed, any morphism in α ∈ AutF (N)
gives a fusion preserving isomorphism from FN to αFN which is another saturated
fusion system on N containing Op(AutF (P )) for any P ≤ N . By the uniqueness of
such systems, we have α ∈ Aut(FN ). �

Finally, we show that Op(F) = Op(Op(F)). This is a result of Puig [17, 7.5] but
the proof we present here is based on [3]. We will need the concept of a quotient
system of a fusion system.
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Definition A.8. Let F be a fusion system on S and let T be a strongly F-closed
subgroup of S. By the quotient system F/T , we mean the fusion system on S/T ,
such that for any two subgroups U and V of S containing T , HomF/P (U/P, V/P )
is the set of homomorphisms induced by morphisms in HomF (U, V ).

When the fusion system is saturated Puig proves in [16] and [17, 6.3] that the
saturation is inherited by the quotient system.

Theorem A.9 ([17, 6.3]). Let F be a saturated fusion system on a finite p-group
S. If T is a strongly F-closed subgroup of S, then the quotient system F/T is
saturated.

In fact, the above result holds even if T is only weakly F-closed.

Theorem A.10 ([17, 6.3] or [6, 5.10]). Let F be a saturated fusion system on a
finite p-group S and let T be a strongly F-closed subgroup of S. If the P,Q ≤ S
and ϕ ∈ HomF (P,Q), then the induced map ϕ : PT/T → QT/T belongs to F/T .

An interesting connection between quotient systems and OpF (S) is the following
lemma.

Lemma A.11. Let F be a saturated fusion system on a finite p-group S and let T
be a strongly F-closed subgroup of S. If F/T is the trivial fusion system on S/T ,
then OpF (S) ≤ T .

Proof. If T ≤ Q ≤ S and ρ ∈ AutF (Q) is a p′-automorphism, then ρ induces the
identity on Q/T , implying that u−1ρ(u) ∈ T for any u ∈ Q. As these generate
OpF (S), the result follows. �

Getting back to the issue of proving Op(F) = Op(Op(F)), we use the following
notation S1 := OpF (S), F1 := Op(F), S2 := OpF1

(S1).

F S

F1 S1

Op(F1) S2

Using Theorem A.2, we need only show that S1 = S2.

Proposition A.12. The subgroup S2 is strongly F-closed.

Proof. Let P ≤ S2 and ψ ∈ HomF (P, S). By Lemma A.4 and Proposition A.7,
there is a decomposition ψ = φ ◦ α with α ∈ AutF (S1) and φ ∈ HomF1(α(P ), S1).
Since AutF (S1) ≤ Aut(F1), we have α(P ) ≤ S2 and thus ψ(P ) = φ(α(P )) ≤ S2

since S2 is strongly F1-closed. �

By the definition of the hyperfocal subgroup, F/S1 and F1/S2 are the trivial
fusion systems on S/S1 and S1/S2, respectively.

Proposition A.13. With the notation as above, we have S2 = S1. In particular
Op(F) = Op(Op(F)).
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Proof. By Lemma A.11, it will suffice to show that F/S2 is the trivial system on
S/S2. By Proposition A.9 and Proposition A.12, F/S2 is a saturated fusion system
on S/S2. If S2 ≤ Q ≤ S and ρ̄ ∈ AutF/S2(Q/S2) is a p′-automorphism, then there
exist ρ ∈ AutF (Q) lifting ρ̄ and, raising ρ to an appropriate p-th power, we may
suppose that ρ is also a p′-automorphism. Note that, in particular, ρ belongs to F1.
Now ρ induces p′-automorphisms on Q/(Q∩S1) and on (Q∩S1)/S2. The induced
p′-automorphism of Q/(Q∩S1) ∼= QS1/S1 belongs to F/S1 by Theorem A.10, and
so is the identity map because F/S1 is the trivial fusion system on S/S1. Similarly,
the induced p′- automorphism of (Q∩ S1)/S2 is the identity map. Hence ρ itself is
the identity map by [12, 5.3.2], implying the claim in step one. �

This proposition implies that the hyperfocal subsystem of any p-power index
subsystem of F is equal to the hyperfocal subsystem of F .

Corollary A.14. Let F be a saturated fusion system on a finite p-group S. If
OpF (S) ≤ T ≤ S and FT is the unique saturated p-power index fusion subsystem of
F on T , then OpFT

(T ) = OpF (S).

Proof. As Op(F) ⊆ FT ⊆ F we have that OpOp(F)(O
p
F (S)) ≤ OpFT

(T ) ≤ OpF (S).
Proposition A.13 tells us that the first and the last term in the inequality are equal
and the corollary follows. �
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