
ANALOGUES OF GOLDSCHMIDT’S THESIS FOR FUSION SYSTEMS

JUSTIN LYND AND SEJONG PARK

Abstract. We extend the results of David Goldschmidt’s thesis concerning fusion in
finite groups to saturated fusion systems.

1. Introduction

Just recently, David Goldschmidt published his doctoral thesis [6] which had gone un-
published since 1968. In it he shows that if G is a finite simple group and T ∈ Syl2(G),
then the exponent of Z(T ) (and hence of T ) is bounded by a function of the nilpotence
class of T . He also includes in the write-up a fusion factorization result for an arbitrary
finite group involving 01Z and the Thompson subgroup. In this paper, we generalize these
results to arbitrary saturated fusion systems. Throughout this paper, unless otherwise in-
dicated, p denotes an arbitrary prime number, n a nonnegative integer, and P a nontrivial
finite p-group.

Theorem 1. Suppose P is of nilpotence class at most n(p − 1) + 1 and F is a saturated
fusion system on P with Op(F) = 1. Then Z(P ) has exponent at most pn.

This bound is sharp for all n and p; see Example 1 in Section 3. This also gives a bound
on the exponent of P itself, which we certainly do not expect to be sharp.

Corollary 1. Suppose P is of nilpotence class at most n(p − 1) + 1 and F is a saturated

fusion system on P with Op(F) = 1. Then P has exponent at most pn2(p−1)+n.

Proof. By Theorem 1, Z(P ) has exponent at most pn. We claim that then every upper
central quotient also has exponent at most pn, and the proof is by induction. Let k > 1, and
let x ∈ Zk+1(P ). If xpn

does not lie in Zk(P ), then there exists t ∈ P such that [xpn
, t] does

not lie in Zk−1(P ). But by a standard commutator identity, [xpn
, t] ≡ [x, t]p

n ≡ 1 modulo
Zk−1(P ), since by induction Zk(P )/Zk−1(P ) has exponent at most pn. This contradiction
establishes the claim. The nilpotence class of P is at most n(p− 1) + 1 by hypothesis, so
the exponent of P is at most pn(n(p−1)+1). �

Theorem 1 follows from the following, which we prove as Theorem 5 below.

Theorem 2. Suppose P has nilpotence class at most n(p − 1) + 1 and F is a saturated
fusion system on P . Then 0n(Z(P )) is normal in F .

In the course of proving this last result in the group case for p = 2, Goldschmidt reduces
to the situation in which a putative counterexample G has a weakly embedded 2-local
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subgroup. Then his post-thesis classification [5] of such groups gives a contradiction. How-
ever, any weakly embedded 2-local M controls 2-fusion, and so the 2-subgroup O2(M) will
show up as a normal subgroup in the fusion system, a shadow of the weakly embedded
phenomenon. This allows the corresponding fusion result to hold for an arbitrary prime.

We note that Theorem 2 has the following corollary in the category of groups.

Theorem 3. Let P be a nonabelian Sylow p-subgroup of a finite group G. Suppose that
P has nilpotence class at most n(p − 1) + 1 and that G has no nontrivial strongly closed
abelian p-subgroup. Then Z(P ) has exponent at most pn.

Proof. We can form the saturated fusion system FP (G), and Theorem 2 then says that
0n(Z(P )) is strongly F -closed (see Proposition 1 below), that is, strongly closed in P with
respect to G. Thus, 0n(Z(P )) must be trivial. �

Using a recent theorem of Flores and Foote [4], in which they use the Classification of
Finite Simple Groups to describe all finite groups having a strongly closed p-subgroup, we
get the following direct generalization of Goldschmidt’s main theorem.

Corollary 2. Let P be a nonabelian Sylow p-subgroup of a finite simple group G. If P has
nilpotence class at most n(p− 1) + 1, then Z(P ) has exponent at most pn.

Proof. Suppose to the contrary that A := 0n(Z(P )) 6= 1. Then by Theorem 2, A is a
nontrivial strongly closed abelian subgroup of P . By inspection of the simple groups arising
in the conclusion of the main theorem in [4], either P is abelian or Z(P ) has exponent p.
Since P is nonabelian, we must have n > 1 and the corollary follows. �

However, if the hypotheses of Corollary 2 are weakened slightly to assume only that
F ∗(G) is simple, then the statement is false for all odd primes p, as the following example
shows. Let H = PSL(2, q) with q = rp for some prime power r and with the p-part of q− 1
equal to pe. Let σ be a field automorphism of Fq of order p and G = H〈σ〉. If P is a Sylow
p-subgroup of G, then P has nilpotence class 2, while Z(P ) has exponent pe−1, and we may
take e as large as we like.

Recall the Thompson subgroup J(P ), defined as the group generated by the abelian
subgroups of P of maximum order. We also prove the following

Theorem 4. Let F be a saturated fusion system on P . Then

F = 〈 CF(01(Z(P )), NF(J(P )) 〉.

2. Definitions and notation

We collect in this section the necessary information on fusion systems. Since there are
by now many good sources of this knowledge [2], in particular in background sections of
papers [3, 7] to which this one is similar, we will content ourselves to be brief.

Let P be a finite p-group. A category on P is a category F with objects the subgroups
of P and whose morphism sets HomF(Q,R) consist of injective group homomorphisms
subject to the requirement that every morphism in F is a composition of an isomorphism
in F and an inclusion.
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Let F be a category on the p-group P . Let Q and R be subgroups of P . We write
AutF(Q) for HomF(Q,Q), HomP (Q,R) for the set of group homomorphisms in F from Q
to R induced by conjugation by elements of P , and OutF(Q) for AutF(Q)/AutQ(Q).

We say Q is

• fully F-normalized if |NP (Q)| > |NP (Q′)| for all Q′ which are F -isomorphic to Q,
• fully F-centralized if |CP (Q)| > |CP (Q′)| for all Q′ which are F -isomorphic to Q,
• F-centric if CP (Q′) 6 Q′ for all Q′ which are F -isomorphic to Q, and
• F-radical if Op(OutF(Q)) = 1.

For a morphism ϕ : Q→ P in F , let

Nϕ = {x ∈ NP (Q) | ∃y ∈ NP (ϕ(Q)), ∀z ∈ Q, ϕ(xzx−1) = yϕ(z)y−1}

Note that we have QCP (Q) 6 Nϕ for all ϕ : Q→ P in F .
A saturated fusion system on P is a category F on P whose morphism sets contain all

group homomorphisms induced by conjugation by elements of P , and which satisfies the
following two axioms.

• (Sylow axiom) AutP (P ) is a Sylow p-subgroup of AutF(P ), and
• (Extension axiom) for every isomorphism ϕ : Q → Q′ with Q′ fully F -normalized,

there exists a morphism ϕ̃ : Nϕ → P such that ϕ̃ |Q = ϕ.

For the remainder of the paper, F will denote a saturated fusion system on the finite
p-group P , even though we will often drop the adjective “saturated”.

For Q 6 P , we define the following local subcategories of F . The normalizer NF(Q) of
Q in F is the category on NP (Q) such that for any R1, R2 6 NP (Q), HomNF (Q)(R1, R2)
consists of those ϕ : R1 → R2 in F for which there is an extension ϕ̃ : QR1 → QR2 of
ϕ in F such that ϕ̃(Q) = Q. The centralizer CF(Q) of Q in F is the category on CP (Q)
such that for any R1, R2 6 CP (Q), HomCF (Q)(R1, R2) consists of those ϕ : R1 → R2 in F
for which there is an extension ϕ̃ : QR1 → QR2 of ϕ in F such that ϕ̃ |Q = idQ. Lastly,
we define NP (Q)CF(Q) as we do the normalizer of Q, but only allow those ϕ : R1 → R2

whose extensions ϕ̃ restrict to automorphisms in AutP (Q).
If Q is fully F -normalized, then NF(Q) is a saturated fusion system. And if Q is fully
F -centralized, then both CF(Q) and NP (Q)CF(Q)) are saturated fusion systems.

A characteristic functor is a mapping from finite p-groups to finite p-groups which takes
Q to a characteristic subgroup W (Q) of Q such that for any group isomorphism ϕ : Q→ Q′,
ϕ(W (Q)) = W (Q′). We say that a characteristic functor is positive provided W (Q) 6= 1
whenever Q 6= 1. The center functor, sending a finite p-group P to its center, is a positive
characteristic p-functor.

A conjugation family for F is a set C of nonidentity subgroups of P such that F is
generated by compositions and restrictions of morphisms in AutF(Q) as Q ranges over
C. Alperin’s fusion theorem for saturated fusion systems says that the set of F -centric,
F -radical subgroups is a conjugation family for F , and we call this the Alperin conjugation
family.

Recall that a subgroup W of P is said to be weakly F-closed if for each ϕ ∈ HomF(W,P ),
ϕ(W ) = W . The subgroup W is strongly F-closed if for each subgroup W ′ of W and each
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ϕ ∈ HomF(W ′, P ), ϕ(W ′) 6 W . We say W is normal in F if F = NF(W ), and denote by
Op(F) the largest such subgroup of P .

3. Proofs

The following proposition is slightly misstated in [1, Proposition 1.6], where a normal W
is claimed to be contained in every radical subgroup. For this reason, we state a correct
version here, but the proof in [1] goes through with little modification.

Proposition 1. Let F be a fusion system on P and W 6 P . The following are equivalent.

(a) W is normal in F .
(b) W is strongly F-closed and is contained in every F-centric, F-radical subgroup of

P .
(c) W is weakly F-closed and is contained in every subgroup of some conjugation family

for F .

Lemma 1. Suppose P has nilpotence class at most n(p− 1) + 1. If Q is a subgroup of P
with CP (0n(Z(Q))) = Q, then Q = P .

Proof. This is Corollary 6 in [6]. �

Proposition 2. Let W be a characteristic subfunctor of the center functor such that
W (P ) 6 W (Q) for all Q 6 P with CP (Q) 6 Q. Then for any fusion system F on
P , either there exists a proper F-centric subgroup Q of P such that CP (W (Q)) = Q, or
W (P ) is normal in F .

Proof. Suppose there is no proper F -centric subgroup Q of P with CP (W (Q)) = Q. We
will show that W (P ) is weakly closed in F . In this case, W (P ) 6 Z(P ) is contained in
every F -centric subgroup of P , hence in every member of an Alperin conjugation family
for F . Thus, by Proposition 1, W (P ) is in fact normal in F .

Let Q be a fully F -normalized, F -centric subgroup of P . Then by hypothesis, W (P ) 6
W (Q). Let α ∈ AutF(Q). By Alperin’s fusion theorem, it suffices to show that W (P )
is invariant under α. We do this by induction on |P : Q|. If Q = P , then α(W (P )) =
W (P ) since W (P ) is a characteristic subgroup of P , so suppose that Q < P . Then
CP (W (Q)) > Q. Let β : W (Q) → R be an isomorphism in F with R fully F -normalized.

Then by the extension axiom, β extends to a map β̃ : CP (W (Q)) → P . By induction

and Alperin’s fusion theorem, we have that β(W (P )) = β̃(W (P )) = W (P ). But βα|W (Q)

also extends to CP (W (Q)), and βα(W (P )) = W (P ) by the same reasoning. Therefore
α(W (P )) = β−1βα(W (P )) = W (P ), and this completes the proof. �

We are now ready to prove Theorem 2.

Theorem 5. Suppose P has nilpotence class at most n(p−1) +1 and F is a fusion system
on P . Then 0n(Z(P )) is normal in F .

Proof. Let W = 0nZ. If CP (Q) 6 Q 6 P , then Z(P ) 6 Z(Q) and so W (P ) = 0n(Z(P )) 6
0n(Z(Q)) = W (Q). Thus W satisfies the hypotheses of Proposition 2, and Lemma 1 says
that there is no proper subgroup of P with CP (W (Q)) = Q. Therefore by Proposition 2,
0n(Z(P )) is normal in F . �
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Theorem 1 now follows immediately from Theorem 2. The following example generalizes
a remark of Goldschmidt’s in [6], and shows that the bound on the exponent of Z(P ) given
in Theorem 1 is sharp.

Example 1. Let p be an odd prime, let G = SL(p + 1, q) with |q − 1|p = pn, and let P
be a Sylow p-subgroup of G. Then P is a isomorphic to Cpn o Cp. Let x be the wreathing
element, a p-cycle permutation matrix, generating the Cp on top. Then P ′ = [P, P ] is
isomorphic to p− 1 copies of Cpn . Let P0 = 〈P ′, x〉. As Z(P ) has exponent pn, the bound
in Theorem 1 is sharp provided the class of P is n(p − 1) + 1. For this it suffices to show
that P0 has class n(p− 1), that is, P0 is of maximal class.

By an inductive argument, we quickly reduce to the case where n = 2. Suppose n = 2
and let a1, . . . , ap−1 be generators for the p − 1 cyclic groups of order p2. Then x sends
ai to ai+1 for 1 6 i 6 p − 2 and ap−1 to a−1

1 · · · a−1
p−1. Factoring by Ω1(P

′) we have that
[P ′/Ω1(P

′), x; p− 1] = 1 so that [P ′, x; p− 1] 6 Ω1(P
′). By direct computation,

[a1, x; p− 1] =

p−2∏
k=0

a
(−1)k(p−1

k )−1

k+1 .

The sum of the exponents of the ai in [a1, x; p− 1] is

−p+ 1 +

p−2∑
k=0

(−1)k

(
p− 1

k

)
= −p+ 1 + (1− 1)p−1 −

(
p− 1

p− 1

)
= −p.

This means that [a1, x; p − 1] lies outside the sum-zero submodule (which is the unique
maximal submodule) for the action of x on Ω1(P

′), and so [P ′, x; p−1] = Ω1(P
′). It follows

that P0 has class 2(p− 1), as claimed.
Therefore P has class n(p − 1) + 1 while Z(P ) has exponent pn, and so the bound of

Theorem 1 is sharp.

We now turn to the proof of Theorem 4. We will need a version of the Frattini argument
due to Onofrei and Stancu [8, Proposition 3.7].

Proposition 3. Let F be a fusion system on P and suppose Q 6 P is normal in F . Then

F = 〈PCF(Q), NF(QCP (Q)) 〉.

Lemma 2. Suppose P is a p-group, Q P P , and CP (01(Z(Q))) = Q. Then J(P ) 6 Q.

Proof. This is Lemma 8 in [6]. �

The Thompson ordering on subgroups of P is defined by

Q 6P Q′ iff |NP (Q)| 6 |NP (Q′)| or |NP (Q)| = |NP (Q′)| and |Q| 6 |Q′|.

We are now ready to prove

Theorem 6. Let F be a fusion system on P . Then

F = 〈 CF(01(Z(P )), NF(J(P )) 〉.
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Proof. Write F ′ = 〈CF(01(Z(P ))), NF(J(P )) 〉. Since each F -centric subgroup of P con-
tains Z(P ), it suffices by Alperin’s fusion theorem to prove that NF(Q) ⊆ F ′ for all Q 6 P
with Z(P ) 6 Q. We do this by induction on the Thompson ordering. If Q = P , then
NF(Q) ⊆ NF(J(P )) ⊆ F ′, since J(P ) is a characteristic subgroup of P , so suppose that
Q <P P with Z(P ) 6 Q and that NF(Q′) ⊆ F ′ for all Q′ >P Q with Z(P ) 6 Q′.

First we reduce to the case where Q is fully F -normalized. Suppose Q is not fully
F -normalized. By [7, Lemma 2.2], there exists α : NP (Q) → P such that α(Q) is fully
F -normalized. Note that α(Q) >P Q, and since R >P Q for every R 6 P with |NP (Q)| 6
|R|, we have by induction and Alperin’s fusion theorem that α is in F ′. Also note that
α(NP (Q)) 6 NP (α(Q)); we still denote by α the induced morphism NP (Q) → NP (α(Q)).
Let ϕ : R1 → R2 be a morphism in NF(Q), and let ϕ̃ be an extension to QR1 6 NP (Q).
Then αϕ̃α−1 : α(Q)α(R1) → α(Q)α(R2) restricts to an automorphism of α(Q), whence is
contained in F ′ by induction. But α is in F ′, so ϕ is in F ′ too. Thus NF(Q) ⊆ F ′, so
henceforth we assume Q is fully F -normalized.

For brevity, set W = 01(Z(Q)), N = NP (Q), and C = CN(W ). Then C P N , so that
NP (C) > N . Suppose first that C = Q. Then by Lemma 2, we have J(N) 6 Q. As
J(N) P NP (N), either J(N) >P Q or N = P . In the first case, since Z(P ) 6 J(N)
and J(N) = J(Q) is a characteristic subgroup of Q, we apply induction to get NF(Q) ⊆
NF(J(N)) ⊆ F ′. In the second case we have J(P ) 6 Q, so J(P ) = J(Q), and hence
NF(Q) ⊆ NF(J(P )) ⊆ F ′ here as well.

Assume now that C > Q. Then C >P Q because C P N . Looking to see that W P
NF(Q), we apply Proposition 3 in this normalizer to get

NF(Q) = 〈 NCNF (Q)(W ), NNF (Q)(C) 〉.

Since C contains Z(P ), we have by induction that NNF (Q)(C) ⊆ NF(C) ⊆ F ′, so to
complete the proof, it suffices to show that NCNF (Q)(W ) ⊆ CF(01(Z(P ))). To see this, let
R1, R2 6 N , and let ϕ : R1 → R2 be a morphism in NCNF (Q)(W ). Then there exists x ∈ N
such that ϕ extends to an F -map ϕ̃ : WR1 → WR2 with ϕ̃ |W = cx, the conjugation map
induced by x. But since Q contains Z(P ), it follows that W = 01(Z(Q)) > 01(Z(P )),
and so ϕ̃ |01(Z(P )) = cx |01(Z(P )) = id01(Z(P )). Therefore, ϕ ∈ CF(01(Z(P ))), as was to be
shown. We conclude that NF(Q) ⊆ F ′ and the result follows. �

Remark 1. In [3, Theorem 4.1], the authors prove in part that for any fusion system F
on P , 01(Z(P )) ∩ Z(NF(J(P ))) 6 Z(F) by reducing to the group case. Theorem 4 gives
a reduction-free proof of this fact.
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