
THE GLUING PROBLEM FOR SOME BLOCK FUSION SYSTEMS
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Abstract. We answer the gluing problem of blocks of finite groups [7, 4.2] for tame blocks and
the principal p-block of PSL3(p) for p odd. In particular, we show that the gluing problem for the
principal p-block of PSL3(p) does not have a unique solution when p ≡ 1 mod 3.

1. Introduction

Let P be a finite p-group for some prime p. A fusion system F on P is a category whose objects
are the subgroups of P and whose morphisms are injective group homomorphisms satisfying some
axioms formulated by Puig in the early 1990s.(cf. [10]) Axioms of fusion systems are modeled
on common features of conjugation maps in finite groups having P as a Sylow p-subgroup and
conjugation maps of Brauer pairs of blocks of finite groups having P as a defect group. As such,
fusion systems provide a uniform framework for studying local structures of finite groups and blocks
of finite groups. For further details and terminology, we refer the reader to [3]. All fusion systems
appearing in this paper are saturated, and hence we drop the adjective ‘saturated’ and call them
simply fusion systems.

One of the main themes of modular representation theory is the global-local principle, which is
exemplified by a celebrated conjecture of Alperin [1]. Alperin’s weight conjecture, as it is usually
called, predicts that a global invariant, the number of isomorphism classes of simple modules, of a
block is equal to a local invariant, the number of conjugacy classes of weights, of the block, which
in turn is determined by the fusion system of the block on its defect group plus some extra data.
See [4, §5] for more details. The gluing problem of blocks [7, 4.2] asks if these extra data can be
encoded into a single cohomology class of a certain category related to the fusion system of the
block. If so, one obtains a reformulation of Alperin’s weight conjecture [7, 4.5, 4.7][8, 4.3] which
provides a structural viewpoint.

In this paper, we solve the gluing problem for some blocks. Let us first explain the gluing problem
more precisely. Let F be a fusion system on a finite p-group P and let k be an algebraically closed
field. Let [S(Fc)] be the poset of F-conjugacy classes [σ] of chains

σ = (R0 < R1 < · · · < Rn), n ≥ 0,

of F-centric subgroups Ri of P , with partial order induced by taking subchains. Here Fc denotes the
full subcategory of F consisting of the F-centric subgroups of P , and S(Fc) denotes the subdivision
of the EI-category Fc. For further details and precise definitions, we refer the reader to [8]. Also,
let

AutF (σ) = {α ∈ AutF (Rn) | α(Ri) = Ri for all i}.
For any positive integer i, there is a covariant functor

AiF : [S(Fc)]→ Ab
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sending [σ] ∈ [S(Fc)] to H i(AutF (σ), k×), where the poset [S(Fc)] is viewed as a category with
the morphisms given by the partial order and Ab denotes the category of abelian groups.

Given a functor from a small category to an abelian category, one can define the cohomology of
the small category with coefficients in the functor much the same way as one defines the cohomology
of a group with coefficients in a module. See [12] for further details. Using the contractiblity of
[S(Fc)] proved in [9, 1.1], Linckelmann finds in [6] that for every fusion system F there exists an
exact sequence in cohomology as follows:

Theorem 1.1 ([6, 1.1]). Let F be a fusion system on a finite p-group P and let k be an algebraically
closed field. Then there exists an exact sequence of abelian groups

0→ H1([S(Fc)],A1
F )→ H2(Fc, k×)→ H0([S(Fc)],A2

F )→ H2([S(Fc)],A1
F )→ H3(Fc, k×).

In particular, the group H2(Fc, k×) is finite, of order coprime to char(k) if char(k) is positive.

If F is the fusion system of a block of a finite group, then the block determines an element of
H0([S(Fc)],A2

F ) by the work of Külshammer and Puig [5, 1.8, 1.12]. The gluing problem asks
whether this element is the image of the map

H2(Fc, k×)→ H0([S(Fc)],A2
F ).

In particular, if H2([S(Fc)],A1
F ) = 0, then the gluing problem will have solutions, the number of

which is equal to the order of the group H1([S(Fc)],A1
F ).

In this paper, we compute H i([S(Fc)],A1
F ) (i = 1, 2) for fusion systems F of tame blocks and

the principal p-block of PSL3(p) for p odd. Recall that a tame block is a 2-block whose defect
groups are dihedral, semidihedral, or (generalized) quaternion 2-groups. The gluing problem for
tame blocks has a unique solution as the next theorem, proved in Section 2, shows.

Theorem 1.2. Let P be a dihedral, semidihedral, or (generalized) quaternion 2-group, and let F
be a fusion system on P . Let k be an algebraically closed field of characteristic 2. Then we have

H2(Fc, k×) = H0([S(Fc)],A2
F ) = 0.

In particular, the gluing problem for tame blocks has the zero class as a unique solution.

In the case of the principal block of PSL3(p) we also obtain a unique solution for the gluing
problem when p 6≡ 1 mod 3 and, unexpectedly, multiple solutions when p ≡ 1 mod 3. This is the
main result of this paper and is proved in Section 3.

Theorem 1.3. Let p be an odd prime number and let P be an extraspecial group of order p3 and
exponent p. Then for any fusion system F on P we have

H2([S(Fc)],A1
F ) = 0.

If F = FP (PSL3(p)), then we have

H1([S(Fc)],A1
F ) =

{
0, if p 6≡ 1 mod 3
Z/3, if p ≡ 1 mod 3.

In particular, the gluing problem for the principal p-block of PSL3(p) has a unique solution if p 6≡ 1
mod 3, and three solutions if p ≡ 1 mod 3.

2. Tame fusion systems

Let P be either a dihedral group D2n(n ≥ 2), a semidihedral group SD2n(n ≥ 4), or a (gener-
alized) quaternion group Q2n(n ≥ 3) of order 2n. It is well known that the subgroups R of P are
cyclic, dihedral, semidihedral, or quaternion, and their automorphism groups are 2-groups except
when R ∼= D4 or Q8, in which cases we have Aut(D4) ∼= S3, Aut(Q8) ∼= S4. From this, one can
easily deduce the following proposition.
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Proposition 2.1. Let F be any fusion system on P and let R be an F-centric subgroup of P .
(1) If R � D4, Q8, then OutF (R) is a 2-group.
(2) If R ∼= D4, Q8 and R < P , then OutF (R) ∼= C2 or S3.
(3) If R ∼= D4, Q8 and R = P , then OutF (R) = 1 or C3.

Corollary 2.2. Let F be any fusion system on P and let σ be a chain of F-centric subgroups of
P . Let k be an algebraically closed field of characteristic 2. We have

H1(AutF (σ), k×) ∼=

{
Z/3, if σ = (P ), P ∼= D4 or Q8, OutF (P ) ∼= C3

0, otherwise

and
H2(AutF (σ), k×) = 0.

Proof. Since k is an algebraically closed field of characteristic 2, we have

H1(A, k×) = Hom(A, k×) ∼= Hom(A/([A,A]O2′(A)), k×)

for any finite group A. Thus we have

H1(C2, k
×) = H1(S3, k

×) = 0, H1(C3, k
×) ∼= Z/3.

On the other hand, we have H2(A, k×) = 0 for any finite 2-group A, because any central extension
of A by k× splits.([2, 3.7.5]) Also, it is well known that

H2(C3, k
×) = H2(S3, k

×) = 0.

Now the result follows from Proposition 2.1. �

Proof of Theorem 1.2. For simplicity denote C = [S(Fc)] and Ai = AiF . By Corollary 2.2, we have
A2 = 0, and hence H0(C,A2) = 0. By Theorem 1.1, it remains to show H1(C,A1) = 0.

Case 1: OutF (P ) = 1. Then A1 = 0 and so H1(C,A1) = 0.
Case 2: P ∼= D4, OutF (P ) ∼= C3. Then Fc, and hence C, has one object. Thus H1(C,A1) = 0.
Case 3: P ∼= Q8, OutF (P ) ∼= C3. Then P has a unique (up to F-conjugacy) F-centric proper

subgroup R ∼= C4. Thus the poset C and the functor A1 are as follows:

[P ]
uukkkkkkkk Z/3

uujjjjjjjj

[R < P ] 0
[R]

iiSSSSSSSS
0

iiTTTTTTTTTT

Thus we have H1(C,A1) = 0. �

3. The extraspecial group of order p3 and exponent p, p odd

Let p be an odd prime and let P be the extraspecial group of order p3 and exponent p. Ruiz
and Viruel [11] classified all fusion systems F on P . First let us recall some basic facts from [11].
Explicitly, one can view P as a Sylow p-subgroup of SL3(p) as follows:

P =


1 x z

0 1 y
0 0 1

 | x, y, z ∈ Fp
 .

In particular, we have

Z(P ) = [P, P ] = Φ(P ) =


1 0 z

0 1 0
0 0 1

 | z ∈ Fp
 .
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The sequence of groups

1→ Inn(P ) ι−→ Aut(P ) π−→ Aut(P/Z(P ))→ 1,

where ι is the inclusion and π sends each α ∈ Aut(P ) to the induced automorphism uZ(P ) 7→
α(u)Z(P ) of P/Z(P ), is split exact. More precisely, Out(P ) ∼= Aut(P/Z(P )) ∼= GL2(p) and,
through the splitting map, one can view Out(P ) as a subgroup of Aut(P ). Moreover, the inclusion
of GL2(p) ∼= Out(P ) in Aut(P ), compatible with the splitting, can be given by sending each

A =
(
a b
c d

)
∈ GL2(p) to the automorphism1 1 0

0 1 0
0 0 1

 7→
1 a 1

2ac
0 1 c
0 0 1

 ,

1 0 0
0 1 1
0 0 1

 7→
1 b 1

2bd
0 1 d
0 0 1

 ,

1 0 1
0 1 0
0 0 1

 7→
1 0 ad− bc

0 1 0
0 0 1

 .

Denote the image of A under this inclusion by AP .
Also we have Inn(P ) ∼= Cp×Cp, and an isomorphism can be given by sending each (a, b) ∈ Cp×Cp

to the inner automorphism 1 x z
0 1 y
0 0 1

 7→
1 x z + ay − bx

0 1 y
0 0 1

 .

There are exactly p+ 1 proper centric subgroups of P :

Vi =


1 x z

0 1 ix
0 0 1

 | x, z ∈ Fp
 (0 ≤ i < p), Vp =


1 0 z

0 1 y
0 0 1

 | y, z ∈ Fp
 .

All Vi (0 ≤ i ≤ p) are elementary abelian normal subgroups of P of order p2. Hence Aut(Vi) ∼=

GL2(p) and an isomorphism can be given by sending A =
(
a b
c d

)
∈ GL2(p) to the automorphism1 x z

0 1 ix
0 0 1

 7→
1 ax+ bz cx+ dz

0 1 i(ax+ bz)
0 0 1

 ,

1 0 z
0 1 y
0 0 1

 7→
1 0 cy + dz

0 1 ay + bz
0 0 1

 .

Denote the image of A under this isomorphism by AVi .
Now let F be an arbitrary fusion system on P , and let k be an algebraically closed field of

characteristic p. The chains in [S(Fc)] have length at most 1, and hence

(1) H2([S(Fc)],A1
F ) = 0.

We use the following lemma for computing H1([S(Fc)],A1
F ). It enables us to work with a cochain

complex smaller than the one induced from the standard projective resolution of the constant
covariant functor Z : [S(Fc)]→ Ab.

Lemma 3.1 ([8, 3.2]). Let F be a fusion system on a finite p-group P and let A : [S(Fc)]→ Ab be
a covariant functor. Let C(A) be the cochain complex of abelian groups whose component in degree
n ≥ 0 is equal to

C(A)n =
⊕
[σ]

A([σ])

where the direct sum is taken over the set of F-conjugacy classes [σ] of chains σ of F-centric
subgroups of P of length n, and whose coboundary maps δn : C(A)n−1 → C(A)n are given by

δn(α)([σ]) =
n∑
i=0

(−1)iA([σ(i)]→ [σ])(α([σ(i)]))
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where α ∈ C(A)n−1, σ = (R0 < · · · < Rn), and σ(i) = (R0 < · · · < Ri−1 < Ri+1 < · · · < Rn).
Then we have

Hn([S(Fc)],A) ∼= Hn(C(A))
for any integer n ≥ 0.

3.1. F = FP (PSL3(p)), 3 - (p− 1). From [11], we have that

(1) OutF (P ) ∼=
〈(

ζ 0
0 1

)
P

〉
×
〈(

1 0
0 ζ

)
P

〉
(F×p = 〈ζ〉);

(2) the F-conjugacy classes among the Vi are {V0}, {Vp}, {Vi | 1 ≤ i ≤ p− 1};
(3) Vi is F-radical if and only if i = 0, p;
(4) AutF (V0) ∼= AutF (Vp) ∼= GL2(p).

Then we have

AutF (V1 < P ) ∼= (Cp × Cp)o
〈(

ζ 0
0 ζ

)
P

〉
,

and the restriction map

AutF (V1 < P )→ AutF (V1)

α 7→ α|V1

is surjective by Alperin’s fusion theorem. The above map has kernel ∼= Cp contained in Inn(P ) and

it sends
(
ζ 0
0 ζ

)
P

to
(
ζ 0
0 ζ2

)
V1

. It follows that

AutF (V1) ∼= Cp o

〈(
ζ 0
0 ζ2

)
V1

〉
.

Also we have AutF (V0 < P ) = AutF (Vp < P ) = AutF (P ), and the restriction maps to V0 and Vp
are given as follows:

AutF (P )→ AutF (V0) AutF (P )→ AutF (Vp)(
ζ 0
0 1

)
P

7→
(
ζ 0
0 ζ

)
V0

(
ζ 0
0 1

)
P

7→
(

1 0
0 ζ

)
Vp(

1 0
0 ζ

)
P

7→
(

1 0
0 ζ

)
V0

(
1 0
0 ζ

)
P

7→
(
ζ 0
0 ζ

)
Vp

Thus the poset [S(Fc)] and the functor A1
F are as follows:

[P ]
uujjjjjjjjj

���������������

��



















Z/(p− 1)⊕ Z/(p− 1)

rreeeeeeeeee

xxqqqqqqqqqqqqqqqqqq

πvvvvvvvvvvvv

{{vvvvvvvvvvvvvvv

[V0 < P ] Z/(p− 1)⊕ Z/(p− 1)

[V0]
kkWWWWWWWW Z/(p− 1)

iYYYYYYYY
llYYYYYY

[Vp < P ] Z/(p− 1)⊕ Z/(p− 1)

[Vp]
kkWWWWWWWW Z/(p− 1)

jYYYY
llYYYYYYYYYY

[V1 < P ] Z/(p− 1)

[V1]
kkWWWWWWWW Z/(p− 1)

mmZZZZZZZZZZZZZZZZZZZZ

where π(1, 0) = π(0, 1) = 1, i(1) = (2, 1), j(1) = (1, 2), and all other maps on the right-hand
side are the identity maps. Thus the cochain complex C(A1

F ) of Lemma 3.1, after splicing off the
identity map on Z/(p− 1) induced from the inclusion [V1]→ [V1 < P ], is

4(Z/(p− 1)) δ1−→ 4(Z/(p− 1))→ 0→ · · ·
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where the image of δ1 is generated by (1, 0, 1, 0), (0, 1, 0, 1), (2, 1, 0, 0), and (0, 0, 1, 2). Thus δ1 is a
bijection, and hence

(2) H1([S(Fc)],A1
F ) = 0.

3.2. F = FP (PSL3(p)), 3 | (p− 1). From [11], we have that

(1) OutF (P ) =
〈(

ζ 0
0 ζ

)
P

〉
×
〈(

1 0
0 ζ3

)
P

〉
(F×p = 〈ζ〉);

(2) the F-conjugacy classes among the Vi are {V0}, {Vp}, {Vζ3i | 0 ≤ i < p−1
3 }, {Vζ3i+1 | 0 ≤

i < p−1
3 }, {Vζ3i+2 | 0 ≤ i < p−1

3 };
(3) Vi is F-radical if and only if i = 0, p;
(4) AutF (V0) ∼= AutF (Vp) ∼= SL2(p)o C(p−1)/3.

Then we have

AutF (Vi < P ) ∼= (Cp × Cp)o
〈(

ζ 0
0 ζ

)
P

〉
(0 < i < p),

and the restriction map

AutF (Vi < P )→ AutF (Vi)

α 7→ α|Vi

is surjective by Alperin’s fusion theorem for 0 < i < p. The above map has kernel ∼= Cp contained

in Inn(P ) and it sends
(
ζ 0
0 ζ

)
P

to
(
ζ 0
0 ζ2

)
Vi

. It follows that

AutF (Vi) ∼= Cp o

〈(
ζ 0
0 ζ2

)
Vi

〉
(0 < i < p).

Also we have AutF (V0 < P ) = AutF (Vp < P ) = AutF (P ), and the restriction maps to V0 and Vp
are given as follows:

AutF (P )→ AutF (V0) AutF (P )→ AutF (Vp)(
ζ 0
0 ζ

)
P

7→
(
ζ 0
0 ζ2

)
V0

(
ζ 0
0 ζ

)
P

7→
(
ζ 0
0 ζ2

)
Vp(

1 0
0 ζ3

)
P

7→
(

1 0
0 ζ3

)
V0

(
1 0
0 ζ3

)
P

7→
(
ζ3 0
0 ζ3

)
Vp
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Thus the poset [S(Fc)] and the functor A1
F are as follows:

[P ]

uujjjjjjjjjjj

�����������������

������������������������

������������������������������



�����������������������������������
Z/(p− 1)⊕ Z/(p−1

3 )

rrffffffffff

yyttttttttttttttttttt

πzzzzzzzzzzzzz

||zzzzzzzzzzzzzzzz

π���������������������

���������������

π																													

��											

[V0 < P ] Z/(p− 1)⊕ Z/(p−1
3 )

[V0]

kkWWWWWWWWWW Z/(p−1
3 )

i[[[[[[[[[[
mm[[[[[

[Vp < P ] Z/(p− 1)⊕ Z/(p−1
3 )

[Vp]

kkWWWWWWWWWW Z/(p−1
3 )j[[[

mm[[[[[[[[[[[[

[V1 < P ] Z/(p− 1)

[V1]
llXXXXXXXXXX Z/(p− 1)

mm[[[[[[[[[[[[[[[[[[[[

[Vζ < P ] Z/(p− 1)

[Vζ ]
kkXXXXXXXXXX Z/(p− 1)

mm[[[[[[[[[[[[[[[[[[[[

[Vζ2 < P ] Z/(p− 1)

[Vζ2 ]
kkXXXXXXXXX Z/(p− 1)

mm[[[[[[[[[[[[[[[[[[[[

where π(1, 0) = 1, π(0, 1) = 0, i(1) = (3, 1), j(1) = (3, 2), and all other maps on the right-hand
side are the identity maps. Thus the cochain complex C(A1

F ) of Lemma 3.1, after splicing off the
three identity maps on Z/(p− 1) induced from the inclusions [Vζi ]→ [Vζi < P ] (i = 0, 1, 2) is

Z/(p− 1)⊕ 3(Z/(
p− 1

3
)) δ1−→ 2(Z/(p− 1)⊕ Z/(p− 1

3
))→ 0→ · · ·

where the image of δ1 is generated by (1, 0, 1, 0), (0, 1, 0, 1), (3, 1, 0, 0), and (0, 0, 3, 2). Thus δ1 is
injective, and comparing the order of the groups, we get

(3) H1([S(Fc)],A1
F ) ∼= Z/3.

Now Theorem 1.3 follows from (1), (2), and (3).
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