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Abstract. We show that every (not necessarily saturated) fusion system can

be realized as a full subcategory of the fusion system of a finite group. This
result extends our previous work [5] and complements the related result [4] by

Leary and Stancu.

1. Statements of the results

Fix a prime p. Let G be a finite group, and let S be a p-subgroup of G. We
denote by FS(G) the category whose objects are the subgroups of S and such that
for P,Q ≤ S we have

HomFS(G)(P,Q) = {ϕ : P → Q | ∃x ∈ G s.t. ϕ(u) = xux−1 for u ∈ P},

where composition of morphisms is composition of functions.
The category FS(G) above is a fusion system on S. If S is a Sylow p-subgroup

of G, then FS(G) is saturated, but not all saturated fusion systems are of this form.
Those saturated fusion systems F such that F 6= FS(G) for any finite group G
having S as a Sylow p-subgroup are called exotic fusion systems. We refer the
reader to [1] for precise definitions and a general introduction to the subject. In
[5] we showed that every saturated fusion system F on a finite p-group S is of the
form F = FS(G) for some finite group G having S as a subgroup. The point here
is that we are not requiring that S is a Sylow p-subgroup of G. In this short note,
we observe that this result holds even when F is not saturated.

Theorem 1. Let F be a fusion system on a finite p-group S. Then there is a finite
group G having S as a subgroup such that F = FS(G).

Thus fusion systems are precisely those categories of the form FS(G) for some
finite group G and a p-subgroup S of G. Leary and Stancu [4] showed that every
fusion system is of the form FS(G) where G is a (possibly infinite) group having S
as a Sylow p-subgroup, in the sense that every finite p-subgroup of G is conjugate
to a subgroup of S. Here FS(G) is defined exactly the same way as when G is
a finite group. Leary and Stancu’s construction uses HNN extensions. As in [5],
the proof of Theorem 1 uses a certain S-S-biset associated to the fusion system F ,
though we use a slightly different one here. We keep the notations of [5].

Definition 2. Let F be a fusion system on a finite p-group S. A left semicharac-
teristic biset for F is a finite S-S-biset X satisfying the following properties:

(1) X is F-generated, i.e., every transitive subbiset of X is of the form S×(Q,ϕ)S
for some Q ≤ S and some ϕ ∈ HomF (Q,S).

(2) X is left F-stable, i.e., QX ∼= ϕX as Q-S-bisets for every Q ≤ S and every
ϕ ∈ HomF (Q,S).
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A right semicharacteristic biset is defined analogously with right F-stability in-
stead of left F-stability; a semicharacteristic biset is a biset which is both left and
right semicharacteristic. When the fusion system is saturated, semicharacteristic
bisets are parametrized by Gelvin and Reeh [3] using a result of Reeh [7], and
left semicharacteristic bisets can be parametrized analogously. A left characteristic
biset is a left semicharacteristic biset X such that |X|/|S| 6≡ 0 (mod p). Broto–
Levi–Oliver [2, Proposition 5.5] showed that every saturated fusion system has a
left characteristic biset X. In [5], we used this biset X to construct the finite group
G in Theorem 1 when F is saturated. Here we show that every fusion system has a
certain left semicharacteristic biset X with an additional property which falls short
of making X left characteristic, but which still ensures that the proof in [5] carries
over.

Proposition 3. Every fusion system F on a finite p-group S has a left semichar-
acteristic biset X containing S ×(S,id) S.

We are going to prove Proposition 3 and Theorem 1 in the next section.

Remark 4. In [6, Proposition 3.1], a semicharacteristic biset containing S ×(S,id) S
is used for a saturated fusion system F on a finite p-group S. Thus Proposition 3
tells us that [6, Proposition 3.1] holds for an arbitrary fusion system F .

2. Semicharacteristic bisets for fusion systems

Let G be a finite group. A virtual G-set with rational coefficients is an element
of the rational Burnside ring Q⊗Z B(G), i.e., a formal sum∑

H

cHG/H

where H runs over a set of representatives of conjugacy classes of subgroups of G
and cH ∈ Q. If the coefficients of a virtual G-set are all nonnegative integers, then
it is simply a (isomorphism class of) finite G-set.

The key step of the proof of Proposition 3 is the following lemma, which says
roughly that every virtual S-set with rational coefficients can be stabilized (with
respect to a given fusion system F) by adding a virtual S-set with nonnegative
rational coefficients.

Lemma 5 (cf. [2, Lemma 5.4]). Let F be a fusion system on a finite p-group
S. Let H be a collection of subgroups of S which is closed under F-conjugation
and taking subgroups. Let X0 be a virtual S-set with rational coefficients such that
|XP

0 | = |XP ′

0 | for all P, P ′ ≤ S with P, P ′ /∈ H which are F-conjugate. Then

there is a virtual S-set X with rational coefficients such that |XP | = |XP ′ | for all
P, P ′ ≤ S which are F-conjugate, |XP | = |XP

0 | for all P ≤ S with P /∈ H, and
X −X0 is a virtual S-set with nonnegative rational coefficients.

Proof. Consider an F-conjugacy class P of subgroups of S in H which are maximal
among such subgroups. Choose P ∈ P such that |XP

0 | ≥ |XP ′

0 | for all P ′ ∈ P. Set

X1 = X0 +
∑
P ′

|XP
0 | − |XP ′

0 |
|NS(P ′)/P ′|

S/P ′,

where P ′ runs over a set of representatives of the subgroups in P up to S-conjugacy.
Then for any P ′ ∈ P, we have |XP ′

1 | = |XP
0 | = |XP

1 |. Note that |XP
1 | = |XP

0 | for
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all P ≤ S with P /∈ H, and hence |XP
1 | = |XP ′

1 | for all P, P ′ ≤ S with P, P ′ /∈ H\P
which are F-conjugate. Also, X1 −X0 is a virtual S-set with nonnegative rational
coefficients. So by repeating this process we get a virtual S-set X with the desired
properties. �

Comparing the above lemma to [2, Lemma 5.4], we see that here the lack of
saturation is compensated for by allowing rational coefficients.

Proof of Proposition 3. Let

Y0 =
∑

α∈OutF (S)

S ×(S,α) S.

Then Y0 satisfies the assumption of Lemma 5 with respect to the product fusion
system F × FS(S) on S × S and H = {∆(P,ϕ) | P < S,ϕ ∈ HomF (P, S)}.
(See [1, Definition I.6.5, Theorem I.6.6] for the definition and properties of the
product fusion system.) Thus Lemma 5 implies that there is a virtual S-set Y
with nonnegative rational coefficients which is F-generated and left F-stable and
which contains S ×(S,id) S. Let m be a large enough positive integer such that
X = mY is a (finite) S-set (with nonnegative integer coefficients). Then X is a left
semicharacteristic biset for F containing S ×(S,id) S. �

Proof of Theorem 1. Let F be a fusion system on a finite p-group S and let X be
a left semicharacteristic biset for F containing S ×(S,id) S. Let G be the group of
automorphisms of X viewed as a right S-set, i.e., the group of bijections f : X → X
such that f(xs) = f(x)s for all x ∈ X and s ∈ S. Then S embeds into G via

S → G, s 7→ (x 7→ sx).

The proof of [5, Theorem 6] applies verbatim to this situation. Thus we have
F = FS(G). �
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