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Abstract. We show that every saturated fusion system can be realized as a full subcate-
gory of the fusion system of a finite group. The result suggests the definition of an ‘exoticity
index’ and raises some other questions which we discuss.

1. Introduction

A saturated fusion system F on a finite p-group S is a category whose objects are the
subgroups of S and whose morphisms satisfy certain axioms mimicking the behavior of
conjugation maps of finite groupsG having S as a Sylow p-subgroup. The axioms of saturated
fusion systems were first formulated by Puig in the early 1990s; subsequently the theory of
fusion systems (and associated p-local finite groups) drew much attention from homotopy
theorists as well as from finite group theorists and representation theorists. We refer the
reader to [1] for definitions and some basic properties of saturated fusion systems.

An important feature of fusion systems is that, in them, one sees the action (fusion pattern
of finite groups), but not the agent of the action (the finite groups inducing the action).
Indeed, there are saturated fusion systems, called exotic fusion systems, which are not fusion
systems of any finite groups. On the other hand, Robinson [5] and Leary and Stancu [2]
independently showed that every saturated fusion system can be realized as a fusion system
of a possibly infinite group.

In [1, §5], while determining the cohomology ring of a p-local finite group with coefficients
in Fp, Broto, Levi, and Oliver showed that every saturated fusion system F on a finite p-
group S has a (non-unique) S-S-biset X with certain properties formulated by Linckelmann
and Webb which parallel the axioms of saturated fusion systems.(See Theorem 2) Conversely,
Puig [3, Ch. 21] and Ragnarsson and Stancu [4] independently showed that given such an
S-S-biset X (called by them an F -basic set and a characteristic biset for F , respectively)
one can recover the original saturated fusion system F on S.

In this paper, we point out one significant consequence of Puig’s result in [3, Ch. 21] which
is apparently not well known in the form that we are going to present, and discuss some
questions coming out of it. Let G be a finite group, and let S be a (not necessarily Sylow)
p-subgroup of G. We denote by FS(G) the fusion system on S such that for every Q,R ≤ S
we have

HomFS(G)(Q,R) = {ϕ : Q→ R | ∃x ∈ G s.t. ϕ(u) = xux−1 ∀u ∈ Q}.

Theorem 1. For every saturated fusion system F on a finite p-group S, there is a finite
group G having S as a subgroup such that F = FS(G).
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At a first glance, this theorem seems to contradict the Sylow axiom of saturated fusion
systems. But when S0 is a Sylow p-subgroup of G containing S as a fully FS0(G)-normalized
subgroup (and such an S0 always exists), what the Sylow axiom requires is exactly that
NS0(S) = SCS0(S), and this is certainly possible. Note also that the theorem claims that
any saturated fusion system can be viewed as a full subcategory of a fusion system of some
finite group, a stronger statement than the well-known fact that any saturated fusion system
is a subcategory of a fusion system of some finite group.

After reviewing the theory of bisets for fusion systems, we give an elementary proof of
Theorem 1, and discuss the structure of the group G and the embedding of S into G in §2.
Then we raise some questions concerning Theorem 1 and give some partial answers in §3.

2. Bisets and finite groups realizing fusion systems

First let us fix notations. Let S be a group. An S-S-biset is a set with left and right
S-action such that (ux)v = u(xv) for x ∈ X, u, v ∈ S. An S-S-biset X can be viewed as an
(S × S)-set via (u, v) · x = uxv−1 for x ∈ X, u, v ∈ S and vice versa. From now on, we will
view S-S-bisets as (S × S)-sets using this correspondence whenever it is convenient. For a
subgroup Q of S and a group homomorphism ϕ : Q→ S, let

S ×(Q,ϕ) S = (S × S)/ ∼

where (xu, y) ∼ (x, ϕ(u)y) for x, y ∈ S, u ∈ Q, and let 〈x, y〉 be the ∼-equivalence class
containing (x, y). One can view this set as an S-S-biset by t·〈x, y〉 = 〈tx, y〉, 〈x, y〉·t = 〈x, yt〉
for x, y, t ∈ S. It is a transitive S-S-biset which is free on the right; it is also free on the left
if ϕ is injective. Viewed as an (S × S)-set, it is isomorphic to

(S × S)/∆ϕ
Q

where ∆ϕ
Q = {(u, ϕ(u)) : u ∈ Q}. Finally, for an S-S-biset X, Q ≤ S, and a group homo-

morphism ϕ : Q → S, let QX denote the Q-S-biset obtained from X by restricting the left
S-action to Q, and ϕX the Q-S-biset obtained from X where the left Q-action is induced
by ϕ.

Theorem 2 ([1, 5.5]). Let F be a saturated fusion system on a finite p-group S. Then there
is a finite S-S-biset X with the following properties:

(1) Every transitive subbiset of X is isomorphic to S ×(Q,ϕ) S for some Q ≤ S and
ϕ ∈ HomF(Q,S).

(2) For any Q ≤ S and any ϕ ∈ HomF(Q,S), the Q-S-bisets QX and ϕX are isomorphic.
(3) e(X) := |X|/|S| 6≡ 0 mod p.

In fact, one can easily show that X must have the same (positive) number of copies of the
transitive subbiset S ×(S,α) S for each α ∈ OutF(S). In the case where F = FS(G) for some
finite group G having S as a Sylow p-subgroup, one can take X = G as an S-S-biset with
the action of S given by left and right multiplication in the group G.

Theorem 3 ([3, 21.2, 21.9]). Let F be a saturated fusion system on a finite p-group S. Let

X =
n⊔
i=1

S ×(Qi,ϕi) S
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be an S-S-biset given by Theorem 2 with Q1 = S, ϕ1 = idS. Let Q ≤ S and let ϕ : Q → S
be an injective group homomorphism. Then the following are equivalent:

(1) ϕ is a morphism in F .
(2) The Q-S-bisets QX and ϕX are isomorphic.
(3) ϕ is a morphism of FS(G), where G = Aut(1X), that is, the group of bijections of

the set X preserving the right S-action, and S is identified with a subgroup of G via

S
ι−→ Aut(1X) = G

u 7→ (x 7→ ux)

(4) The fixed-point set X∆ϕ
Q 6= ∅.

Proof. (1) ⇒ (2): by Theorem 2.
(2) ⇔ (3): (2) ⇔ there exists an automorphism σ : X → X of a right S-set such that

σ(ux) = ϕ(u)σ(x) for all x ∈ X, u ∈ Q ⇔ there exists σ ∈ G such that ι(ϕ(u)) = σι(u)σ−1

for all u ∈ Q ⇔ (3).

(2) ⇒ (4): Suppose QX ∼= ϕX as Q-S-bisets. Then we have X∆ϕ
Q = (QX)∆ϕ

Q ∼= (ϕX)∆ϕ
Q =

X∆
idϕ(Q)
ϕ(Q) , and this fixed-point set contains a point ∆idS

S ∈ (S × S)/∆idS
S .

(4) ⇒ (1): Suppose X∆ϕ
Q 6= ∅. Then there are some i and x, y ∈ S such that (x, y)∆ϕi

Qi
∈

X∆ϕ
Q . This means that (ux, ϕ(u)y)∆ϕi

Qi
= (x, y)∆ϕi

Qi
for all u ∈ Q, or that ϕ(u) = yϕi(x

−1ux)y−1

for all u ∈ Q. Thus ϕ belongs to F . �

Now Theorem 1 follows immediately. Let us keep the notations of Theorem 3 and analyze
the automorphism group G and the embedding ι : S → G. Since 1X is a free right S-set, it
is isomorphic to the disjoint union of e(X) copies of the regular right S-set S and hence

G ∼= S o Σe(X).

As we can see, G has a surprisingly simple shape. What does the trick is the way S embeds
into G, which encodes fusion data. Let us take a closer look at this embedding. For each
i, fix a set {tij}j∈Ji

of representatives of the left cosets of Qi in S. Set ei = |S : Qi| = |Ji|.
Note that e(X) =

∑
i ei. For each u ∈ S, let σi(u) be the permutation of the index set Ji

given by utijQi = tiσi(u)(j)Qi. Then we have a decomposition of right S-sets

S ×(Qi,ϕi) S =
⊔
j∈Ji

〈tij, S〉,

where 〈tij, S〉 := {〈tij, x〉 | x ∈ S} is a regular right S-set. So we have

Gi := Aut(1(S ×(Qi,ϕi) S)) ∼= S o Σei
.

But S×(Qi,ϕi) S is also a left S-set. Thus ι(S) is contained in the direct product
∏

iGi ≤ G.
Still writing ι : S →

∏
iGi for the induced map and πi :

∏
iGi → Gi for the canonical

projection, we have

πi(ι(u))(〈tij, x〉) = 〈utij, x〉 = 〈tiσi(u)(j), ϕi(t
−1
iσi(u)(j)utij)x〉

for u, x ∈ S. So πi(ι(u)) in Gi viewed as an element of S o Σei
is

(ϕi(t
−1
iσi(u)(j)utij);σi(u))j∈Ji

.
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Note that the component of ι(u) in the base subgroup B := S × · · · × S (e(X) times)
depends on the choice of coset representatives of Qi’s in S, while the component of ι(u) in
the wreathing part Σe(X) does not. Note also that the image ι(S) of S in G ∼= S o Σe(X) is
not necessarily contained in the base subgroup B. Indeed, since B is normal in G, S ∩ B
is strongly F -closed, meaning that for every Q ≤ S ∩ B and ϕ ∈ HomF(Q,S), we have
ϕ(Q) ≤ S ∩ B. So if F has no strongly closed subgroups, then we have S ∩ B = 1. Finally,
we point out that the group G is in general much larger than is necessary:

Example 4. Let H = SoE, where S is a finite p-group and E is a p′-group of automorphisms
of S. Write e = |E|. Then one can take X = H as an S-S-biset for the saturated fusion
system FS(H) with the action of S given by left and right multiplication in the group H.
Then we have G = Aut(1X) = S o Σe with

S
ι−→ S o Σe

∼= G

u 7→ (α(u); id)α∈E,

and FS(H) = Fι(S)(G).

3. Some questions and answers

With Theorem 1 in mind, we make the following definition.

Definition 5. Let F be a saturated fusion system on a finite p-group S. Let the exoticity
index of F be the minimum of the set

{logp |S0 : S| | S ≤ S0 ∈ Sylp(G) for some finite group G such that F = FS(G)}.

By Theorem 1, the exoticity index of a saturated fusion system F on a finite p-group S
is always a (finite) nonnegative integer, and it is nonzero if and only if F is exotic. It is
natural to ask the following question.

Question 6. Given an exotic fusion system F on a finite p-group S, what is the exoticity
index of F , and what are the finite groups G achieving the exoticity index?

The upper bound on the exoticity index given by the construction in Theorem 3 is quite
large. Explicitly it is

(e(X)− 1) logp |S|+
∑
i≥1

⌊
e(X)

pi

⌋
.

The following is another natural question, which can be seen as a sort of converse of the
previous question.

Question 7. Given a finite group G with Sylow p-subgroup S and T ≤ S, when is FT (G)
saturated?

Note that by Theorem 1, every saturated fusion system arises in this way. Here we give a
criterion in a rather simple case.

Proposition 8. Let F be a saturated fusion system on a finite p-group S. Let T ≤ S be
strongly F-closed, and let FT denote the full subcategory of F whose objects are the subgroups
of T . Then FT is a saturated fusion system on T if and only if S = TCS(T ).
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Proof. Clearly FT is a fusion system on T . We use Stancu’s characterization [6] of saturated
fusion systems. Since T is strongly F -closed, it is normal in S, and in particular fully
F -normalized. By the Sylow axiom for F , AutS(T ) is a Sylow p-subgroup of AutF(T ) =
AutFT

(T ). Thus AutT (T ) is a Sylow p-subgroup of AutFT
(T ) iff AutT (T ) = AutS(T ) iff

S = TCS(T ).
Now we assume S = TCS(T ) and show that FT satisfies the extension axiom. Note that

for Q ≤ T , we have NS(Q) = NT (Q)CS(T ) and NT (Q)ENS(Q). Thus

NS(Q)/NT (Q) ∼= CS(T )/(CS(T ) ∩NT (Q)) = CS(T )/Z(T ),

which is independent of Q. Together with the assumption that T is strongly F -closed, this
shows that Q is fully FT -normalized iff Q is fully F -normalized. Thus the extension axiom
applied to F ensures that FT satisfies the extension axiom too. �
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